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Abstract: An analytical model was developed to determine the temperature of friction coupling, in
which one element was made of a functionally graded material (FGM) and the other was homoge-
neous. First, for such a system, the boundary–value problem of heat conduction was formulated with
consideration of the heat generation due to friction. Then, using the Laplace integral transform, an
exact solution to this problem was obtained for uniform sliding, and braking with constant decelera-
tion. A numerical analysis was performed for the selected friction pair consisting of the FGM (zircon
dioxide + titanium alloy) and cast iron. It was established that the use of elements made of a FGM
consisting of ZrO2 and Ti-6Al-4V can significantly reduce the maximum temperature achieved in the
friction system.

Keywords: frictional heating; functionally graded materials; temperature; braking

1. Introduction

Reviews of investigations on methods for establishing the temperature of systems
containing friction elements made of functionally gradient materials (FGMs) can be found
in previous articles [1–3]. In these studies, the methodology of determining the temperature
in such friction couples under uniform sliding [1], during braking with time-dependent
contact pressure [2], and considering the thermal sensitivity of component materials of
FGMs was investigated [3]. The main factor in this methodology is an exact solution to
the boundary–value heat conduction problem, taking into account the frictional heating of
two semi-infinite bodies made of FGMs. It should be noted, however, that the obtained
solutions did not allow determining automatically, with the help of limit transformations,
solutions to the problems in the case when one of the friction pair elements is made of
FGM and the other is homogeneous. Moreover, this type of friction pair is one of the most
common [4]. Therefore, in this study, an attempt was made to develop a mathematical
model for determining the temperature of a friction pair consisting of a body made of
a two-component FGM, sliding on the surface of a homogeneous body. An exponential
change in the thermal conductivity of the FGM with distance from the friction surface was
assumed. Two modes of changing the sliding velocity over time were considered: uniform
and linearly decreasing.

2. Statement of the Problem

The object of study is the transient temperature field, initiated in the process of
frictional heating of the friction pair elements of a braking system, corresponding to the
brake pad and disc. Taking into account the fact that the heat generated as a result of
friction during braking is mainly directed along the normal from the friction surface to
the inside of both elements [5,6], for the description of the heating process of the system, a
contact scheme of two semi-infinite bodies was adopted, related to the Cartesian coordinate
system (Figure 1).
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Figure 1. Scheme of the problem.

The pad (body 1) is made of a two-component functionally graded material (FGM), in
such a way that the friction surface is a material of low thermal conductivity and high wear
resistance (ceramics etc.), while the core material has high thermal conductivity (metal
alloys, copper, iron etc.). The increase in thermal conductivity of the pad material in the
distance from the friction surface is exponential. On the other hand, the disc (body 2)
is made of a homogeneous material (cast iron etc.). A more detailed description of the
adopted model assumptions is presented in our previous articles [1,2].

The analytical model presented in the manuscript concerns the frictional system of two
semi-infinite bodies, in which it is not possible to take into consideration the heat exchange
between the heated elements and the surrounding environment. It is known, however,
that consideration of convection cooling, would lead to a lower maximum temperature;
the most important parameters in the design process of frictional systems. It should be
ensured that the theoretical value of the permissible temperature for a given material (i.e.,
the melting point) is not exceeded. For this reason, at the design stage, calculations should
be performed for the maximum temperature achieved for adiabatic conditions on the free
surfaces of the friction system.

The braking process with constant deceleration was considered when the contact
pressure achieved its nominal value p0 immediately at the beginning of the braking, with
simultaneously reduction of velocity from the initial value V0 to zero at the stopping
moment t = ts. For such braking, the specific friction power was written in the form:

q(t) = q0q∗(t), q0 = f0 p0V0, q∗(t) = 1− t
ts

, 0 ≤ t ≤ ts, ts =
W0

q0 Aa
, (1)

where f0—friction coefficient, W0—initial kinetic energy of the system, and Aa— area of
nominal contact between one brake pad and the disc.

The temperature field T(z, t) in the system consisting of two sliding semi-spaces was
sought based on the solution to the following thermal problem of friction:

∂

∂z

[
K1(z)

∂T(z, t)
∂z

]
= c1ρ1

∂T(z, t)
∂t

, z > 0, 0 < t ≤ ts, (2)

K2
∂2T(z, t)

∂z2 = c2ρ2
∂T(z, t)

∂t
, z < 0, 0 < t ≤ ts, (3)

T(0+, t) = T(0−, t) ≡ T(t), 0 < t ≤ ts, (4)
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K2
∂T(z, t)

∂z

∣∣∣∣
z=0−

− K1(z)
∂T(z, t)

∂z

∣∣∣∣
z=0+

= q(t), 0 < t ≤ ts, (5)

T(z, t)→ T0 , |z| → ∞ , 0 < t ≤ ts, (6)

T(z, 0) = T0, |z| < ∞. (7)

where
K1(z) = K1,1eγz, z ≥ 0, γ ≥ 0, (8)

c1 = c1,1(1− v) + c1,2v, ρ1 = ρ1,1(1− v) + ρ1,2v, 0 ≤ v ≤ 1, (9)

temporal profile of specific friction power q(t) was determined from Equation (1), K1,m,
c1,m, and ρ1,m—thermal conductivity, specific heat, and density of the first (m = 1) and
the second (m = 2) component of pad material, respectively, and parameters K2, c2,
and ρ2 —correspond to the disc material, v—the relative volumetric fraction of the first
component of the pad material, and T0—temperature of the system at the initial time
moment t = 0.

The dimensionless variables and parameters were introduced:

ζ =
z
a

, τ =
k1t
a2 , τs =

k1ts

a2 , K∗ =
K2

K1,1
, k∗ =

k2

k1
, Θ∗ =

T − T0

Θ0
, Θ0 =

q0a

K(0)
1,1

, (10)

where
a =

√
3k1ts, (11)

k1 =
K1,1

c1ρ1
, k2 =

K2

c2ρ2
. (12)

Taking into account the designations (10)–(12), the problem (2)–(9) was written in
the form:

∂2Θ∗(ζ, τ)

∂ζ2 + γ∗
∂Θ∗(ζ, τ)

∂ζ
− e−γ∗ζ ∂Θ∗(ζ, τ)

∂τ
= 0, ζ > 0, 0 < τ ≤ τs, (13)

∂2Θ∗(ζ, τ)

∂ζ2 − 1
k∗

∂Θ∗(ζ, τ)

∂τ
= 0, ζ < 0, 0 < τ ≤ τs, (14)

Θ∗(0+, τ) = Θ∗(0−, τ) ≡ Θ∗(τ), 0 < τ ≤ τs, (15)

K∗
∂Θ∗(ζ, τ)

∂ζ

∣∣∣∣
ζ=0−

− ∂Θ∗(ζ, τ)

∂ζ

∣∣∣∣
ζ=0+

= q∗(τ), 0 < τ ≤ τs, (16)

Θ∗(ζ, τ)→ 0 , |ζ| → ∞ , 0 < τ ≤ τs, (17)

Θ∗(ζ, 0) = 0, |ζ| < ∞, (18)

where
q∗(τ) = 1− τ

τs
, 0 < τ ≤ τs, (19)

γ∗ ≡ aγ = ln
(

K1,2

K1,1

)
. (20)
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3. Frictional Heating under Uniform Sliding

First, the case of frictional heating process during sliding of the pad on the disc surface
with constant velocity V0 was considered. Then for τs → ∞ from the Equation (19), it
follows that q∗(τ) = 1. For the boundary–value heat conduction problem (13)–(20) with
a constant temporal profile of specific friction power q∗(τ) = 1, the integral Laplace
transform was applied [7]:

Θ∗(ζ, p) ≡ L[Θ∗(ζ, τ); p] =
∞∫

0

Θ∗(ζ, τ)e−pτdτ, (21)

it was obtained:

d2Θ∗(ζ, p)
dζ2 + γ∗

dΘ∗(ζ, p)
dζ

− pe−γ∗ζ Θ∗(ζ, p) = 0, ζ > 0, (22)

d2Θ∗(ζ, p)
dζ2 − p

k∗
Θ∗(ζ, p) = 0, ζ < 0, (23)

Θ∗(0+, p) = Θ∗(0−, p) ≡ Θ∗(p), (24)

K∗
dΘ∗(ζ, p)

dζ

∣∣∣∣∣
ζ=0−

− dΘ∗(ζ, p)
dζ

∣∣∣∣∣
ζ=0+

=
1
p

, (25)

Θ∗(ζ, p)→ 0 , |ζ| → ∞. (26)

An exact solution to the ordinary differential Equations (22) and (23), which meet the
boundary conditions (24)–(26) has the form:

Θ∗(ζ, p) =
∆1(ζ, p)

p
√

p ∆(p)
, ζ ≥ 0, Θ∗(ζ, p) =

∆2(ζ, p)
p
√

p ∆(p)
, ζ ≤ 0, (27)

where

∆1(ζ, p) = e−0.5γ∗ζ I1

(
2

γ∗
√

pe−0.5γ∗ζ
)

, ∆2(ζ, p) = e
√

p
k∗ ζ I1

(
2

γ∗
√

p
)

, (28)

∆(p) = I0

(
2

γ∗
√

p
)
+ Kε I1

(
2

γ∗
√

p
)

, (29)

Ik(x)—modified Bessel functions of the first kind of the kth order k = 0, 1 [8].
Using the inverse Laplace transform to the solution (27)–(29), the dimensional temper-

ature rise was found in the form:

Θ∗(ζ, τ) ≡ L−1[Θ∗(ζ, p); τ] =
1

2πi

ω+i∞∫
ω−i∞

Θ∗(ζ, p)epτdp, τ ≥ 0, ω ≡ Rep > 0, i ≡
√
−1. (30)

The presence of
√

p, as well as the lack of the roots of function ∆(p), testifies that the
solution (36)–(39) has a branch point for p = 0. Therefore, to perform the integration on the
complex plane (Rep, Im p), the closed contour Γ was chosen, as demonstrated in Figure 2.
The contour Γ consists of the straight line Γω Re p = ω, the circles ΓR and Γδ with the radii
R and δ, respectively, with the center p = 0, and a cut of a complex p–plane along negative
real axis Re p < 0 and two boundaries Γ±. Within the contour Γ, the integral function
Θ∗(ζ, p) in the Equation (30) is unambiguous and analytical.
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Then, based on Cauchy’s theorem we obtained [9]:

1
2πi

∮
Γ

Θ∗(ζ, p)epτdp = 0. (31)

Since the transform Θ∗(ζ, τ) carries out the conditions of Jordan’s lemma [7]:∣∣∣∣ ∆l(ζ, p)
p
√

p∆(p)

∣∣∣∣ ≤ const.
p
√

p
, l = 1, 2, (32)

integrands on arcs ΓR in the Equation (31) tend to zero for R→ ∞ ; therefore, on the basis
of the relations (30) and (31), the dimensional temperature rise was written in the form:

Θ∗(ζ, τ) + Θ∗+(ζ, τ) + Θ∗−(ζ, τ) + Θ∗δ(ζ, τ) = 0, |ζ| < ∞, τ ≥ 0, (33)

where
Θ∗±(ζ, τ) =

1
2πi

∫
Γ±

Θ∗(ζ, p)epτdp, Θ∗δ(ζ, τ) =
1

2πi

∫
Γδ

Θ∗(ζ, p)epτdp. (34)

In the polar coordinate system (r, ϕ) with center in the point p = 0, parameter of the
Laplace transform p = reiϕ, r ≥ 0, and |ϕ| ≤ π. Then on the boundary Γ+ we obtained
p = reiπ = −r,

√
p = i

√
r, and on the edge Γ−, respectively, p = re−iπ = −r,

√
p = −i

√
r

and the first two integrals (34) took the form:

Θ∗±(ζ, τ) = ± 1
2πi

∞∫
0

Θ∗±(ζ, r)e−rτdr, |ζ| < ∞, τ ≥ 0, (35)

where Θ∗±(ζ, r) ≡ Θ∗(ζ, re±iπ).
Taking into account the dependencies [8]:

I0(x) = J0(ix), I1(x) = −i J1(ix), (36)

(where Jk(x) are the Bessel functions of the first kind of the kth order k = 0, 1), from
Equations (27)–(29) was obtained:

Θ∗±(ζ, r) =
∆±1 (ζ, r)

r
√

r ∆∓(r)
, ζ ≥ 0, Θ∗±(ζ, r) =

∆±2 (ζ, r)
r
√

r ∆∓(r)
, ζ ≤ 0, (37)
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where:

∆±1 (ζ, r) = ±ie−0.5γ∗ζ J1

(
2

γ∗
√

re−0.5γ∗ζ
)

, ∆±2 (ζ, r) = ±ie± i
√ r

k∗ ζ J1

(
2

γ∗
√

r
)

, (38)

∆±(ζ, r) = Kε J1

(
2

γ∗
√

r
)
± i J0

(
2

γ∗
√

r
)

. (39)

On the circle Γδ it is p = δeiϕ,
√

p =
√

δe0.5iϕ, |ϕ| ≤ π. Approaching the limit δ→ 0
with consideration of the solutions forms (27)–(29), the third integral (34) was written as:

Θ∗δ(ζ, τ) = lim
δ→0

− 1
2πi

π∫
−π

Θ∗δ(ζ, δeiϕ)eδeiϕτ iδeiϕdϕ

, τ ≥ 0, (40)

where

Θ∗δ(ζ, δeiϕ) =
∆1(ζ, δeiϕ)

δ
√

δe1.5iϕ∆(δeiϕ)
, ζ ≥ 0, Θ∗δ(ζ, δeiϕ) =

∆2(ζ, δeiϕ)

δ
√

δe1.5iϕ∆(δeiϕ)
, ζ ≤ 0, (41)

∆1(ζ, δeiϕ) = e−0.5γ∗ζ I1

(
2

γ∗
√

δe0.5iϕe−0.5γ∗ζ
)

, (42)

∆2(ζ, δeiϕ) = e
√

δ
k∗ ζ e0.5iϕ

I1

(
2

γ∗
√

δe0.5iϕ
)

, (43)

∆±(ζ, r) = Kε J1

(
2

γ∗
√

r
)
± i J0

(
2

γ∗
√

r
)

. (44)

Substituting the functions (41)–(44) into Equation (40), it was found:

Θ∗δ(ζ, τ) = lim
δ→0

− 1
2π

π∫
−π

∆1(ζ, δeiϕ)√
δe0.5iϕ∆(δeiϕ)

eδeiϕτdϕ

, ζ ≥ 0, τ ≥ 0, (45)

Θ∗δ(ζ, τ) = lim
δ→0

− 1
2π

π∫
−π

∆2(ζ, δeiϕ)√
δe0.5iϕ∆(δeiϕ)

eδeiϕτdϕ

, ζ ≤ 0, τ ≥ 0. (46)

For small values of the argument [8]:

I0(x) ∼= 1, I1(x) ∼= 0.5x, (47)

from Equations (45) and (46), the following was obtained:

Θ∗δ(ζ, τ) = − 1
γ∗

e−0.5γ∗ζ , ζ ≥ 0, Θ∗δ(ζ, τ) = − 1
γ∗

, ζ ≤ 0, τ ≥ 0. (48)

Applying the function Θ∗±(ζ, τ) (35), (37)–(39), and Θ∗δ(ζ, τ) (48) into the Equation (33)
and introducing the notation:

√
r = x, r = x2, the dimensional rise of temperature was

found in the form:

Θ∗(ζ, τ) =
1

γ∗

e−0.5γ∗ζ − 4
π

∞∫
0

F(x)G1(ζ, x)e−(0.5γ∗x)2τdx

, ζ ≥ 0, τ ≥ 0, (49)

Θ∗(ζ, τ) =
1

γ∗

1− 4
π

∞∫
0

F(x)G2(ζ, x)e−(0.5γ∗x)2τdx

, ζ ≤ 0, τ ≥ 0, (50)
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where

F(x) =
J1(x)

x2
{
[J0(x)]2 + [Kε J1(x)]2

} , (51)

G1(ζ, x) = Kεe−0.5γ∗ζ J1(xe−0.5γ∗ζ), (52)

G2(ζ, x) = Kε J1(x) cos
(

γ∗ζ

2
√

k∗
x
)
− J0(x) sin

(
γ∗ζ

2
√

k∗
x
)

. (53)

Substituting ζ = 0 into Equations (49)–(53) it was established that the temperature rise
on the contact surface included in the boundary condition (24) has the form:

Θ∗(τ) =
1

γ∗

1− 4
π

∞∫
0

G(x)e−(0.5γ∗x)2τdx

, τ ≥ 0, (54)

where

G(x) =
Kε[J1(x)]2

x2
{
[J0(x)]2 + [Kε J1(x)]2

} . (55)

On the basis of the Fourier’s law, the intensities of heat fluxes directed from the contact
surface towards the inside of the friction pair elements were defined:

q1(t) = −K1,1
∂Θ(z, t)

∂z

∣∣∣∣
z=0+

, q2(t) = K2
∂Θ(z, t)

∂z

∣∣∣∣
z=0−

, t ≥ 0, (56)

The dimensionless form of dependencies (56) can be found as:

q∗l (τ) =
ql(t)

q0
, l = 1, 2, (57)

and taking account of (8) and (18), it was obtained:

q∗1(τ) = −
∂Θ∗(ζ, τ)

∂ζ

∣∣∣∣
ζ=0+

, q∗2(τ) = K∗
∂Θ∗(ζ, τ)

∂ζ

∣∣∣∣
ζ=0−

, τ ≥ 0. (58)

Substituting the dimensionless temperature rise (49)–(53) into Equation (58) and
differentiating, it was found:

q∗1(τ) = 1 +
2
π

∞∫
0

Q(x)e−(0.5γ∗x)2τdx, q∗2(τ) = −
2
π

∞∫
0

Q(x)e−(0.5γ∗x)2τdx, τ ≥ 0, (59)

where

Q(x) =
Kε J0(x)J1(x)

x
{
[J0(x)]2 + [Kε J1(x)]2

} . (60)

From Equations (59) and (60) it follows that q∗1(τ) + q∗2(τ) = 1, which confirms the
fulfillment of the boundary condition (16) for q∗(τ) = 1, τ ≥ 0.

4. Asymptotic Solutions

It should be noted that solutions (49)–(55) have the form of a quadrature; thus, using
them, numerical integration should be performed each time on the range of bounded fields.
However, in the case of small and large values of dimensionless time τ (Fourier number),
the corresponding asymptotic solution will be obtained in the analytical form, not requiring
numerical integration.
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Small values of the Fourier number 0 ≤ τ << 1 (large values of the parameter p of
the Laplace integral transform (30)). At large values of arguments, the modified Bessel
functions behave as follows [8]:

I0(x) ∼=
ex
√

2πx

(
1 +

1
8x

+
9

128x2 + . . .
)

, I1(x) ∼=
ex
√

2πx

(
1− 3

8x
− 15

128x2 − . . .
)

. (61)

Limiting only to the first two components in the formula (61), the transforms of the
dimensionless temperature rise (27)–(29) were written in the form:

Θ∗(ζ, p) ∼=
e−0.25γ∗ζ−α

√
p

(1 + Kε)p
√

p

(
1− 3γ∗e0.5γ∗ζ

16
√

p

)[
1 +

γ∗(1− 3Kε)

16(1 + Kε)
√

p

]−1

, ζ ≥ 0, (62)

Θ∗(ζ, p) ∼=
e
√

p
k∗ ζ

(1 + Kε)p
√

p

(
1− 3γ∗

16
√

p

)[
1 +

γ∗(1− 3Kε

16(1 + Kε)
√

p

]−1

, ζ ≤ 0, (63)

where
α =

2
γ∗

(1− e−0.5γ∗ζ), ζ ≥ 0. (64)

Taking into consideration that:(
1− 3γ∗e0.5γ∗ζ

16
√

p

)[
1 +

γ∗(1− 3Kε

16(1 + Kε)
√

p

]−1

≈ 1− γ∗

16
√

p

(
3e0.5γ∗ζ +

1− 3Kε

1 + Kε

)
, (65)

(
1− 3γ∗

16
√

p

)[
1 +

γ∗(1− 3Kε

16(1 + Kε)
√

p

]−1

≈ 1− γ∗

4(1 + Kε)
√

p
, (66)

the transforms (62)–(64) were obtained in the form:

Θ∗(ζ, p) ∼=
e−0.25γ∗ζ−α

√
p

(1 + Kε)p
√

p

[
1− γ∗

16
√

p

(
3e0.5γ∗ζ +

1− 3Kε

1 + Kε

)]
, ζ ≥ 0, (67)

Θ∗(ζ, p) ∼=
e
√

p
k∗ ζ

(1 + Kε)p
√

p

(
1− γ∗

4(1 + Kε)
√

p

)
, ζ ≤ 0. (68)

Taking account of the relations [10]:

L−1

[
e−a
√

p

p
√

pn ; τ

]
= (4τ)

n
2 inerfc

(
a

2
√

τ

)
, n = 1, 2, a ≥ 0, (69)

from the transforms of solutions (67) and (68), the dimensionless temperature rises were found:

Θ∗(ζ, τ) ∼= 2e−0.25γ∗ζ
√

τ
(1+Kε)

[
ierfc

(
α

2
√

τ

)
− γ∗

√
τ

8

(
3e0.5γ∗ζ + 1−3Kε

1+Kε

)
i2erfc

(
α

2
√

τ

)]
,

ζ ≥ 0,
(70)

Θ∗(ζ, τ) ∼= 2
√

τ
(1+Kε)

[
ierfc

(
|ζ|

2
√

k∗τ

)
− γ∗

√
τ

2(1+Kε)
i2erfc

(
|ζ|

2
√

k∗τ

)]
, ζ ≤ 0,

0 ≤ τ << 1,
(71)

where

i2erfc(x) = 0.25[erfc(x)− 2x ierfc(x)], ierfc(x) = π−0.5e−x2 − x erfc(x),
erfc(x) = 1− erf(x),

(72)
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erf(x)—Gauss error function [8]. On the contact surface ζ = 0 from Equations (70) and (71)
it was obtained:

Θ∗(τ) ∼=
2
√

τ

(1 + Kε)

[
1√
π
− γ∗

√
τ

8(1 + Kε)

]
, 0 ≤ τ << 1. (73)

Approaching in Equations (70)–(73) the limit γ∗ → 0 ( α→ ζ ), the solution for homo-
geneous materials was obtained [11]:

Θ∗(ζ, τ) ∼=
2
√

τ

(1 + Kε)
ierfc

(
ζ

2
√

τ

)
, ζ ≥ 0, (74)

Θ∗(ζ, τ) ∼=
2
√

τ

(1 + Kε)
ierfc

(
|ζ|

2
√

k∗τ

)
, ζ ≤ 0, (75)

Θ∗(τ) ∼=
2

(1 + Kε)

√
τ

π
, 0 ≤ τ << 1. (76)

Large values of Fourier number τ >> 1(small values of the parameter p of the Laplace
integral transform (30)). Distributions of the modified Bessel functions for small values of
argument in the power series have the form [8]:

I0(x) ∼= 1 +
x2

4
+ . . ., I1(x) ∼=

x
2

(
1 +

x2

8
+ . . .

)
. (77)

Taking into account the relations (77), the Laplace transforms of dimensionless tem-
perature rise (27)–(29) were written as:

Θ∗(ζ, p) ∼=
e−γ∗ζ

γ∗

[
β

p(β +
√

p)
+

e−γ∗ζ

2Kεγ∗(β +
√

p

]
, ζ ≥ 0, (78)

Θ∗(ζ, p) ∼=
e
√

p
k∗ ζ

γ∗

[
β

p(β +
√

p)
+

1
2Kεγ∗(β +

√
p

]
, ζ ≤ 0, (79)

where
β =

γ∗

Kε
. (80)

Using the dependencies [10]:

L−1

[
e−a
√

p

(β +
√

p)
; τ

]
=

e−
a2
4τ

√
πτ
− β eaβ+β2τerfc

(
a

2
√

τ
+ β
√

τ

)
, (81)

L−1

[
β e−a

√
p

p(β +
√

p)
; τ

]
= erfc

(
a

2
√

τ

)
− eaβ+β2τerfc

(
a

2
√

τ
+ β
√

τ

)
, a ≥ 0, (82)

from the transform solutions (78) and (79), the dimensionless temperature rises were
obtained in the form:

Θ∗(ζ, τ) ∼=
e−γ∗ζ

γ∗

{
1− eβ2τerfc(β

√
τ
)
+

e−γ∗ζ

2Kεγ∗

[
1√
πτ
− β eβ2τerfc(β

√
τ

)]}
, ζ ≥ 0, τ >> 1, (83)

Θ∗(ζ, τ) ∼= 1
γ∗

{
erfc

(
|ζ|

2
√

k∗τ

)
− e

β|ζ|√
k∗
+β2τerfc

(
|ζ|

2
√

k∗τ
+ β
√

τ
)
+

+ 1
2Kεγ∗

[
e−

ζ2
4k∗τ√
πτ
− βe

β|ζ|√
k∗
+β2τerfc

(
|ζ|

2
√

k∗τ
+ β
√

τ
)]}

, ζ ≤ 0, τ >> 1.
(84)
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Substituting ζ = 0 into Equations (83) and (84), it was found:

Θ∗(τ) ∼=
1

γ∗

{
1− eβ2τerfc(β

√
τ
)
+

1
2Kεγ∗

[
1√
πτ
− β eβ2τerfc(β

√
τ

)]}
, τ >> 1. (85)

5. Temperature Field during Braking with Constant Deceleration

Based on Duhamel’s theorem [12], the dimensionless temperature rise during braking
with constant deceleration was sought in the form:

Θ̂∗(ζ, τ) =
∂

∂τ

τ∫
0

q∗(τ − s)Θ∗(ζ, s)ds, |ζ| < ∞, 0 ≤ τ ≤ τs, (86)

where the temporal profiles of the specific friction power q∗(τ) and function Θ∗(ζ, τ) were
determined from Equations (19), (49), and (50), respectively. Performing the integration
first, and then differentiating, from the Equation (86) we obtained:

Θ̂∗(ζ, τ) =
1

γ∗

e−0.5γ∗ζ q∗(τ)− 4
π

∞∫
0

F(x)G1(ζ, x)P(τ, x)dx

, ζ ≥ 0, 0 ≤ τ ≤ τs, (87)

Θ̂∗(ζ, τ) =
1

γ∗

1− 4
π

∞∫
0

F(x)G2(ζ, x)P(τ, x)dx

, ζ ≤ 0, 0 ≤ τ ≤ τs, (88)

where

P(τ, x) = e−(0.5γ∗x)2τ − (1− e−(0.5γ∗x)2τ)

(0.5γ∗x)2τs
, (89)

and functions F(x), G1(ζ, x), and G2(ζ, x) can be found from the Formulas (51)–(53).
The temperature change on the friction surface was found, substituting ζ = 0 into the

Equations (87) and (88), in the form:

Θ̂∗(τ) =
1

γ∗

1− 4
π

∞∫
0

G(x)P(τ, x)dx

, τ ≥ 0, (90)

where functions G(x) and P(τ, x) were determined from relations (55) and (89), respectively.
Knowing the dimensionless temperature rise (87), (88), from Formulas (58) the dimen-

sionless intensities of frictional heat fluxes were found:

q̂∗1(τ) = q∗(τ) +
2
π

∞∫
0

Q(x)P(τ, x)dx, q̂∗2(τ) = −
2
π

∞∫
0

Q(x)P(τ, x)dx, 0 ≤ τ ≤ τs, (91)

where functions Q(x) and P(τ, x) have the forms (60) and (89), respectively. From Equation (91)
it follows that q̂∗1(τ)+ q̂∗2(τ) = q∗(τ), which confirms the fulfillment of the boundary condition
(16) with the dimensionless specific friction power q∗(τ) in the form (19).

6. Numerical Analysis

Calculations were performed for a friction pair, where the first element (pad) is
made of two-component FGM: zircon dioxide ZrO2 (friction surface) and titanium alloy
Ti− 6Al− 4V(core). While the second material (brake disc) is homogeneous: cast iron
ChNMKh. The properties of the materials are included in Table 1.
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Table 1. Material properties at the initial temperature T0 [3,13].

Material Thermal Conductivity
Wm−1K−1

Specific Heat Capacity
J kg−1K−1

Density kg m−3

ZrO2 1.94 452.83 6102.16
Ti-6Al-4V 6.87 538.08 4431.79
ChNMKh 52.17 444.6 7100

The values of the remaining input parameters used to perform the calculations are
listed in Table 2.

Table 2. Input parameters [14].

Friction
Coefficient

f0

Nominal
Pressure
p0, MPa

Initial Sliding
Speed

V0, ms−1

Initial Kinetic
Energy
W0, kJ

Nominal
Contact Area

Aa, m2

Initial
Temperature

T0,◦C

0.27 0.602 23.8 103.54 0.00221 20

Then, from formulas (1) and (19), the nominal value of specific friction power
q0 = 3.87 MW m−2, braking time ts = 12.1 s, and gradient parameter γ∗ = 1.26
were determined. Based on Equation (9), for an equal volumetric fraction of FGM
component (v = 0.5), the effective values of specific heat capacity and density of the
pad material were obtained, c1 = 495.45 J kg−1K−1, ρ1 = 5266.97 kg m−3, respectively.
Thereafter, the following parameters were calculated sequentially: thermal diffusivity
k1 = 0.743 · 10−6 m2s−1 and k2 = 1.65 · 10−5 m2s−1, the effective depth of heat penetration
of the pad a = 5.2 mm, the dimensionless braking time τs = 0.33, and the temperature
scaling factor Θ0 = 10, 373 ◦C, based on Equations (10)–(12).

The integrals in the obtained solutions were calculated numerically using the QAGI
procedure of the QUADPACK package [15]. Changes of the dimensionless temperature
rise and intensities of heat fluxes during sliding with a constant velocity are presented in
Figures 3–6.
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Figure 6. Change with time of the dimensionless temperature rise Θ∗(τ) on the friction surface ζ = 0
during sliding with constant velocity: exact solution—solid line; asymptotic solution—dashed line.

Temporal profiles of the dimensionless temperature rise Θ∗(ζ, τ) (49)–(53) at a few
distances from the friction surface are shown in Figure 3. The temperature of both elements
increased monotonically over time. The highest temperature was reached on the friction
surface, and decreasing moving away from it. For a given distance from this surface, the
temperature of the homogeneous cast iron element was always higher than the temperature
of the functionally graded element. Having a much greater thermal conductivity, the cast
iron was heated to a much deeper extent than the FGM (Figure 4).

Temporal profiles of dimensionless heat flux intensities q∗l (τ), l = 1, 2 (59), (60) are
demonstrated in Figure 5. It was found that the main element that absorbs frictional heat is
the cast-iron disc, especially at the initial stage of the heating process. The amount of heat
directed from the friction surface towards the inside of the pad increases with time, and
towards the inside of the disc it decreases. A comparison of dimensionless temperature
values Θ∗(τ) of the friction surface, found by means of the exact (54), (55) and asymptotic
solutions (74), (75) are shown in Figure 6. In the considered range of Fourier number
0 ≤ τ ≤ τs, the respective temperature values were almost the same.

Relevant results, obtained in the case of a linearly decreasing velocity (so-called
braking with a constant deceleration), are presented in Figures 7–10. The temporal profile
of the dimensionless temperature rise Θ̂∗(ζ, τ) (87)–(89) during the braking process was
different than during uniform sliding (Figure 7). The dimensionless time to reach the
maximum temperature on the friction surface was τmax ≈ 0.5τs and became higher when
increasing the distance from it. After reaching the maximum value, the temperature
dropped. More vividly, such a concentration of high temperature near the friction surface
is shown in the distribution of isotherms, as illustrated in Figure 8. Apparently, as in the
case of uniform sliding, the greater part of the frictionally-generated heat is absorbed by
the cast iron disc (≈ 85%) (Figure 9). The intensities of heat fluxes q̂∗l (τ), l = 1, 2 (91) are
almost unchanged during the entire braking process.
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Figure 10. Dependency of maximum temperature Tmax during braking with constant deceleration on
the volumetric fraction v.

The results presented in Figures 3–9 were obtained with the same (v = 0.5) volumetric
components fractions of ZrO2 and Ti-6Al-4V, determining the effective specific heat capacity
and density using formula (9). On the other hand, the change of the maximum temperature
Tmax ≡ T(0, tmax) with the increase of the parameter v is presented in Figure 10. The
highest value Tmax = 1117 ◦C was achieved in the case of the pad made of pure zirconium
dioxide, and the lowest Tmax = 1052 ◦C, when it was made of the titanium alloy.



Materials 2022, 15, 3600 16 of 18

7. Conclusions

A mathematical model was proposed to determine the transient temperature field in a
friction pair, in which one element is made of a functionally graded material and the other
is made of a homogeneous material. It was assumed that the thermal conductivity of a FGM
increases exponentially with the distance from the contact surface. An exact solution of the
appropriate boundary–value problem of heat conduction was formulated and then solved,
with consideration of frictional heat generation. Two cases of the friction power temporal
profiles were analyzed in detail: constant (uniform sliding), and linearly decreasing in
time (braking with constant deceleration). A numerical analysis was performed for a
two-component FGM (ZrO2 + Ti-6Al-4V) sliding on the cast-iron disc. It was found that
the greater part of heat generated due to friction was absorbed by the cast iron (about
85%), which resulted in a greater depth of effective heat penetration in this element, due
to the high thermal conductivity of cast iron. At a fixed distance from the friction surface,
the temperature of the cast iron element is higher than that of the FGM element, in both
the considered cases: uniform sliding, and during braking. Thus, in order to protect
systems against such undesirable phenomena as overheating and thermal cracking etc.,
the use of FGM on the friction elements may be justified. It is also worth emphasizing
that in the analyzed range of the Fourier number change 0 ≤ τ ≤ 0.33, the appropriate
asymptotic solution can be effectively used, giving a high accuracy of calculations, without
the inconveniences related to numerical integration in an exact solution.

It should be noted that the shape of the friction pair elements, as well as their positional
relationship, can be considered in some spatial problems of friction solved by numerical
methods, in particular the finite element method (FEM). The temperature evolution ob-
tained by them oscillates, as a result of the heating area moving on the surface of the brake
disc. The model proposed in this paper is one-dimensional, based on a physically-justified
assumption that heat, generated by friction of two elements, propagates in the direction
perpendicular to the contact surface. This allows determining the mean temperature (from
the above-mentioned oscillations) on the friction surfaces of both elements.

According to the current state of knowledge [16,17], the temperature of the friction
surface is the sum of the volume temperature (average temperature in volume), the mean
temperature, and the flash temperature. The flash temperature is the component that
takes into consideration the texture of the friction surfaces. The flash temperature cal-
culation models need appropriate experimental data as input parameters. In the case of
homogeneous materials, such data can be found in the article in ref. [13]. However, we
have not found such data for the considered friction pair. The development of models for
determining the flash temperature of such couples is a potential direction for our research.
In the future, we intend to expand the proposed mathematical model with the possibility
of testing the temperature of friction systems of this type (functionally graded and homoge-
neous materials) made of thermally sensitive materials and the temperature-dependent
friction coefficient.
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Nomenclature
a Effective depth of heat penetration (m)
Aa Area of the nominal contact region (m2)
c Specific heat capacity (J kg−1 K−1)
f0 Coefficient of friction (dimensionless)
Ik(·) Modified Bessel functions of the first kind of the kth order
Jk(·) Bessel functions of the first kind of the kth order
k Thermal diffusivity (m2 s−1)
K Thermal conductivity (W m−1 K−1)
p Dimensionless parameter of the Laplace integral transform
p0 Nominal value of the contact pressure (Pa)
r Radial coordinate in the polar system (m)
R Radius of integration contour (m)
q Specific power of friction (W m−2)
q0 Nominal value of the specific power of friction (W m−2)
t Time (s)
ts Stop time (s)
T Temperature (◦C)
T0 Initial temperature (◦C)
v Volume fraction of the material phases (dimensionless)
V0 Initial velocity (m s−1)
W0 Initial kinetic energy of the system (J)
z Spatial coordinate in axial direction (m)

Greek Symbols

γ Parameter of material gradient (m−1)
γ∗ Dimensionless parameter of material gradient
Γ Integration contour
δ Radius of integration contour (m)
Θ Temperature rise (◦C)
Θ∗ Dimensionless temperature rise
Θ0 Temperature rise scaling factor (◦C)
Θ∗ Dimensionless transform of temperature rise
ρ Density (kg m−3)
τ Dimensionless time
τs Dimensionless time of braking
ζ Dimensionless spatial coordinate in axial direction
ϕ Angular coordinate in the polar system (rad)
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