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Abstract: In the present work, a numerical model based on the cohesive zone modeling (CZM)
approach has been developed to simulate mixed-mode fracture of co-consolidated low melt pol-
yaryletherketone thermoplastic laminates by considering fiber bridging. A modified traction sep-
aration law of a tri-linear form has been developed by superimposing the bi-linear behaviors of
the matrix and fibers. Initially, the data from mode I (DCB) and mode II (ENF) fracture toughness
tests were used to construct the R-curves of the joints in the opening and sliding directions. The
constructed curves were incorporated into the numerical models employing a user-defined material
subroutine developed in the LS-Dyna finite element (FE) code. A numerical method was used to
extract the fiber bridging law directly from the simulation results, thus eliminating the need for the
continuous monitoring of crack opening displacement during testing. The final cohesive model was
implemented via two identical FE models to simulate the fracture of a Single-Lap-Shear specimen,
in which a considerable amount of fiber bridging was observed on the fracture area. The numerical
results showed that the developed model presented improved accuracy in comparison to the CZM
with the bi-linear traction–separation law (T–SL) in terms of the predicted strength of the joint.

Keywords: thermoplastics; co-consolidated joints; fracture toughness; cohesive zone modeling; finite
element analysis

1. Introduction

Polymeric matrix composite materials have become the norm for the aerospace in-
dustry in the past few decades. Various factors led to this transition over their metallic
counterparts, such as their high strength-to-weight ratio and application dependent prop-
erties’ designation [1]. The multi-material composition of fiber reinforced polymers has led
to the emergence of numerous mechanical phenomena, inducing complexity in the study
of their fracture behavior.

Fiber bridging constitutes such a phenomenon that has been under investigation and
impacts the delamination behavior of composite materials. Generally, fiber bridging is
defined as the separation of fibers or fiber bundles during the debonding of adjacent plies,
thus increasing the interlaminar fracture toughness. The severity of this phenomenon
is attributed by factors such as fiber orientation and matrix–fiber interface strength [2].
Numerous works have been published, focusing on both the definition of the mechanical
behavior and the usage of fiber bridging in favor of the structure’s integrity through
thickness reinforcement. Available studies include analytical approaches and experimental
works on fiber bridging. Budiansky et al. [3], Hutchinson et al. [4], Cox et al. [5] and Bao
et al. [6] have developed micromechanical models in order to describe fiber bridging. Other
efforts in the development of geometry independent bridging laws have been conducted by
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Sørensen and Jacobsen [7] and other researchers [8–14]. Other works also include extensive
experimental and numerical efforts to accurately predict and model the fiber bridging
mechanism [15–18].

The optimization and integration of the mechanism in question for composite struc-
tures can be achieved through numerical simulations. However, the most commonly used
bilinear cohesive zone modeling in composite joints cannot accurately model the fracture
toughness increment due to the bridging. This is due to the fact that the T–SL in both
loading directions only represents the mechanical separation effect of the matrix interface.
Efforts have been made towards the integration of the fiber bridging phenomenon in nu-
merical models. Afshar et al. [19] have developed a numerical model through the extended
finite element method (XFEM) by simulating the effect of bridging in the interface through
non-linear springs.

The most common numerical approaches found in the literature are based on a modi-
fied cohesive zone modeling technique, where the effect of both the matrix and fibers are
superimposed in a final multilinear T–SL. Such a technique can be found in the work of
Heidari-Rarani et al. [20], where the superposition of two CZMs, representing the matrix
interface and fiber bridging, respectively, is performed. The resulting T–SL follows a tri-
linear form emerging from the simultaneous effect of the two bi-linear CZMs peaking at
the same displacement jump.

Gong et al. [21] presented a model in the same principle as described above; however,
in this case the two bi-linear CZMs did not have the same peak. The bridging part of the
T–SL was initiated when the interface failed completely, which also abides to the physical
behavior of the phenomenon. According to the above study, the proposed model [22]
was experimentally validated and simplification techniques for more straight forward law
extraction were presented [23].

Although a considerable amount of work has been conducted on the numerical simu-
lation of the fiber bridging phenomenon, the applications are limited only on thermoset
matrix composites to the authors’ knowledge. Additionally, in the case of thermoplastic
laminates, where joining techniques such as welding are available, there is potential for fur-
ther study on joints, not only for delamination. Considering that, the present work focused
on the development of such a model, incorporating fiber bridging effects in low melt PAEK
matrix laminates loaded in mixed mode conditions. This paper includes the analytical,
experimental, and numerical procedure for the determination of a modified cohesive zone
model. The general objective of the work was to simulate the bridging behavior present in
previously conducted tests on mixed-mode Single-Lap-Shear (SLS) specimens, where the
simple bilinear law did not manage to accurately approach the results.

In comparison to previously conducted studies, this work incorporated the application
and further validation of the modified traction–separation law for fiber bridging simulation
in joined thermoplastic composites. A complete experimental characterization of the mixed
mode bridging behavior was performed. The development of two new computational
tools contributed both in the more straightforward experimental results’ extraction and the
more practical implementation of the model in question. Overall, the developed model
adequately predicted the experimental results and was proved efficient in simulating the
fiber bridging phenomenon.

2. Theoretical: The Modified Traction–Separation Law

The incorporation of the fiber bridging mechanism into the cohesive material model was
achieved through the employment of a tri-linear T–SL, recently proposed by Gong et al. [21].
This section briefly describes the principle and theory of this cohesive zone model.

The representation of the mechanical behavior of the interface is described by a tri-
linear T–SL (OABC), which accrues from the superposition of two simple bi-linear CZMs
(Figure 1). For the representation of the matrix interface separation, the bi-linear part (ODE)
is employed. For the 0 − δ0 displacement jump of the cohesive, linear elastic behavior is
prescribed with K1 stiffness, followed by the degradation part (DE) of the law. In the same
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principle, the effect of fiber bridging is modeled with another bi-linear law (OBC), where
the onset of its degradation coincides with the total failure of the matrix interface. Finally,
by superimposing the described components, a tri-linear traction–separation law (OABC)
is obtained [21].

Materials 2022, 15, x FOR PEER REVIEW 3 of 18 
 

 

(ODE) is employed. For the 
0

0 - δ  displacement jump of the cohesive, linear elastic be-

havior is prescribed with 1K  stiffness, followed by the degradation part (DE) of the law. 

In the same principle, the effect of fiber bridging is modeled with another bi-linear law 

(OBC), where the onset of its degradation coincides with the total failure of the matrix 

interface. Finally, by superimposing the described components, a tri-linear traction–sepa-

ration law (OABC) is obtained [21]. 

 

Figure 1. A schematic of the modified T–SL (ODE: Matrix interface T–SL; OBC: Fiber bridging T–

SL; OABC: Combined trilinear T–SL). 

The tri-linear CZM is described by the following equation: 

0
= (1 - ijσ d)D d  (1) 

where the initial stiffness tensor is defined as 

0

0
= ijijD δ K  (2) 

and the global damage variable is divided as follows: 

0

0

0

0










   
   

  


 


 
  



ΑΒ
b

fBC
b f

f

δ

δΚ
δ < δ δ

K δ
d

δΚ
- , δ < δ δ

K δ

δ δ

0, 0

1 - 1 - , 

=

1 - 1

1, 

 (3) 

where 0
K , ΑΒΚ  and BCΚ  stand for the (OA), (AB) and (BC) lines’ tangents, respec-

tively. Other crucial parameters required for the composition of the T–SL are the initial 

fracture toughness iniG , the propagation fracture toughness propG , the interfacial 

strength 0
σ , the bridging stress bσ , as well as the stiffnesses 1K  (or ODK ) and 2K  (or 

OBK ). In the case of mixed-mode loading, each of these parameters needed to be defined 

both for mode I and mode II. 

3. Overall Approach 

Figure 1. A schematic of the modified T–SL (ODE: Matrix interface T–SL; OBC: Fiber bridging T–SL;
OABC: Combined trilinear T–SL).

The tri-linear CZM is described by the following equation:

σ = (1 − d)D0
ijd (1)

where the initial stiffness tensor is defined as

D0
ij = δijK0 (2)

and the global damage variable is divided as follows:

d =


0, δ ≤ 0(

1 − KAB
K0

)(
1 − δ0

δ

)
, δ0 < δ ≤ δb

1 − KBC
K0

(
1 − δ f

δ

)
, δb < δ ≤ δ f

1, δ ≥ δ f

(3)

where K0, KAB and KBC stand for the (OA), (AB) and (BC) lines’ tangents, respectively.
Other crucial parameters required for the composition of the T–SL are the initial fracture
toughness Gini, the propagation fracture toughness Gprop, the interfacial strength σ0, the
bridging stress σb, as well as the stiffnesses K1 (or KOD) and K2 (or KOB). In the case of
mixed-mode loading, each of these parameters needed to be defined both for mode I and
mode II.

3. Overall Approach

The development of the final modified T–SL for the co-consolidated laminates con-
sisted of experimental, analytical, and numerical parts. Initially, the required tests, men-
tioned in Section 2, were conducted; specifically, double cantilever beam (DCB) specimens’
tests for mode I and edge notched flexure (ENF) specimens’ tests for mode II. The data
acquired from this first step are the fracture toughness values, as well as the resistance
curves, which are indicative of the bridging behavior of the specimens. However, the latter
could not be generalized to any coupon for the modeling of fiber bridging as they are
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geometry dependent. To overcome this issue, a bridging law for each loading mode needed
to be defined.

The technique involved extracting the bridging law and, subsequently, the bridging
stress σb is described in [23] and comprises a simplified procedure for measuring the crack
opening displacement (COD) in the DCB and the crack sliding displacement (CSD) in
the ENF specimens, thus eliminating the need for complex and time-consuming digital
image correlation monitoring techniques during testing. The R-curves extracted from
the two mechanical tests were introduced in two FE models simulating the two tests,
respectively. The critical energy release rate or fracture toughness values obeyed the
R-curve behavior and the COD could be measured numerically. In this manner the bridging
stress–crack propagation curve could be plotted using the following equation:

σb =
∂G
∂δ∗

(4)

where δ∗ stands for the crack opening or sliding displacement. With this last step, all the
parameters needed to construct the trilinear T–SL became available.

Finally, two different options for the numerical implementation of the modified mixed-
mode CZM were followed, including the analysis through an already available LS Dyna’s
material model and the development of a user defined subroutine. The latter two methods
were employed for the simulation of SLS specimens, and the results were compared and
validated upon available test data. Furthermore, the numerical results that were obtained
from the modified models were compared with the output of a simple bilinear T–SL model.

Overall, the procedure described above was divided in three stages: development,
implementation, and validation (Figure 2). In the first step, the mandatory experimental,
numerical, and analytical data were acquired. Subsequently these were used as input in
the numerical models of the implementation stage and finally, the results were compared
and validated throughout the third stage. In the following sections, the three stages are
analyzed in detail.
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4. Stage 1: Development
4.1. Experimental
4.1.1. Mode I—DCB

The mechanical testing of laminates in mode I loading conditions was performed
according to the ASTM D5528-01 standard [24–26]. A total of eight co-consolidated speci-
mens were cut in 150 mm length, 25 mm width and 1.8 mm thickness for each substrate.
The plies followed a quasi-isotropic stacking [0◦/45◦/90◦/45◦/−45◦]s and the predefined
crack was applied with a 63 mm Kapton film insert between the laminates. The prepreg
material of the laminates was a LM-PAEK-based matrix, reinforced with TC1225 carbon
fibers, provided by Toray. The experimental set-up of the mode I test is illustrated in
Figure 3.
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Figure 3. Mode I loading experimental set up.

Piano hinge tabs were bonded to the edges of the cantilever beam in order to apply
the opening load, according to the standard. The tests were held in room temperature
conditions, prescribing a constant crosshead displacement rate of 1 mm/min. During
the loading of the specimens, the crack propagation was optically monitored through a
digital microscope.

The fracture toughness values for each state of the propagation were obtained through
the modified beam theory method. Finally, the R-curves and the GI,ini and GI,prop properties
of the specimens were computed.

The mechanical testing conducted on DCB specimens showed similar response and
close crack initiation load values for all the specimens; indicatively, in Figure 4, the load–
displacement curves for the eight specimens (DCB02–DCB09) are presented. Figure 5
depicts a characteristic R-curve for the co-consolidated laminates. The initiation and
propagation fracture toughness values in this case were roughly 1.1 N/mm and 2.1 N/mm,
respectively, while the length of the crack propagation for the stabilization of the fracture
toughness to a steady value, also defined as the bridging length, was about 40 mm.
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Figure 5. Characteristic R-curve extracted from Mode I tests.

In Figure 6, the fractured surfaces along the DCB specimens are shown. It is obvious
that the propagation of the crack suffered strong stick-slip behavior, which is noticed both
from the color inhomogeneity of the surface and the load–displacement curves. Addition-
ally, loose fibers and bridged fiber bundles can be found by a closer surface inspection,
confirming the bridging behavior presented by the extracted R-Curve.

Materials 2022, 15, x FOR PEER REVIEW 6 of 18 
 

 

 

Figure 4. Mode I experimental load–displacement curves. 

 

Figure 5. Characteristic R-curve extracted from Mode I tests. 

In Figure 6, the fractured surfaces along the DCB specimens are shown. It is obvious 

that the propagation of the crack suffered strong stick-slip behavior, which is noticed both 

from the color inhomogeneity of the surface and the load–displacement curves. Addition-

ally, loose fibers and bridged fiber bundles can be found by a closer surface inspection, 

confirming the bridging behavior presented by the extracted R-Curve. 

 

Figure 6. DCB specimens’ fractured surfaces after testing. Figure 6. DCB specimens’ fractured surfaces after testing.



Materials 2022, 15, 5108 7 of 18

4.1.2. Mode II—ENF

The mode II tests were performed according to the AITM 1.0006 standard [27–29].
Six specimens, with adherents of 115 mm by 25 mm dimensions and a 45 mm predefined
cracking, were studied. In the same principle as mode I tests, the crack propagation under
the constantly increasing load was monitored through a digital microscope [30]. The testing
machine used was an MTS universal with a load cell capacity of 100 kN (Figure 7).
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Figure 7. Mode II loading experimental configuration.

Figure 8 depicts the load–displacement response of the ENF specimens, as obtained
from mode II testing. In this case, the ENF-05 specimen was excluded from the study, as a
considerable difference was recorded due to remaining cohesion at the Kapton region and,
subsequently, falsely increased stiffness and interlaminar strength. Specimens ENF-04 and
ENF-06 also presented a slightly higher maximum load prior to failure, possibly for the
same cause as ENF-05, although the discrepancy was considered acceptable.
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Figure 8. Mode II experimental load–displacement curves.

Figure 9 shows the characteristic fracture toughness–crack propagation curve, where
the initiation GI I value was measured quite low, at about 0.5 N/mm, and the steady state
GI I value at 2.6 N/mm. For this test, the bridging length was considerably lower from
the mode I test, lying at 5 mm. It is noteworthy that due to the nature of the three-point
bending test, the load–crack propagated length data recording proved to be quite difficult,
rendering the acquisition of more data points on the R-curve impossible.
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The fracture surfaces of the ENF specimens after testing, as shown in Figure 10,
indicated a considerably lower amount of bridged and loose fibers, differing to the previous
case. As expected, the crack stick-slip phenomenon was visually absent in mode II.
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4.1.3. Mixed Mode SLS

The mixed mode-loaded SLS specimens used for the implementation and validation
stage of the model are briefly described. The experimental procedure was based on
the ASTM 5868-01 standard. The stacking sequence of the composite laminates was
[0◦/−45◦/45◦/90◦/45◦/−45◦]s, joined via co-consolidation at the overlapped area. The
dimensions of the substrates were 101.6 mm in length, 25.4 mm wide and a total number of
six specimens were tested. The coupons were loaded in a quasi-static displacement rate of
1 mm/min until final rupture.

4.2. Numerical Part

The numerical aspect of the present stage incorporates FE simulations for the numerical
estimation of the bridging law in DCB and ENF specimens. The numerical analyses were
performed using the commercial FE suite, LS Dyna, using 8-noded reduced integrated solid
elements for the composite laminates (Figure 11) [31–33].
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Figure 11. Typical FE mesh of the DCB coupon.

User Defined Subroutine—UMAT_RCurve

The numerical part also includes the development of the user defined routines in order
to introduce the experimental R-curves in the DCB and ENF models (UMAT_RCurve).
Simulations were performed in LS Dyna, while the proprietary scripting was written in
FORTRAN 77 programming language and compiled through Intel Visual Fortran Compiler
2010. The developed subroutine was implemented through the LS Dyna’s available material
model UMAT43c, which is suitable for modeling three dimensional cohesive elements [34–36].

The mechanical response of the user defined model was exactly the same as a simple
bi-linear CZM, with the exception that the fracture toughness in each loading mode was
not a constant value but was position-dependent, based on the experimental R-curves. In
order to implement this, a cohesive element position reading algorithm had to be written.

As an input, the total coupon length (lplate) and the pre-cracked length (a0) were
required. Through an iterative procedure, the nodal coordinates of the cohesive elements
were obtained and, subsequently, the distance from the element’s center to the crack tip
(da(i)) was calculated (Figure 12). By these means, the fracture toughness for each cohesive
element was prescribed from the R-curve, which also constitutes a subroutine’s input.

Materials 2022, 15, x FOR PEER REVIEW 9 of 18 
 

 

 

Figure 11. Typical FE mesh of the DCB coupon. 

User Defined Subroutine—UMAT_RCurve 

The numerical part also includes the development of the user defined routines in 

order to introduce the experimental R-curves in the DCB and ENF models 

(UMAT_RCurve). Simulations were performed in LS Dyna, while the proprietary script-

ing was written in FORTRAN 77 programming language and compiled through Intel Vis-

ual Fortran Compiler 2010. The developed subroutine was implemented through the LS 

Dyna’s available material model UMAT43c, which is suitable for modeling three dimen-

sional cohesive elements [34–36]. 

The mechanical response of the user defined model was exactly the same as a simple 

bi-linear CZM, with the exception that the fracture toughness in each loading mode was 

not a constant value but was position-dependent, based on the experimental R-curves. In 

order to implement this, a cohesive element position reading algorithm had to be written. 

As an input, the total coupon length ( lplate ) and the pre-cracked length ( 0
a ) were 

required. Through an iterative procedure, the nodal coordinates of the cohesive elements 

were obtained and, subsequently, the distance from the element’s center to the crack tip (
da(i) ) was calculated (Figure 12). By these means, the fracture toughness for each cohesive 

element was prescribed from the R-curve, which also constitutes a subroutine’s input. 

 

Figure 12. Element position calculation principle for the UMAT_RCurve routine. 

The objective of this numerical step was to bypass the need for complex experimental 

monitoring techniques for the crack opening displacement (COD) and crack sliding dis-

placement (CSD) (Figure 13) by directly extracting the desired curve through FE models 

of the DCB and ENF specimens. This procedure has been proposed in [23]; however, it 

has only been applied for mode I loading. 

Figure 12. Element position calculation principle for the UMAT_RCurve routine.

The objective of this numerical step was to bypass the need for complex experimental
monitoring techniques for the crack opening displacement (COD) and crack sliding dis-
placement (CSD) (Figure 13) by directly extracting the desired curve through FE models of
the DCB and ENF specimens. This procedure has been proposed in [23]; however, it has
only been applied for mode I loading.
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Figure 13. Measurement of the COD and CSD from DCB and ENF specimens, respectively.

Based on the procedure described above, the fracture toughness distribution along the
cohesive elements at the interface of the DCB is shown in Figure 14. The lowest G value
was applied at the crack-front elements, increasing according to the experimentally defined
R-curve. Similarly, the same principle was applied to the ENF cohesive interface.
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Figure 14. Mode I fracture toughness distribution at the DCB coupon’s cohesive interface
(UMAT_RCurve).

The COD and CSD computed from the two numerical analyses are presented in
Figure 15. In both cases, the relative nodal displacements between the joined laminates
were recorded for each timestep, in the appropriate directions for each loading case, in
relation to the modeled crosshead displacement, imposed by the boundary conditions. The
curves showed expected behavior both for mode I and mode II, as indicated by previous
studies [23,37–39]. In Figure 15a, the relative nodal displacement reached a maximum
value of about 23 mm, following a slightly parabolic increase. In Figure 15b, the relative
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nodal displacement had a maximum relative nodal displacement of 0.35 mm, presenting a
plateau at the crack initiation point.
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4.3. Analytical Part

In this subsection, the calculations for the mixed-mode tri-linear T–SL are presented.
As the first requirement, the bridging stress could be calculated from the differentiation
of the fracture toughness with respect to the COD or the CSD, depending on the load-
ing mode (Equation (4)). In this way, the bridging stress–opening/sliding displacement
curves could be drawn, as shown in Figures 16 and 17. The first points in these two dia-
grams corresponded to mode I and II bridging strength, specifically σI,b = 4.96 MPa and
σI I,b = τb = 22.4 MPa.
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Figure 17. Mode II bridging stress—CSD curve.

According to the literature [21], the peak traction of the matrix interface contributions
(σ0,I , σ0,I I) can be approximated by a percentage of 55–65% of the interfacial matrix strength
in normal and shearing directions, respectively. In this case, a 0.65 ratio was selected,
resulting in:

σ0,I = 0.65T = 55.9 MPa (5)

σ0,I I = 0.65S = 27.3 MPa (6)

K1 and K2 describe the stiffnesses for the two superimposed T–SLs to the correspond-
ing loading mode. The K1 value can be calculated by the following equation

K1 =
2EZ

h
(7)

where EZ was the through the thickness laminates’ stiffness, and h half of the DCB or ENF
specimen thickness. K2 was defined through simple trigonometric calculations from the
T–SL schematic, resulting in K1 = 9.136 MPa and K2 = 0.143 MPa.

Furthermore, the displacement jumps for each loading mode could be calculated in
the following manner:

δ0,I =
σ0,I

K1,I
= 0.006 mm (8)

δb,I =
2GI,ini

σ0,I
= 0.04 mm (9)

δ f ,I =
2
(
GI,prop − GI,ini

)
σb,I

= 0.389 mm (10)

Following the same procedure for mode II loading, δ0,I I , δb,I I and δ f ,I I could be
calculated as 0.004 mm, 0.049 mm, and 0.182 mm, respectively. Ultimately, the final form of
the mixed-mode tri-linear T–SL is shown in Figure 18.
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5. Stage 2: Implementation

Numerical analyses were held in this stage to determine the behavior for the co-
consolidated laminates under mixed mode loading. The simple bilinear T–SL was im-
plemented through the LS Dyna’s MAT_138 material model [40]. The numerical imple-
mentation of the finally developed model of the modified tri-linear T–SL was studied in
two ways.

5.1. User Defined Subroutine—UMAT_Tril

The numerical application of the final modified T–SL required the development of
another subroutine, able to follow the trilinear traction–separation behavior of the co-
hesive elements. The developed subroutine, UMAT_Tril, required the user input data
previously calculated from the experimental, numerical, and analytical procedures, namely
the bridging strength, the interfacial strength, the initiation, and propagation fracture
toughness values, the initial stiffnesses of the matrix and fiber bridging elastic response.
These parameters needed to be defined prior to the analysis, both for mode I and II loading
conditions, as the routine calculates the mixed-mode displacements and stresses of the
cohesive elements. In Figure 19, the flowchart of the iterative calculation procedure for
every element in UMAT_Tril is depicted.
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Based on the element’s mixed-mode displacement for each step, the algorithm selected
its status: 1. elastic response; 2. matrix interface degradation; 3. fiber bridging contribution;
4. total failure. Each damage variable indicated the degradation percentage of the corre-
sponding modeled part. The two main damage variables d1 and d2, corresponding to the
matrix interface and bridging effect degradation, respectively, were constantly available
throughout the computational procedure. This enabled the definition of the damage status
for every cohesive element in each time step of the simulation.

5.2. LS Dyna’s MAT_186

Another implementation technique followed for the application of the tri-linear T–SL
was through the employment of LS Dyna’s MAT_186 (MAT_COHESIVE_GENERAL) mate-
rial model, which allowed the definition of user-defined T–SL by prescribing a normalized
curve (Figure 20). Different cohesive responses were prescribed for the two loading modes,
thus making the mixed-mode simulation possible. The previously developed subroutine
UMAT_Tril worked in the exact same computational way as MAT_186, so identical results
were to be expected.
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6. Stage 3: Final Results and Validation

In this section, the final mechanical responses of the mixed-mode SLS specimens from
the numerical simulations are presented. The numerical results included the output data
for the trilinear T–SL modeled interfaces, and then they were compared to the bilinear
modeled interface response and experimentally acquired data.

Figure 21 depicts the load displacement curves computed numerically. The experi-
mentally obtained curve peaked at 16 MPa prior to failure. Significantly lower was the
maximum load for the bilinearly modeled coupon. Such a difference was expected, as
MAT_138 did not reckon in the fiber bridging effect and was extensively present on the
failed areas of the tested SLS specimens (Figure 22). The mechanical response of the two nu-
merical models (MAT_186 & UMAT_Tril) was virtually the same due to their identical
computational behavior. The models based on the modified traction–separation law man-
aged to approach the experimental behavior more accurately than the simple bilinear model.
Although the load–displacement curves did not fully capture the real-world mechanical
behavior, considerable improvement occurred.
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Figure 22. SLS specimens’ characteristic fractured surface investigated through optical microscopy.

The damage variables d1 and d2 obtained from the UMAT_Tril simulation for the final
timestep prior to the failure initiation are plotted in Figure 23a,b. A damage region contour
was also captured (Figure 23c), indicating each element’s degradation region. Such a result
led to the conclusion that the developed models presented quite an accurate representation
of the complex fiber-bridging phenomenon, as the damage progression and failure of the
tested specimens showed a similar pattern by examining the imprints of the fractured
surfaces (Figure 22).
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7. Conclusions

In the present work, a model for simulating fiber bridging along the co-consolidated
interface of thermoplastic laminates was developed, based on a modified trilinear T–SL.

The conclusions emerging from the study are listed below:

• Overall, the procedure described above was proven adequately accurate for simulating
the fiber bridging behavior of mixed mode-loaded co-consolidated thermoplastic lam-
inates. Although the numerical results were not totally identical with the mechanical
tests’ data, the improvement over the traditional bilinear cohesive zone modeling was
quite considerable. The trilinear T–SL managed to simulate the increased fracture
properties due to fiber bridging, following the mechanical aspects of the phenomenon.

• The developed subroutine, UMAT_RCurve, proved to be an efficient way to nu-
merically measure the crack opening/sliding displacements in both loading modes.
A significant amount of experimental work is omitted and maintained though the
validity and accuracy of the results.

• In the final numerical step, where two implementation options were studied, the
output was the same. However, in the case of the UMAT_Tril subroutine, additional
flexibility in terms of results’ monitoring was given. The status of every cohesive
element’s degradation could be recorded for each timestep, offering the opportunity
for meticulous CZM behavior observation during failure.

Finally, it is evident that such a procedure added complexity to the numerical simula-
tion when compared to the mostly used bilinear T–SL. With this in mind, this technique
should be used in cases where the fiber bridging phenomenon is prominent, noticeably
affecting the mechanical response of the joint.

Apart from the application on co-consolidated joints, this technique is feasible to be
applied in any other type of joint for thermoplastic laminates. Thermoplastic welding, for
example, constituting a fusion procedure, usually without the integration of third material
into the joint, is highly likely to develop the ideal conditions for extensive bridging of
the fibers.
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