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Abstract: In recent decades, extensive research has been performed on the friction stir welding of
flat-shaped materials while pipe welding, particularly polymer pipes, still encounters challenging
issues. This work presents a feasible route for joining high-density polyethylene (HDPE) pipes using
an orbital friction stir welding (OFSW) set-up properly designed with a retractable pin tool. Fully
consolidated joints were achieved using a portable heating-assisted OFSW system suited for on-site
pipeline welding. The obtained joined pipes were characterized by a high-quality weld surface and a
lack of defects arising from the tool-pin hole. The samples welded with the optimum parameters
presented comparable properties with the base materials and even a slight increase in the tensile
strength. The highest tensile and impact strengths were 14.4 MPa and 2.45 kJ/m2, respectively, which
is 105% and 89% of those of the base material. XRD, FTIR, and SEM were also applied to assess the
property changes in the HDPE pipes after the FSW process. The morphological analysis evidenced
that the crystalline structure of the welded sample was similar to that of the base material, proving
the effectiveness of the proposed technology.

Keywords: HDPE pipe; orbital friction stir welding (OFSW); tool design; morphology; mechanical
properties; microstructural evaluation

1. Introduction

During recent decades, polymer materials have attracted industrial attention, benefit-
ing from lower environmental impacts, costs, and weight [1]. Polymers are increasingly
being applied in the pipeline industry thanks to their advantages, such as a long-term
service life; high resistance to corrosion, abrasion, and chemicals; strong, durable, flexible,
and lightweight; long-length pipe with leak-proof joints; low labor requirements for instal-
lations; and significant overall cost savings. Polyethylene is an ideal material for a broad
variety of piping applications, such as potable water service or distribution lines, natural
gas distribution, lawn sprinklers, sewers, waste disposal, and drainage lines. Due to the
increasing applications in several fields and the need for fast production and installation,
new and efficient welding methods are urgently required [2].

Joining methods such as welding are also required for creating complex and large
structures for thermoplastic polymers, including polyethylene [3]. The welding methods
for polymers can be classified into two principal groups according to the heat generation
mechanism: methods comprising mechanical movement (spin, ultrasonic, and friction
welding) and methods involving external heating (hot plate, hot gas, resistive, and implant
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welding). The joining of axisymmetric thermoplastic geometries has fewer welding options
to obtain quality parts. Among the available methods, spin welding is particularly applied
to this group of materials. In this method, two rotating parts’ surfaces are welded by
rubbing them against each other under pressure. Almost all thermoplastic materials can be
joined utilizing spin welding and there is no limitation on the welded parts’ size (over 1 m
diameter). Bindal et al. [4] studied the impact of the axial pressure and rotation rate on the
spin-welded joint overlap of a polypropylene pipe. Two injection molded circular parts
were successfully spin welded in a shear joint configuration. The fast speed and reliability
of the friction spin welding technique for circular weld geometries have been pointed out
by authors.

Another method for joining circular parts is ultrasonic welding, employing high-
frequency and low-amplitude vibration to achieve heat generation at the interface of the
welded parts. The ultrasonic welding method has acquired prominence due to its higher
strength and speed and its applicability to a wide variety of materials. Masuzawa et al. [5]
found torsional ultrasonic welding was an effective way to join acrylic resin pipes through
control of the process parameters. During the ultrasonic welding, the static pressure
applied to the weld joint and the horn pressure significantly affected the welding time
and joint appearance. Dell’Anna et al. [6] applied the in situ ultrasonic welding method to
manufacture composite pipes from thermoplastic-based composite tapes. Unidirectional
tapes of E-glass-reinforced amorphous poly(ethylene terephthalate) were laid up and
consolidated in a filament winding machine modified with a set-up enabling ultrasonic
welding. The proposed technique is also applicable in pipe joining and composite repairing.
To the authors’ knowledge, and according to the mentioned research works, joining long
and tall parts can be effectively welded through spin welding in comparison with ultrasonic
welding, particularly if parts have openings. However, one of the main constraints of the
spin welding technique is the non-uniform distribution of heat at the interface of joints.
Thus, hollow parts possessing thin walls are far more appropriate for welding. Other
drawbacks are the critical preparation of specimens and joint design limitations.

Friction stir welding (FSW), owing to its low process costs and time and higher joint
quality and low temperature, has the potential to drastically reduce the preparation time,
material waste, and common deficiencies associated with other joining techniques. Friction
stir welding as a solid-state joining technique was invented and developed by the Welding
Institute (TWI), UK, in 1991 [7]. During FSW, a non-consumable rotational tool is plunged
into the interfaces of two sheets, generating frictional heat derived from the tool rotation
rate to mix and join the welded materials [8,9]. This method, in the primary steps, was
utilized to join aluminum alloy plates. However, in recent years, the FSW technique has
been successfully employed to join polymers [10,11]. Due to the different chain lengths of
polymer macromolecules, the FSW of polymers cannot be an absolutely solid-state process.
During FSW, the shorter chains can experience their melting points while some longer
chains might be in their solid state. With regard to the FSW of thermoplastic polymers,
some research works have focused on the welding parameters, including the tool rotation
rate, tool traverse speed, and tool design, to prevent defect formation and improve the
weld strength. Bozkurt [12] analyzed the impact of the tool rotational speed, tool traverse
speed, and tilt angle on the tensile strength of HDPE sheets. According to the results
obtained by this author, the rotational speed contribution was prominent in the FSW of
joints (73.85%), whereas the tilt angle had a slight effect (5.96%). Bilici et al. [13] probed
the strength of FSSW HDPE plates in relation to different sets of process parameters. They
identified optimal values of the tool rotation rate, dwell time, and tool plunge depth of
700 rpm, 60 s, and 6.2 mm, respectively. The weld strength of FSSW sheets that used these
optimal process parameters was improved by about 40% compared to ones welded with
the initial welding conditions. Huang et al. [1] employed an appropriate combination of
the stationary shoulder and a taper pin with a screw thread and triple facets for friction
stir lap welding between PEEK reinforced with 30% short carbon fiber and AA2060-T8
plates to achieve the desired joint integrity and mechanical properties. According to their
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obtained results, a rotation rate of 1600 rpm was identified as the optimum value to achieve
a maximum shear strength of 18 MPa.

Another route for improving the mechanical and microstructural properties in the
FSW process of polymers is the enhancement of the material properties with nanomaterials.
This approach can promote the replacement of metallic components even in structural
applications [14]. Laieghi et al. [15] used halloysite nanotubes as a reinforcement agent
in the FSW of polyamide-6/nitrile butadiene rubber. They optimized the processing
parameters, including the tool rotation rate, tool traverse speed, and plunge depth, with
and without the heating-assisted tool system. Well-balanced mechanical properties of the
heat-assisted FSW welded samples were obtained under proper selection of the welding
and material parameters. Another example of an investigation of the material parameters is
the use of dissimilar FSW of HDPE and ABS in the presence of multi-wall carbon nanotubes
(MWCNTs), which was conducted by Gao et al. [16]. At the joint interface, MWCNTs led to
an increment in the tensile strength and elongation, owing to an increase in the thermal
conductivity. However, a considerable reduction in the hardness occurred due to the
addition of MWCNTs to the joints. In complex assemblies (vehicle bodies), thermoplastic
composites are usually joined to metallic parts. Friction-based joining of hybrid structures
has previously been examined by Lambiase et al. [17]. A comprehensive overview of the
available advanced joining processes, including friction-oriented ones, for metal-composite
and metal-polymer hybrid structures is provided in this study.

Although prominent attempts have been applied to the FSW of various materials,
most of the research has involved flat-shaped plates and the number of investigations
focusing on the FSW of pipes is very limited. This is because pipe joining via FSW is still
facing difficulties such as the design of a unique mechanism and tooling system. For the
successful joining of pure Cu and Al3003 pipes with a 19-mm outer diameter, Chen et al. [18]
designed a special FSW system applicable to air-conditioning and heating systems. Welding
temperature changes along the weld seam substantially affected the mechanical and macro-
and microstructural behavior of the joints. Lammlein et al. [19] employed the FSW process
to join small-diameter Al-6061-T6 pipes using a cylindrical threaded pin with a scrolled
shoulder. In this investigation, sound joints, in terms of the appearance and tensile strength,
were obtained, and the author claimed that the applied geometry could perform FSW with
a broad range of process parameters. The application of semiautomatic FSW utilizing a
retractable pin to join aluminum 6082-T6 pipes was introduced in Hatting et al.’s [20] work.
A 55% weld efficiency was obtained for both the complete tube and micro-tensile samples.
Doos et al. [21] demonstrated that the FSW process is feasible for joining Al 6061 pipes. In
their work, FS-welded specimens exhibited a joint efficiency of 61.7% by employing the
optimum process parameters.

Considering the above mentioned works, only a few studies have been performed on
the FSW of metal pipes. Thus, the joining of pipe-shaped samples, particularly polymeric
ones, via FSW is a long-standing issue. One of the leading problems that occurs at the
curved surface during the connection of the pipeline is the formation of voids on the surface,
which was addressed by Mosavvar et al. [22] during FSW of HDPE pipes. However, this
work was conducted on small-diameter pipes utilizing a laboratory-scale-type FSW system
and, rather than reporting complete tube data, it reported tensile results from specific cut
sections, which are affected by the presence of tool pin entrance and exit hole defects. Since
weld defects such as residual plunge and extracting holes in the joint are very detrimental
to the joint, pipe welding requires a welding tool with a special design. Therefore, the aim
of the present work was to design and develop a special rotary FS welding fixture with
a retractable pin tool, which can be used for FSW of thermoplastic pipes. The designed
orbital FSW could be an efficient and economic technique for high-performance joining
of HDPE pipes that has great potential for on-site pipe construction welding compared
to other mechanical friction welding methods. As the microstructural and mechanical
properties of welded specimens are significantly affected by the FSW process parameters,
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an investigation of the influence of the tool holder temperature, tool traverse, and rotation
speeds was conducted to achieve a higher joint quality and weld strength.

2. Materials and Methods
2.1. Materials

PE100 HDPE pipes, produced by Sanategharb Company (Tehran, Iran), were used in
the present study, since they are widely used for different pipeline applications at different
pressures, ranging from drinking water to gas distribution networks, due to their excellent
stress cracking, pressure, and impact resistance properties. The HDPE pipe had an outside
diameter of 160 mm and a 12.3 mm wall thickness, with an SDR equal to 13. An FSW
tool and tool holder were produced with AISI H13 steel material due to its higher thermal
conductivity and mechanical properties.

2.2. Methods
2.2.1. FSW Tool Development

The actual and schematic illustrations of the orbital FSW are depicted in Figure 1.
As shown in Figure 1a,b, an outer pipe clamp and supporting seats were designed to
stabilize the pipes during the welding process and complete the gear required for rotating
the rotary part of the device around the pipes. The rotating part of the device included
two electromotors, gearboxes, a tool, and a tool holder mounted on the chassis. A 746-watt
electromotor (nominal speed of 1420 rpm) provided the rotational motion of the FSW tool
while the tool traverse movement was generated by a 90-watt electromotor (nominal speed
of 1350 rpm) that coupled with 2 co-mounted gearboxes with transfer ratios of 1:30 and
1:80. It is worth mentioning that the control of the tool rotational and traverse speeds
was possible through two inverters located in the control unit. In the FSW process (see
Figure 1c), there are primarily four steps: firstly, the tool plunging step, in which the tool
descends to the depth of the workpiece; secondly, the dwell step, during which the tool
remains at a constant temperature; thirdly, the welding step, where the joining of the
workpiece occurs; and finally, the retreating step where the tool retracts after the welding
is completed.

Tool design plays a pivotal role in the FSW of pipes, and a proper design is highly
likely to prevent the formation of residual plunge holes at the entrance and exit steps of
the tool pin during the welding process. In the presence of a typical rotating FSW tool for
the joining of polymeric materials, the formation of external weld defects and undesirable
surface quality is a very critical issue. The conventional FSW tool causes outpouring of the
soft material from the weld seam, which results in flash defects and imperfect joining. Thus,
an FSW tooling system incorporating a stationary shoe shoulder and a retractable tool pin
was designed for this purpose. The FSW tool geometry and its dimensions were determined
according to the thickness and material of the workpieces as illustrated in Figure 2a. A
threaded cylindrical pin profile (M10 × 1) was used for fabricating the joints. Figure 2b
shows that to generate a controllable heat during the welding process, a stationary shoe
shoulder with an element of 500-watts power was designed and utilized in the tooling
system. The controller system carefully monitored the temperature. The surface of the tool
holder was coated with polytetrafluoroethylene (Teflon) to prevent the base material from
sticking to the stationary shoulder and to achieve a smooth joint seam.
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2.2.2. Morphological Analysis of Joints

A visual inspection of the welded samples was performed to determine the range of
process parameters and curb macroscopic external weld defects. Using the preliminary
experimental results, three levels of welding parameters were selected based on the rota-
tional speeds (700, 1000, and 1300 rpm), traverse speeds (25, 50, and 75 mm/min), and
shoulder temperatures (120, 140, and 160 ◦C) as given in Table 1. The cross-sectional view
of the optimally welded sample shows the full penetration of the molten materials into the
intersection of the two clamped pipes, proving the perfect performance of this device (see
Figure 3). As shown in Figure 3, the top view of the welded pipes revealed that the welded
samples with a rotation rate of 1000 rpm, transverse speed of 50 mm/min, and stationary
shoulder temperature of 140 ◦C had a uniform appearance compared to the other welded
ones. However, the process parameters beyond a specific range provided various external
defects, including excessive flash, surface irregularities, and tunnel defects, as described
further below.

Table 1. FSW parameters, limits, and levels.

Process
Parameters Rotational Speed (rpm) Traverse Speed (mm/min) Shoulder Temperature (◦C) Tool Tilt Angle

Unit level L1 L2 L3 L1 L2 L3 L1 L2 L3 constant

Unit value 700 1000 1300 25 50 75 120 140 160 0◦Materials 2022, 15, x FOR PEER REVIEW 7 of 17 
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Figure 3. An optimally FS-welded section of HDPE pipe (N1000 V50 T140).

The low rotational speed (500 rpm) produced joints with a porous appearance and
discontinuity due to a lack of melting and mixture of the weld materials. Higher rotation
rates formed flash defects and reduced the weld thickness, resulting in a low weld strength.
FS-welded samples fabricated with the highest (1500 rpm) and the lowest (500 rpm) in-
vestigated rotation rates are exhibited in Figure 4a,b, respectively. Other kinds of weld
defects, such as surface irregularities and cavities, were generated at the higher traverse
speeds while low traverse speeds led to over stirring action and polymer degradation as
displayed in Figure 4c,d. Regarding the stationary shoulder temperature, visual inspection
revealed that when higher heat generation by an element located in the tool holder during
the welding process was used, materials in the weld zone tended to be pushed out, and
lateral flashes formed, resulting in a thickness and weld strength reduction (see Figure 4e).
However, as illustrated in the macroscopic view of the FS-welded sample in Figure 4f,
lower heat generation caused insufficient material mixing to promote the joining in the
weld pool.
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Figure 4. Weld defects formed under an inappropriate set of process parameters (rotational speed,
traverse speed and shoulder temperature, respectively): (a) 1500 rpm, 50 mm/s, ◦C; (b) 1000 rpm,
10 mm/s; 140 ◦C; (c) 1000 rpm, 50 mm/s, 220 ◦C; (d) 500 rpm, 50 mm/s, 140 ◦C; (e) 1000 rpm,
100 mm/s, 140 ◦C; (f) 1000 rpm, 50 mm/s, 80 ◦C.

During the FSW process, an inappropriate set of welding parameters led to the com-
mon weld defects mentioned above. Still, one of the challenging defects that formed at
the time of FSW for the pipes was the typical tool exit hole at the end point of the weld
line. Inadequate filling of materials in the tool pin exit region was the main reason for this
substantial defect in the FSW process. Therefore, the RPT technique was employed to avoid
the tool exit hole defect. The top view and cross-sectional view of the weld appearance
in the tool pin exit region in Figure 5a shows that gradual tool retraction during weld
completion could successfully remove the tool exit hole defect in the FSW of thermoplastic
pipes. As insufficient heat generated in the tool pin entrance region could lead to defects,
such as material pushing out and the formation of a tool pin entrance hole, this technique
was optimized using a stationary shoe shoulder, resulting in a defect-free zone at the weld
starting point (see Figure 5b).
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2.3. Joint Characterization
2.3.1. XRD

Since the crystal morphology of HDPE is highly dependent on the cooling rate, this
morphology for both the base material and friction stir-welded sample must be evaluated
and compared. To analyze this, the X-ray diffraction method was employed for samples
obtained from the stir zone and parent material with dimensions of 10 × 10 × 3 mm3.
To perform the XRD experiments, an X-ray diffractometer (Bruker-AXS D8-Advance,
Karlsruhe, Germany) was utilized using CuKα (λ = 1.541 A) radiation with 2θ set from 5◦

and 75◦ at 5◦/min.

2.3.2. FTIR

The FT-IR spectra of the base material and stir zone of the FS-welded samples were
recorded in the frequency range of 4500–400 cm−1 using Fourier transform infrared spec-
troscopy (Bruker Tensor 27, Bruker, Karlsruhe, Germany). The samples for this mea-
surement were prepared by careful grinding with KBr powder (1:100 ratio) and then the
mixtures were pressed into tablets.

2.3.3. SEM

The microstructural characterization and morphology of the fractured surfaces of both the
parent material and FSW-welded sample were studied using a scanning electron microscope
(SEM) (MIRA3 FEG, Tescan, Brno, Czech Republic). Preceding the SEM observation, specimens
were coated with a very thin gold layer and then fractured at a liquid nitrogen temperature.

2.3.4. Mechanical Properties

The mechanical properties of the base material and FS-welded samples were evaluated
using tensile and impact tests. Specimens for the tensile tests were prepared from the pipes
in a perpendicular direction to the FSW travelling path with and without the weld. The
samples with dimensions based on ASTM D638–02a, type II specification as illustrated in
Figure 6a, were cut from straightened plates. The tensile strength of the specimens was
measured by a universal testing machine model AI-7000 Taiwan at room temperature and
a crosshead speed of 50 mm/ min. The tensile test for each specimen was repeated five
times, and the median value with standard deviation was reported.
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Figure 6. Actual and schematic pictures of (a) tensile and (b) Izod samples.

The Izod impact experiments, on the basis of ASTM D256, were performed on the
samples perpendicular to the FSW travelling path with and without the weld, as shown
in Figure 6b. All samples were notched using the GT-7016-A2 sampling machine, and
V-notches were precisely set on the stir zone of the welded samples. After preparing the
specimens, impact tests were conducted by HIT pendulum impact testers (model: HIT25P,
Zwick Roell, Ulm, Germany). Five replicates for each sample were performed, and the
median value was used.
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3. Results

Using the orbital friction stir welding system in the present study, defect-free welds
for HDPE pipes were obtained within a range of process parameters. According to visual
inspection, typical weld defects were successfully removed, and a smooth joint appearance
was attained through the FSW tool developments and an appropriate set of parameters.
After visual inspection, the mechanical and microstructural characterizations of the FS-
welded pipes were analyzed and compared with the base material to understand the
prominent attributes of this technique.

3.1. Mechanical Properties of Joints

During polymer processing, the process conditions have an influence on the resulting
microstructures, which, in turn, determine the properties of the final products. The tensile
strength and joint efficiency of the FS-welded samples are the first indicators of the weld
quality and mechanical performance of joints. The tensile properties of the HDPE pipes
with and without the welding are displayed in Table 2. A statistical analysis using the
means of the t-student test was carried out to evaluate whether the differences in the mean
values were significant. The 5% percentile was chosen as the level of statistical significance.
Since the probability p was lower than 0.05 for all the sample typologies reported in Table 2,
the differences between the samples welded with different parameters were considered
highly significant. As a result of the macromolecular orientation during extrusion, polymer
pipes had a higher axial strength than circumferential strength [23]. Through the FSW
process, the circumferential strength of the HDPE pipes increased marginally. In FS-welded
HDPE pipes, the increased degree of crystallinity, addition of the molecular orientation, and
improvement of the crystalline morphology were responsible for the increased mechanical
properties. In addition, the stirring action of the FSW process promoted the orientation
of HDPE chains along the hoop direction and thus increased the tensile strength even
more than the base material. Therefore, the HDPE pipes with higher performances could
be welded by the specific range of FSW parameters. Figure 7 shows the typical stress–
strain curve for both the base material and optimally FS-welded samples derived from
tensile testing. The welds were orientated perpendicular to the extrusion direction, and
the load was applied in the same weld direction for the tensile testing of the welded joints.
During the tensile test, welded samples exhibited a brittle fracture, despite the considerable
plasticity of the base material samples. A decremental trend can be seen in the strength
once the FS-welded joint achieved its maximum strength, indicating that the strength was
determined by the ductility of the joints. The strength of the samples welded with the
optimized welding conditions was higher than that of the corresponding base material.
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Table 2. Process parameters and corresponding tensile test results.

Sample
Tool

Rotation
Rate (rpm)

Tool
Traverse

Speed
(mm/min)

Shoulder
Temperature

(◦C)

Tensile
Strength

(MPa)

Joint
Efficiency

(%)

Base Material - - - 13.6 100

1 700 50 140 8 ± 0.2 59

2 1000 25 140 12.4 ± 0.3 91

3 1000 50 140 14.4 ± 0.2 105

4 1000 75 140 9.9 ± 0.2 73

5 1000 50 120 13.1 ± 0.1 96

6 1000 50 160 11.8 ± 0.3 87

7 1300 50 140 10.8 ± 0.2 80

In the FSW of the HDPE pipes, the rotational speed, as the most important factor in
comparison with the other process parameters, accounted for the largest impact on the
material flow and heat generation as proposed by Bozkurt [12]. The rotational movement of
the FSW tool can change the orientation and crystallization behavior of HDPE pipes, leading
to the formation of transcrystallinity with a larger crystallite size and to the orientation
of the HDPE macromolecular chains in the hoop direction. Thus, the tensile strength of
the HDPE pipes joined by the FSW process experienced a slight improvement [24]. In
the present case, the main influence of the different tool rotation speeds on the tensile
strength of the welded pipes is shown in Figure 8a. According to the obtained tensile
results, and compared to the base material, a higher value of the tensile strength (14.4 MPa)
was observed at a rotational speed of 1000 rpm. Rotational speeds of 700 and 1300 rpm
experienced reductions in the strength of about 45% and 25%, respectively, compared
to the base material. This is due to the tool’s rotational velocity being responsible for
the production of a larger amount of thermal energy than the other process variables
during the FS welding process. The poor tensile strength at lower values of the rotation
speed could be attributed to a lack of proper heat generation and strong bond formation.
These had detrimental impacts on the mechanical properties of the joints. On the other
hand, the high rotation speed during welding caused overflowing and overheating of the
HDPE materials, resulting in degradation and burning. In addition, as the rotation speeds
increased, a greater amount of stress built up in the hoop directions, which affected HDPE’s
crystallization behavior and caused some crystal defects in the bulk materials, deteriorating
the mechanical properties of the HDPE pipes.

The effect of the traverse speeds on the tensile strength of the FS-welded HDPE pipes
is also displayed in Figure 8b. It shows that for all FSW conditions, by increasing the
traverse speed from 25 to 50 mm/min at the same rotational velocity, the tensile strength
increased. The low tensile strength at lower traverse speeds can be explained by the longer
stirring action time in the weld zone, leading to excessive turbulence in the weld area.
When tool traverse speeds of higher than 50 mm/min were used, heat was not adequately
generated, and defects formed in the weld pool, thus decreasing the tensile strength.
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Figure 8c illustrates the changes in the tensile strength affected by the stationary shoe
temperature. Between the shoulder temperatures of 120 and 140 ◦C, the tensile strength in
the welded samples increased from 13.1 MPa to a peak of 14.4 MPa. It then fell to account
for the lowest tensile strength at the temperature of 160 ◦C at around 12 MPa. A proper
set of shoulder temperatures and precise control of the thermal energy during the welding
process resulted in the increase in the weld strength. In a typical FSW tool, the outer parts
of the weld material cool rapidly compared to the inner ones, which causes formation
of voids. This defect was addressed through an external heating system in the present
study. Therefore, the other advantages of the employed heating system were the lowered
cooling rate and the homogeneous distribution of the temperature behind the tool pin
along the weld line. Altogether, it was demonstrated that the higher tensile strength for
specimens welded under special process conditions (rotation rate of 1000 rpm, traverse
speed of 50 mm/min, shoulder temperature of 140 ◦C) provided excellent outcomes since
the tensile strength was comparable to that of the base material and even a slight increase
was observed (105%). Similar results are reported in the literature as evidence of the
optimum welding conditions, such as, for example, in the case of the ultrasonic welding
of E-glass-reinforced polyethylene terephthalate cylinders, where an increase in the shear
elastic modulus G’ of 111% compared to the base material was found [6]. The flexural
strength of the HDPE plates, as another example, after the optimal FSW process was
slightly decreased in comparison with pure HDPE and reached 96% of the base material
strength [3].

The dependence of the joint’s impact strength and fracture strain energy on the FSW
process was evaluated by comparing the base material and the sample FSW welded under
the optimum conditions [25]. The average impact strength value for both the welded
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sample and base material was 2.45 and 2.74 kJ/m2, respectively. Neat HDPE pipes had
good toughness while the employed FSW process reduced the toughness of the HDPE
pipes. The decrease in the impact strength in the FSW-welded HDPE pipes created regions
in which crack initiation required less energy due to the stress concentration. It is worth
mentioning that the measured impact strength of the FSW-welded sample was about 89%
of that of the base material, indicating the appreciable performance of this method. Since
the heat input significantly affected the impact strength, the lower values of the impact
strength could be attributed to the insufficient and excessive amount of heat generation
during welding, as stated by Aghajani et al. [26]. Thus, monitoring of the heat generation,
cooling rate, and entrapping of the weld materials within the weld bead contributed to the
higher impact strength in the FSW-welded specimens.

3.2. Joints Microstructural Analysis
3.2.1. XRD

XRD was performed to evaluate and compare the crystallinity of the optimally FSW-
welded HDPE and pure HDPE. Figure 9 exhibits the results of the XRD analysis of the base
material and the stir zone. The two major diffraction peaks at about 21.65◦ and 24.71◦ in
both XRD curves indicated that the FSW-welded sample had similar crystal planes that
were consistent with the neat HDPE. An incremental trend was observed in the mechanical
properties of the FS-welded sample without alteration of the crystal structure, proving the
effectiveness of the proposed orbital FSW system. Using the integrated areas below the
crystalline peaks Ac and the broad amorphous halo Aa in the XRD pattern, the degree of
crystallinity (XXRD) was determined from the following equation [27]:

XXRD=
Ac

Ac+ Aa
(1)
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Table 3. Crystallinity degree calculated from XRD measurements.

Sample XXRD (-)

Pure HDPE 0.703
FS-welded 0.734
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It was found that the major peak in the sample after the FS welding was altered to
show a sharper form, which was due to the higher crystallinity of the FSW-welded sample
than the base HSPE. The decrease in the heat loss and cooling rate at the time of the FSW
process contributed to the monitoring of the crystallinity in the welded sample.

The size of the PE crystallites in the base material and FS-welded HDPE samples was
calculated from the XRD patterns using the Scherrer equation [28], as given in Equation (2):

D (nm) =
K × λ(nm)

β(riadians)× cos θ
(2)

where λ is the wavelength (in nm) of the X-ray radiation used in the diffractometer, β is the
calculated full width at half height for each crystalline peak (in radians), K is a constant
related to the crystal structure (0.94 for simple cubic PE crystals), and θ is the half of the
value of the position of each peak in the 2θ axis of the XRD pattern (radians). The values of
the main peaks related to each crystal plane were calculated and the average values for the
base material and FS-welded zone were obtained. The results indicated that the average
crystallite sizes in the base material were about 79 nm, which was reduced to 67 nm in the
FS-welded zone of the samples. These crystallites or grains combined to form particles.

3.2.2. FTIR

The FTIR spectra of the pure HDPE and optimally FSW-welded HDPE are shown in
Figure 10. The overall pattern of the spectra for both samples was the same, indicating that
there was no difference in the chemical structure of the samples. In the spectra for both
samples, the absorption bands appeared in the region of 3443 to 3458 cm−1, corresponding
to the stretching vibrations of O–H bonds in the moisture absorbed on the PE. The bands at
wavenumbers between 2850 and 2920 cm−1 represented the C–H stretching vibrations. The
absorption band at 1466 cm−1 belonged to the in-plane CH2 bending vibrations (scissoring
mode of –CH2). The absorption band at 721 cm−1 represented the rocking mode of in-
plane bending vibrations of the methylene group (–CH2–), which is also known as the
long-chain band arising from a chain of more than four –CH2– groups bonded together.
As mentioned, the generic pattern of the FS-welded HDPE spectra was similar to that of
the base HDPE without the appearance of new bands, indicating that no degradation of
the existing bonds in the base HDPE or the formation of new bonds occurred during the
developed FSW process.
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3.2.3. SEM

The microstructure of the pure HDPE and the stir zone fabricated under optimum
conditions is shown in Figure 11. After the FSW process, the amount of fine crystals in the
HDPE samples was slightly increased, resulting in a higher degree of crystallinity of the
FS-welded zone in comparison to the base HDPE. These observations agreed with the XRD
results, which showed an increment in the crystallinity of the welded zone. The materials
in both the pure HDPE and stir zone possessed a lamellar structure; however, the lamellar
size of HDPE was reduced after the welding procedure. Using image processing software
and measurement of the size of crystallites in the SEM images, it was determined that the
average size of the crystallites dropped from 360 nm in the base HDPE samples to 290 nm
in the FS-welded zone (Figure 11). These results showed the same trend as the changes
observed in the XRD patterns of the size of the crystallites.
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The degree of crystallinity in the developed mechanism of the FSW process was
more controllable compared to the fusion welding methods. Based on this, monitoring of
the temperature during FS welding and appropriate selection of the welding conditions
can significantly contribute to achieving the desirable mechanical and microstructural
properties of FS-welded HDPE pipes.

4. Conclusions

A heating-assisted approach to FSW was developed and implemented for HDPE pipes
with an outside diameter of 160 mm and a wall thickness of 12.3 mm. The concluding
remarks could be drawn as follows:

• The joining of HDPE pipes with desirable combinations of tensile and impact proper-
ties was successfully performed using the specially designed, portable, and heating-
assisted FSW system.

• The proposed technique, utilizing a stationary shoe shoulder with a retractable tool
pin, was able to fabricate sound joints without the appearance of tool exit hole defects.

• Microstructural observations of the stir-welded zone using XRD, FTIR, and SEM
techniques revealed that the crystal structures of the FS-welded sample were similar
to the base material, proving the reliability of the developed system.

• The samples welded with the optimum parameters presented comparable properties
to the base materials and even a slight increase in the tensile strength (105%).

• The maximum impact strength was 2.45 kJ/m2, which represented about 89% of the
base HDPE impact strength.
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Nomenclature

OFSW Orbital friction stir welding
FSSW Friction stir spot welding
HDPE High density poly ethylene
PEEK Poly-ether-ether-ketone
NBR acrylonitrile-butadiene rubber
XRD X-ray diffraction
FTIR Fourier transform infrared spectroscopy
MWCNTs Multiwalled carbon nanotubes
PA6 Polyamide6
ABS Acrylonitrile butadiene styrene
HNTs Halloysite nanotubes
RPT Retractable Pin Tool
SDR Section diameter ratio
SEM Scanning electron microscope
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