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Abstract: Electrochemical mechanisms of molten salt electrolysis from TiO2 to titanium were investi-
gated by Potentiostatic electrolysis, cyclic voltammetry, and square wave voltammetry in NaCl-CaCl2
at 800 ◦C. The composition and morphology of the product obtained at different electrolysis times
were characterized by XRD and SEM. CaTiO3 phase was found in the TiO2 electrochemical re-
duction process. Electrochemical reduction of TiO2 to titanium is a four-step reduction process,
which can be summarized as TiO2→Ti4O7→Ti2O3→TiO→Ti. Spontaneous and electrochemical
reactions take place simultaneously in the reduction process. The electrochemical reduction of
TiO2→Ti4O7→Ti2O3→TiO affected by diffusion was irreversible.

Keywords: TiO2; molten salt; electrochemical reduction; electrochemical mechanism

1. Introduction

Titanium is considered a rare metal because it is dispersed in nature and difficult to
extract. However, it is relatively abundant, ranking tenth among all elements. Titanium
ore mainly ilmenite and rutile, widely distributed in the earth’s crust and lithosphere.
Titanium and its alloys have been widely used in aerospace, national defense, ocean,
energy, transportation, medical, and other fields due to its advantages of low density, high
specific strength, good heat resistance, and corrosion resistance [1–3]. Therefore, titanium
has a “21st century metal”, “all-round metal”, and “modern metal” reputation [4].

Due to titanium and oxygen, nitrogen, carbon, hydrogen, and other elements have a
strong affinity, making the titanium production process complex, a long process with high
energy consumption and high cost, limiting the application of titanium in many industries.
In order to reduce the production cost of titanium, researchers continue to improve the
traditional process and develop new extraction methods. At present, Kroll process is the
most important industrial process for titanium production. However, the complex process,
long process, high energy consumption, and high cost limit the application of titanium
in many industries [5,6]. In order to reduce the production cost of titanium, researchers
have developed many new processes, among which the molten salt electrolysis method
has attracted a lot of attention worldwide because of its characteristics of short process,
low energy consumption, and simple process [7–12]. Using alkaline metal or alkaline earth
metal salt as electrolyte, TiO2 as cathode, and graphite as anode, titanium was prepared by
direct electrodeoxidation of TiO2 in the molten salt electrolysis method. Titanium can be
obtained in one-step reduction process [13,14]. At present, the electrochemical method has
already been intensely studied in preparation of alloys [15–19] and carbides [20].

In order to clarify the deoxidation process of TiO2 in molten salt electrolysis, the
preparation of titanium by direct electro-deoxidation of TiO2 in NaCl-CaCl2 binary molten
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salt system was carried out in this work. The reduction process and electrochemical mecha-
nism of the molten salt electrolysis from TiO2 to titanium were studied by potentiostatic
electrolysis and electrochemistry analysis in detail.

2. Experimental Procedures
2.1. Raw Materials and Cathode Precursor Preparation

TiO2 (96 wt.%) and carbon (4 wt.%) powders of 2 g were used as raw materials and
mixed homogeneously. The mixed powders were die-pressed at 20 MPa in a cylindrical
mold (30 mm in diameter). The die-pressed bodies were sintered at 353 K for 8 h; then, the
sintered disc was tied in the titanium electrode rod with a nickel wire as a cathode.

2.2. Electro-Deoxidation Process

Anhydrous NaCl and CaCl2 salt (500 g in molar ratio 0.48:0.52) were placed in graphite
crucible and dried in the steel reactor at 473 K for 8 h to remove moisture in the salt. When
the molar ratio was NaCl:CaCl2 = 0.48:0.52, the lowest eutectic temperature point of the
binary salt was 762 K [21]. In order to ensure that the molten salt system has low viscosity
and high conductivity, the temperature conducted for this experiment is 1073 K. Then the
temperature of the binary salt was programmatically raised in the reactor to 1073 K, while
argon was continuously pumped into the reactor. The anode was graphite crucible, which
was connected by a titanium electrode rod. The electro-deoxidization experiment was
conducted at a constant potential of 3 V for 6 h. The schematic diagram of the experimental
device was shown in Figure 1. The obtained cathodic products were washed by deionized
water in the ultrasonic cleaners and vacuum dried at 333 k.
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Figure 1. Schematic diagram of the electrolysis experimental device.

2.3. Electrochemical Test

The electrochemical deoxidation process from TiO2 to titanium was evaluated in a
three-terminal electrochemical cell by PARSTAT 2273 electrochemical workstation. Pt wire
(99.99%, ϕ = 0.5 mm), Mo wire (99.99%, ϕ = 0.5 mm), and graphite crucible were used as the
reference, work, and counter electrodes, respectively. Cyclic voltammetry (CV) and square
wave voltammetry were used to analyze the reduction of TiO2 to titanium in NaCl-CaCl2
at 800 ◦C. The schematic diagram of the experimental platform is shown in Figure 2.

2.4. Characterization

The electrolytic voltage was supplied by DC power supply (DP310, MESTEK, China).
The phase composition of the solid precursors and cathodic products were determined
by X-ray diffraction (XRD) (Noran7, Thermo Fisher, Waltham, MA, USA). Each scan was
5◦–90◦ and step size is 0.02◦. The morphology and chemical composition of the solid
precursors and cathodic products were characterized by scanning electron microscopy
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(SEM) (S-4800, Hitachi, Tokyo, Japan) and energy dispersive X-ray spectroscopy (EDX).
The acceleration voltage of SEM is 20 kV and the working distance (WD) is 10 mm.
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Figure 2. Schematic diagram of the electrochemical experimental platform.

3. Results and Discussion
3.1. Calculation of the Theoretical Decomposition Potentials

Alkaline metal molten salts with low melting point, wide electrochemical window,
and good electrical conductivity are commonly used as electrolytes for electrochemical
preparation of metals. The Gibbs free energy of the possible reactions can be calculated by
HSC thermodynamics software. The theoretical decomposition potentials (E) of the metal
molten salts and TiO2 were calculated by the following equation [22,23]:

E =
−∆GΘ

nF
(1)

where ∆GΘ (kJ/mol) is the standard Gibbs free energy change; n and F represent the electron
transfer number and Faraday’s constant (96,485 C/mol), respectively. The theoretical
decomposition potentials and reactions that occurred in the electro-deoxidation cell from
773 K to 1273 K are listed in Figure 3. The results show that the theoretical decomposition
potentials of TiO2 and the binary salt are positively correlated with temperature. The
theoretical decomposition potentials of NaCl and CaCl2 is−3.29 V and−3.23 V, respectively,
which is much higher than that of TiO2. It indicates that the experiment voltage of 3 V,
conducted in a two-electrode system, is sufficient to electro-deoxidize TiO2 to titanium
without the electrolyte decomposition.
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3.2. Electro-Deoxidization of the Cathode Precursor

Figure 4 presents the XRD patterns of the products at different electro-deoxidation
time. It can be seen from the product electrolyzed for 0 h that TiO2 is the main component
of the cathode precursor, which indicates that the little carbon did not react with TiO2 in
the sintering process. The product electrolyzed for 8 h shows the intermediate valence
titanium oxides (Ti4O7, Ti2O3, TiO) and CaTiO3 are the main phases of the product after 8 h
electrolysis. CaTiO3 is generated by the reaction between TiO2 and calcium ions in molten
salt and oxygen ions extracted from TiO2. Table 1 lists the possible reaction ∆GΘ in the
electrolysis process at 1073 K. Reaction (1) has an extremely negative ∆GΘ(−1045.43 kJ/mol)
at 1073 K, indicating that the formation of CaO betweent Ca2+ and O2− extracted from TiO2
is easy to proceed. The ∆Gθ of CaTiO3 generated by the reaction of CaO and TiO2 was
−86.94 kJ/mol, demonstrating that the reaction could occur spontaneously. Literatures
show that there is a high concentration of oxygen in the material at this stage; that is,
CaTiO3 will be spontaneously formed when calcium ions and oxygen ions existed in the
molten salt [24]. The diffraction peak of titanium detected in the product electrolyzed for
8 h indicates that titanium metal can be reduced after 8 h of electrolysis. Compared with the
product of electrolysis for 8 h, the diffraction peak of titanium in the product of electrolysis
for 24 h is significantly increased (shown in the XRD pattern of the product electrolyzed
for 24 h), indicating that the reduction of titanium metal is further carried out with the
extension of the electrolysis time. Figure 5 presents SEM images and EDX analysis of the
products electrolysis for 8 h and 24 h. Combined with XRD data analysis in Figure 4, they
show that CaTiO3 was formed in the products electrolysis for 8 h during the electrolysis
process, shown in reaction (2). The main phase is the intermediate valence titanium oxides,
and the CaTiO3 phase almost disappears in the products electrolysis for 24 h, which is due
to the spontaneous decomposition between CaTiO3 and titanium, shown in reaction (3).
The deposited carbon can react with the metal on the cathode, resulting in high carbon
content in the cathode product. It can be explained by the following two reactions.

In anode:
CO2 + O2− = CO2−

3

In cathode:
CO2−

3 + 4e− = C + 3O2−
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Table 1. ∆Gθ of possible reaction in the electrolysis process at 1073 K.

Possible Reactions ∆Gθ
1073 K (kJ/mol) No.

Ca2+ + O2− = CaO −1045.43 (1)
CaO + TiO2 = CaO·TiO2 −86.94 (2)

Ti + CaTiO3 = 2TiO + CaO −21.29 (3)

3.3. Electro-Deoxidation Thermodynamics of Titanium Oxides in Molten Salt Systems

The main phases in TiO2 electro-deoxidation products include Ti4O7, Ti2O3, TiO, and
Ti. When graphite was used as the anode material, the main anode product in molten
salt electrolysis was CO2 [25]. In order to simplify the calculation, CO2 was considered as
the only gas component in the anode product. Table 2 listed ∆Gθ and E of TiO2 electro-
deoxidation reactions at 1073 K. The theoretical decomposition potentials of TiO2 de-
oxidized to Ti4O7 is 0.34 V, which is lower than TiO2 deoxidized to Ti2O3, TiO, and Ti.
Therefore, the reaction (4) is preferentially carried out under the voltage driving force, and
the first step reaction controlled by electrochemistry produces Ti4O7 [26].

Table 2. ∆Gθ and E of TiO2 electro-deoxidation reactions at 1073 K.

Reactions ∆Gθ
1073 K (kJ/mol) E (V) No.

8TiO2 + C = 2Ti4O7 + CO2 (g) 32.82 −0.34 (4)
4TiO2 + C = 2Ti2O3 + CO2 (g) 39.57 −0.41 (5)
2TiO2 + C = 2TiO + CO2 (g) 56.09 −0.58 (6)

TiO2 + C = Ti + CO2 (g) 353.86 −0.92 (7)

Table 3 listed ∆Gθ and E of Ti4O7, Ti2O3, and TiO electro-deoxidation reactions at
1073 K. The results show that E of Ti4O7 deoxidized to Ti2O3 is 0.48 V, which is lower
than Ti4O7 deoxidized to TiO and Ti. Therefore, the second step reaction controlled by
electrochemistry was Ti4O7 deoxidized to Ti2O3. In the same way, the third step reaction
was Ti2O3 deoxidized to TiO. Finally, TiO deoxidized to Ti. According to the products
obtained at different electrolysis times and electro-deoxidation thermodynamics analysis,
the molten salt electrolysis from TiO2 to titanium is a multi-step electrochemical reaction
process, which can be summarized as: TiO2→Ti4O7→Ti2O3→TiO→Ti.
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Table 3. ∆Gθ and E of Ti4O7, Ti2O3, and TiO electro-deoxidation reactions at 1073 K.

Reactions ∆Gθ
1073 K (kJ/mol) E (V) No.

2Ti4O7 + C = 4Ti2O3 + CO2 (g) 46.31 −0.48 (8)
Ti4O7 + 1.5C = 4TiO + 1.5CO2 (g) 95.76 −0.99 (9)
Ti4O7 + 3.5C = 4Ti + 3.5CO2 (g) 337.44 −3.50 (10)

2Ti2O3 + C = 4TiO + CO2 (g) 72.60 −0.75 (11)
Ti2O3 + 1.5C = 2Ti + 1.5CO2 (g) 314.29 −1.09 (12)

2TiO + C = 2Ti + CO2 (g) 241.68 −1.25 (13)

3.4. Analysis of Electrochemical Deoxidation of TiO2 in NaCl-CaCl2 System

Then, 3 wt.% TiO2 was added to NaCl-CaCl2 binary molten salt system, and then
the samples from the upper, middle, and lower crucibles were taken for XRD analysis
after being heated to 1073 K for 4 h. The XRD patterns (Figure 6) show that no other
substances were found in the samples taken from the upper and middle crucibles and TiO2
was deposited in the bottom of the crucible. It indicates that there is no chemical dissolution
of TiO2 in the molten salt system. CaTiO3 cannot be formed spontaneously, because there
is no electro-deoxidation reaction conducted to produce oxygen ions in the binary molten
salt system.
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Figure 7 displays the CV curves of NaCl-CaCl2 system before and after TiO2 addition.
There is no redox peak found in the CV curve of NaCl-CaCl2 system without 3 wt.% TiO2;
it demonstrates that the electrochemical properties of the binary molten salt electrolyte
are stable, and the trace impurities in the salt have no influence on the experiment. CV
curve of NaCl-CaCl2 system with 3 wt.% TiO2 shows that there are four reduction peaks, a,
b, c, and d, which appear in the reduction process, and one oxidation peak d’ appears in
the oxidation process. The asymmetric CV curve of NaCl-CaCl2 system without 3 wt.%
TiO2 and |ipa/ipc| 6=1 prove that the existence of reduction was an irreversible process.
According to the four reduction peaks on the CV curve, the reduction of TiO2 to titanium
metal may be divided into four steps, which was consistent with the above thermodynamic
calculation results.
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Figure 8 displays the CV curves of NaCl-CaCl2-TiO2 system with different scan rates.
With the increase of the scan rate, the peak currents of the four reduction peaks gradually
increased. The reduction potential corresponding to peaks a, b, and c shifted negatively
with the increase of the scan rate, indicating that the reduction process was irreversible
or quasi-reversible. Figure 9 displays the relationship between the scan rates of peaks a,
b, and c and the peak current in NaCl-CaCl2-TiO2 system. It can be seen that the square
root of the scan rate of reduction peaks a, b, and c has a linear relationship with the peak
current, demonstrating that the reduction processes of a, b, and c are completely irreversible
processes controlled by diffusion. The potential of peak d has no obvious deviation, so
the reduction process corresponding to peak d is a reversible reaction. In consequence,
both reversible and irreversible processes exist in the electrochemical reduction of TiO2 to
titanium metal in the NaCl-CaCl2 binary system.
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For the irreversible process of the potentiodynamic scanning, the peak potential and
logarithm of scan rate has the following relation, as shown in Equation (2). When Epc and
lnv are in a linear function, the electron transfer number (n) in the process can be calculated
according to the slope (k) of the fitting curve, shown in Equation (3).

Epc = EΘ
(

RT
αnF

)
ln
(

RTkΘ

(1− α)nF

)
+

(
RT

(1− α)nF

)
ln v (2)

k = RT/(1− α)nF (3)

where E is the peak potential (V); R, T, n, v, α, and F represent the ideal gas constant
(8.314 J/(mol·K)), absolute temperature (K), the electron transfer number, the scan rate
(V/s), the charge transfer coefficient, and Faraday’s constant (96,485 C/mol), respectively.

According to the CV curve, the reduction potential difference of peak a and b is 0.15 V,
which is consistent with the theoretical decomposition potentials difference 0.14 V of the
reactions (4) and (8). Figure 10 shows the fitting curves of the peak potential (Epc) and the
logarithm scan rate (lnv). According to the slope of the fitting line, the electron transfer
number in the combined process of peaks a and b was calculated to be 1.303, approximately
1, but there were also non-stoichiometric Ti4O7 in the reduction process of TiO2 to Ti2O3.
Due to the small theoretical decomposition potential difference, the two independent peaks
a and b could be approximately regarded as one peak. Peaks a and b represent the reduction
process from TiO2 to Ti2O3 by direct reduction or a step-by-step process with an electron
transfer number of 1, and Ti4O7 reduced to Ti2O3 was also controlled by diffusion [25]. The
electron transfer number of peak c was calculated to be 1.298, approximately 1. According
to the electron transfer number, the diffusion coefficients of diffusion-controlled processes
A, B, and C are 0.349 × 10−5 cm/s and 0.2352 × 10−4 cm/s, respectively. The formula is
shown in Equation (4) [27]:

ip = 0.4958nAFCo

(
αnFDov

RT

)1/2
(4)

where iP is peak current density (A/cm2); Co, A, and Do represent the concentration
of the reactants (mol/cm3), work electrode area (1.95465 cm2), and diffusion coefficient
(cm2/s), respectively.
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Figure 11 shows the square wave voltammetry curve of the NaCl-CaCl2-TiO2 system.
Three obvious reduction peaks between −1.5 V and 0 V can be seen from the curve. The
first peak of process a and b is near −0.5 V, the second peak of process c is near −1.0 V,
and the third peak of process d is near −1.4 V, which is roughly the same as the reduction
peak potential of the CV curve. The irreversible process in the reduction process is the
main reason for a little shift of the reduction peak. Process d is a reversible process, so
the relationship between the half-peak width and the electron transfer number can be
expressed in Equation (5) [28]. The electron transfer number in process d calculated by
Equation (5) is 2.324, approximately 2, which corresponds to reaction (13). The reduction
process of TiO2 to titanium was further confirmed as TiO2→Ti4O7→Ti2O3→TiO→Ti.

E1/2 = 3.52
(

RT
nF

)
(5)
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4. Conclusions

Titanium metal was prepared by the electrochemical reduction in NaCl-CaCl2 binary
molten salt at 1073 K, and the reduction process of TiO2 to titanium can be summarized
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as TiO2→Ti4O7→Ti2O3→TiO→Ti. As an intermediate product in the deoxidation pro-
cess of TiO2, CaTiO3 can be spontaneously generated among Ca2+, O2−, and TiO2 in the
NaCl-CaCl2 system. The dissolution behavior of TiO2 showed that there is no chemical
dissolution of TiO2 in the NaCl-CaCl2 molten salt system at 1073 K. Electro-deoxidation
thermodynamics and electrochemical studies further confirmed that the reduction of TiO2
to titanium in four steps, and the processes were controlled by diffusion.
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