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Abstract: Recently, the demand for spatial structures such as retractable dome roofs is increasing.
The safety of dome roofs must be ensured even when they are open. Hence, studies analyzing the
peak pressure coefficients of spherical dome roofs are actively being conducted. However, no peak
pressure coefficients for the cladding design of elliptical retractable dome roofs have been proposed.
Although several studies on elliptical open dome roofs that open from the edge to the center have
been conducted, studies on those that open from the center to the edge are still insufficient. This study
investigated the peak pressure coefficients of elliptical center-open dome roofs. For wind tunnel
tests, a model was fabricated with an opening ratio of 30%. Under experimental conditions, five
different wall height-to-span ratios (from 0.1 to 0.5) were used, with the roof rise-to-span ratio set at
0.1. Accordingly, the experimental values of the peak pressure coefficients of elliptical center-open
dome roofs were compared with those of the closed dome roofs proposed in the Korean and Japanese
wind load codes. Subsequently, their efficiency was verified. The findings were also compared with
previous research outcomes. Based on the results, peak net pressure coefficients are proposed for
cladding designs suitable for elliptical center-open dome roofs.

Keywords: elliptical retractable dome roof; wind pressure coefficient; cladding design; wind tunnel
test; wind load code; peak net pressure

1. Introduction

Following the recent rising demand for indoor leisure activities and sports, the number
of retractable dome roofs is increasing worldwide. Compared with closed dome roofs,
retractable dome roof structures can operate in open, partially open, and closed states, thus
allowing them to flexibly adapt to seasonal and weather conditions. Moreover, owing to
their structural efficiency and economic advantages, they are mostly used in large spatial
structures such as stadiums. As dome roofs primarily consist of lightweight materials, such
as membranes, they are particularly sensitive to wind pressure, which can tear or damage
the roof. Dome roofs in numerous countries, including the ones in the Jeju Soccer Field,
the Incheon Munhak, Sultan Mizan Zainal Abidin, and Montreal Olympic Stadium, have
suffered damages and malfunctions as a result of wind pressure. These accidents were
primarily a result of the failure to predict the wind pressure on the cladding due to strong
winds, leading to local or global damages [1].

As retractable dome roofs can be opened and closed, loads must be considered in
both the opened and closed states. In the basic design stage, the geometry or structural
elements are often determined based on the wind load code. The design modifications and
retesting at this stage can consume time and economic resources. However, at present, no
peak pressure coefficients for cladding designs have been proposed for retractable dome
roofs. Moreover, related studies are few [2–4].

The complex geometric problems of retractable dome roofs have not been completely
resolved. Recently, studies on retractable dome roofs with circular shapes have been
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conducted. However, elliptical dome roofs account for a greater proportion of retractable
dome roofs that have been built or are under construction. As elliptical dome roofs have a
longitudinal and transverse axis, a more detailed analysis is necessary.

Concerning studies on retractable spherical dome roofs, Cheon et al. [5] analyzed the
peak pressure coefficients through wind tunnel tests and compared them with AIJ–RLB
(2015) [6], the Japanese wind load code. According to their results, the experimental value
exceeded the code in an open state.

Kim et al. [7] analyzed the peak pressure coefficients of a retractable spherical dome
roof through wind tunnel tests, compared them with AIJ–RLB (2015), the Japanese wind
load code, and proposed peak pressure coefficients for cladding design.

Cheon et al. [8] and Park et al. [9] analyzed peak pressure coefficients and peak net pres-
sure coefficients for a center-open dome roof through wind tunnel tests, compared them with
the Japanese wind load code (AIJ–RLB (2015)), and proposed peak net pressure coefficients.

Active studies on elliptical retractable dome roofs have been conducted recently.
Lee et al. [10] analyzed the peak pressure coefficients of a dome roof that opens from the
edge to the center based on wind tunnel tests and compared the findings with the Japanese
wind load code (AIJ–RLB (2015)). The outcomes demonstrated that the experimental values
exceeded those obtained using the load code. Further, Lee et al. [11] proposed peak pressure
coefficients for the cladding design of elliptical retractable dome roofs.

However, studies on the wind pressure coefficients of elliptical center-open dome
roofs and on the peak net pressure coefficient, which denotes the difference between the
external and internal roof surface pressures and the inner surface wind pressure caused by
the inflow of air from the open roof, respectively, are few.

For open roofs, wind pressure fluctuations caused by changes in airflow inside the
structures should be considered. However, as current codes do not consider open roofs, the
peak pressure coefficients of the internal roof surfaces cannot be analyzed.

This study analyzed the peak pressure coefficients and peak net pressure coefficients of
an elliptical center-open dome roof based on wind tunnel tests, compared the experimental
results with previous research based on the Japanese (AIJ–RLB (2015)) and the Korean wind
load codes (KDS 41 10 15) [12], examined the adequacy of the codes, and proposed suitable
peak net pressure coefficients for the cladding design of elliptical, retractable dome roofs.

2. Wind Tunnel Tests
2.1. Model Details

Center-open dome roofs open in the direction of the center to the edge. The model was
fabricated with an opening ratio of 30%, where the opening ratio was defined according to
the open area of the roof. Figure 1a shows the model, with the central shaded area open
and the remaining edges surrounded by the roof.

A total of 80 pressure taps were installed in four lines at 30◦ intervals, with 10 external
and 10 internal taps in each line. Table 1 lists the detailed number of pressure taps on the
outer and inner sides of the roof. Each pressure tap installed on the model has a length of
900 mm and an internal diameter of 1.4 mm, as shown in Figure 1b.

Table 1. Summary of numbers of pressure taps.

Pressure Taps
Line External Tap Internal Tap Total

1 10 10 20
2 10 10 20
3 10 10 20
4 10 10 20

80
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Figure 1. (a) Test dome model (opening ratio of 30%) and (b) installed pressure taps.

2.2. Wind Tunnel Test Conditions and Methods

Figure 2 shows the outline of the wind tunnel test, which was conducted in a large
boundary-layer wind tunnel located at Tokyo Polytechnic University, Japan. Its working
section was 1.8 m × 2.2 m (height × width). By considering a full-scale dome with a 72-m
longitudinal axis, 48-m transverse axis, and height in the range of 0–30 m and applying a
length scale of 1/150, the test dome model consisted of a 0.48-m longitudinal axis, 0.32-m
transverse axis, and height in the range of 0–0.2 m. The length ratio of the longitudinal and
transverse axes was 1:1.5 [1].
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Figure 2. Schematic of the wind tunnel test.

As the blockage ratio was less than 2%, data correction was not required. The roof
rise-to-span ratio (f /D) was 0.1, and the roof rise was 0.04 m. According to Ishii [13], the
f /D values of constructed open-dome roofs range from 0 to 0.2. The test was performed
at five different heights, the wall height-to-span ratio (h/D) was varied from 0.1 to 0.5 at
0.1 intervals, and the wall height (h) was increased at 0.04 m increments.

All the pressures were measured simultaneously using a multichannel pressure mea-
surement system. The sampling frequency was 1000 Hz. The tubing effects were nu-
merically corrected using a transfer function, and the phase difference of the pressure
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measurement system with a cut-off frequency of 250 Hz was determined using low-pass
filtering, as shown in Figure 3 [14].
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Figure 3. Function for tubing effects corrections: (a) transfer function and (b) phase difference.

As shown in Figure 4, the test was conducted at a total of 36 wind directions from
0◦ to 350◦ at intervals of 10◦. Although only four pressure taps were installed at 0◦, 30◦,
60◦, and 90◦ each, the data obtained from the pressure taps of the four lines were analyzed
using the corresponding symmetric value of the overall wind direction.
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2.3. Experimental Flows

The test was conducted under the same conditions to compare the results with the
Japanese wind load code (AIJ–RLB (2015)) for dome roofs and the external peak pressure
coefficients for cladding designs proposed in previous studies. The wind speed scale was
1/3 and the time scale was 1/50; thus, the actual time of 10 min was 12 s in the wind tunnel,
and the moving average time was 1 s.

To reproduce the oncoming flows, spires, barriers, and roughness blocks were used to
reproduce the power-law index α = 0.21 (semi-urban area) conditions in the wind tunnel.
Figure 5 shows the graphs of the mean wind speed, turbulence intensity, and turbulence
length scale of the oncoming flows. At the maximum height (H + f ), which corresponds to
h/D = 0.5 in Figure 5a, the mean wind speed was 9.1 m/s and the turbulence intensity was
17.3%. The turbulence length scale in Figure 5b was calculated using Equation (1).

Lux =
∫ ∞

0
R̃12(r)dr (1)
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The flow was set to the wind speed and was not affected by the Reynolds num-
ber [15,16]. Figure 6a shows the mean peak pressure coefficients as a function of the
number of pressure taps at different Reynolds numbers. The x-axis indicates the total
number of pressure taps, and the y-axis indicates the wind pressure coefficient. The change
in the wind pressure coefficient is stable without any significant differences from its value
at a Reynolds number of Re = 2.1 × 105 (green box in the legend). Therefore, we set
Re = 2.4 × 105, which is similar to the Reynolds number determined by Noguchi and Ue-
matsu [17]. Letchford and Sarkar [18] confirmed that wind pressure distribution is stable
within a Reynolds number range of 2.3 × 105–4.6 × 105. Figure 6b shows the power spectra
of wind velocity fluctuations for the two oncoming flows at the maximum model height of
0.24 m. These spectra are consistent with the Karman spectra.
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Since this paper needed a basis of comparison, the mean wind speed and turbulence
intensity were measured through multiple simulations using Spires, barriers, and roughness
blocks to match the airflow conditions in the wind tunnel in detail with the AIJ–RLB (2015)
standard. Furthermore, in the case of a spherical dome roof, the wind pressure distribution
varies according to the Reynolds number, so many related prior studies were referred to
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and the Reynolds number with the most stable wind pressure change was implemented.
Therefore, it seems reasonable to compare the experimental results with the standard.

3. Results and Discussion

The time history of wind pressure is calculated by Cp(t) = (P-Ppitot)/qH, where P is the
pressure measured at each pressure tap; Ppitot is the pressure measured in the pitot tube
installed 1.2 m above the wind tunnel floor, and qH is the velocity pressure at the maximum
roof height (H + f) for each model (see Figure 2). The peak pressure coefficients proposed in
the Japanese wind load code (AIJ–RLB (2015)) were defined as the negative and maximum
values for each 10-min sample of Cp(t). Moreover, 10 ensemble-averaged values were
calculated for the external peak pressure coefficients to be applied in the cladding design.
Therefore, for a more accurate comparison, this study analyzed 10 ensemble-averaged
values under the same conditions.

The data obtained from the wind tunnel test are utilized as the peak pressure coeffi-
cients for the cladding design. These coefficients include a negative external peak pressure
(Cpe,min), a positive external peak pressure (Cpe,max), an inner surface negative internal
peak pressure (Cpi,min), and an inner surface positive internal peak pressure coefficients
(Cpi,max) (see Figure 7). The estimations of the wind pressure coefficients are achieved using
Equations (2)–(5).

CPe,min =
Pe,min

qHre f
(2)

CPe,max =
Pe,max

qHre f
(3)

CPi,min =
Pi,min

qHre f
(4)

CPi,max =
Pi,max

qHre f
(5)
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Pe,min and Pe,max are the minimum and maximum wind pressure values, respectively,
for each pressure tap on the external roof surface. Similarly, Pi,min and Pi,max are the
minimum and maximum values of the internal roof surface, respectively. In addition, qHre f
is the design velocity pressure at the maximum height (H + f ) for each dome roof height.

The peak net pressure coefficients were calculated using Equation (6) at the same
locations of the lines and pressure taps installed on the external roof surface and internal
roof surface.

Cpn,i = Cpe,i − Cpi,i , (6)

where the difference between the external roof surface pressure Cpe,i and internal roof
surface pressure Cpi,i is the peak net pressure coefficient Cpn,i. This study defines the
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minimum and maximum values for Cpn,i as the negative peak net pressure coefficient
(Cpn,min) and positive peak net pressure coefficient (Cpn,max), respectively.

Generally, when calculating the external peak pressure coefficient, the extreme value,
estimated using the Cook–Mayne method [19], is used to enhance the reliability of the
statistics. By using the peak values of the 10 samples, the extremes are calculated according
to the mode and dispersion of the Fisher–Tippett (Type 1) distribution by formulating
the best linear unbiased estimator (BLUE) [20]. Additionally, to compare these values
with both the results of previous studies and the wind load codes of different countries, a
non-exceedance probability of the Gumbel distribution of 78% is typically used.

However, this study defined the external peak pressure coefficients as the minimum
and maximum values for each averaged sample (over a 10-min period) and calculated
the 10 ensemble-averaged values for the external peak pressure coefficient applied to the
cladding design. To verify the difference between the 10 ensemble-averaged values and
extreme values, the values were derived based on the two methods and compared.

Lee et al. [1] analyzed the wind pressure coefficients of an elliptical retractable dome
roof and compared the ensemble average and extreme values derived with BLUE. Figure 8
shows the results. The graphs compare the ensemble averages and extreme values de-
rived with BLUE. This is an example of the negative and positive external peak pressure
coefficients in the line of the pressure taps exhibiting the largest absolute value in all the
wind directions of the roof. The x-axis shows the normalized radius, and the y-axis shows
the wind pressure coefficient. According to a comparison of the absolute value difference
between the ensemble-averaged values (boxes) and BLUE extreme values (circles), the
difference is approximately 10%. However, the tendencies of variation in the absolute value
are extremely similar. Additionally, the wind pressure coefficients proposed in the Japanese
wind load code (AIJ–RLB (2015)) are data obtained from the 10 ensemble-averaged values.
Therefore, for a more accurate comparison, the 10 ensemble-averaged values are selected
and analyzed in this study.
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3.1. Peak Pressure Coefficient Characteristics of Elliptical Center-Open Dome

Unlike that of dome roofs that open from the edge to the center, the opening of dome
roofs that open from the center to the edge is located in the center. Figure 9a compares a
closed roof with both a dome roof that opens from the center to the edge and that which
opens from the edge to the center. For Cpe,min, the comparison was made at h/D = 0.5,
where the absolute values were the largest (h/D = 0.1 for Cpe,max). The analysis expresses
the line of the pressure taps from which the largest absolute value was derived in all the
wind directions. The x-axis shows the normalized diameter, and the y-axis shows each
peak pressure. A normalized diameter of 1 represents the windward side, 0.5 represents
the center of the dome, and 0 represents the leeward side.
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On the windward side around a normalized diameter from 0.8 to 1, the trends of the
absolute value and variation were similar to those of the closed roof owing to the effects of
separation and reattachment. In contrast, because of the open space in the roof that opens
from the edge to the center, there is no direct vortex influence owing to separation. Thus,
the flow becomes complex, and the absolute value decreases significantly compared with
those of a closed roof and a roof that opens from the center to the edge owing to turbulence.
On the leeward side, air flows along the roof at the central area of the dome. Within a
circular region at an approximate normalized diameter of 0.2, the absolute value increases
abruptly, similar to the windward side. During this phenomenon, the flow that is separated
from the windward roof surface is separated again at the edge of the dome area.

Considering the positive external peak pressure coefficients in Figure 9b, the locations
of the separation varied because the end-of-roof locations were different. However, no
significant change occurs in terms of their absolute values.

Figure 10a shows the negative external peak pressure coefficients for each wind
direction at h/D = 0.5. The peak net pressure coefficients are calculated for the same line
and pressure taps of the outer and inner surfaces of the roof in the same time history.
Accordingly, to determine the wind direction from which the largest absolute value is
derived to analyze the peak net pressure coefficient, the absolute value of the largest wind
pressure coefficient among the pressure taps in the various wind directions was derived.
According to the analyzed results, the absolute value did not change until the wind direction
was 40◦. However, it increased when the wind direction was 50◦, which could be attributed
to the longitudinal and transverse axes and the change in the representative length with the
axis direction, thus causing the boundary layer formation to change and the wind pressure
coefficients to vary. For the positive external peak pressure coefficients in Figure 10b, the
absolute values for each wind direction did not differ considerably.
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3.2. External Roof Surface Peak Pressure Coefficients

Figure 11 shows the negative external peak pressure coefficients for the wind directions
of 0◦ and 90◦ on the windward side. The x-axis is the normalized radius, and the y-axis
is the negative external peak pressure coefficient. Herein, a normalized radius of the x-
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axis equal to 0 represents the center of the dome, and a value equal to 1 represents the
windward side.
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Figure 11a shows that the largest negative external peak pressure coefficient is attained
near the normalized radius equal to 1 where separation occurs, and its value when the
wind direction is 0◦ is −2.2 at h/D = 0.5. Figure 11b shows that, at the same h/D, the
negative external peak pressure coefficient is attained when the value at the wind direction
of 90◦ is −2.7, with an absolute value greater than that at the wind direction of 0◦. Figure 12
shows the negative external peak pressure coefficients at the wind directions of 0◦ and
90◦ on the leeward side. The negative external peak pressure coefficient on the leeward
side shows a larger absolute value at a wind direction of 90◦ (which equals −2.4, see
Figure 12a) than that at a wind direction of 0◦ (which equals −1.7, see Figure 12b). Notably,
no variation occurred again in the absolute value according to changes in h/D at the point
where the center of the open dome was separated, which was near a normalized radius of
0.6. Following reattachment on the windward side, the flow characteristics were similar
owing to the influence of the boundary layer formed on the roof surface, thus resulting in
similar values regardless of the changes in h/D on the leeward side.
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Figure 13 shows the distribution of the negative external peak pressure coefficient at
h/D = 0.5 of the dome roof showing the largest absolute value in the two wind directions.
The distribution of the largest absolute value of the negative external peak pressure coef-
ficient was typical on the windward side, regardless of the height, and was larger at 90◦,
attributed to turbulence deformation. For smaller objects, the vortex passes through with
almost no change in shape, whereas for larger objects, it is split into large vortices. Hence,
the influence of the larger vortex was in the 90◦ wind direction. Moreover, the negative
external peak pressure coefficient increased with an increase in diameter. Moreover, the
negative external peak pressure coefficient increased with an increase in diameter.
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When there is a longer axis such as an elliptical dome roof, the Reynolds number
changes in proportion to the length in the axial direction, so the boundary-layer formation
changes depending on the wind direction and the negative peak pressure coefficients
are greater.

Figure 14 shows the positive external peak pressure coefficients as a function of the
normalized radius for the wind directions of 0◦ and 90◦ on the windward side. The positive
external peak pressure coefficient shows the greatest absolute value at h/D = 0.1, and
the absolute value tends to decrease as h/D increases. Figure 14a shows that the largest
positive external peak pressure coefficient near the normalized radius is equal to 1, and at a
wind direction of 0◦ is 0.5 at h/D = 0.1, and the coefficient at the 90◦ wind direction is 0.7
(Figure 14b). Thus, the positive external peak pressure coefficient was larger at 90◦ than
that at 0◦, although the difference was not significant. A similar trend was observed on the
leeward side in Figure 15. The reason that the difference in absolute values of positive peak
pressure coefficients is not large depending on the wind direction is that static pressure is
affected by turbulence, and there is no significant effect because the rise of the roof is low.
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3.3. Peak Pressure Coefficients and Peak Net Pressure Coefficients of Internal Roof Surface

According to the experimental results, given that positive pressure did not occur inside
the dome roof, only the negative external peak pressure coefficients were analyzed for the
inner surface [21]. This study also analyzed the peak net pressure coefficient, which is the
pressure difference between the outer and inner surfaces.

Figure 16 shows the graph of the inner surface negative external peak pressure coeffi-
cients at the line showing the largest absolute value in the various wind directions. The
x-axis displays the normalized diameter and the y-axis the wind pressure coefficient. A
normalized diameter 1 is on the windward side, 0.5 at the center of the dome, and 0 on
the leeward side. At all the h/D values, the absolute value increased considerably and
was distributed from 2.0 to 2.2 owing to the separation that occurred at the roof end at the
center of the dome near a normalized diameter of 0.2 (blue circle), similar to that at the
roof end on the outer surface. In contrast, on the windward side, the absolute value was
constant. However, at h/D = 0.1, the absolute value was relatively smaller than that at
h/D = 0.2–0.5 because the roof height interacted with the ground surface.
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Figure 17 shows the graphs of the negative peak net pressure coefficients at the wind
directions of 0◦ and 90◦. Figure 17a shows the negative peak net pressure coefficient
at the 0◦ wind direction. The peak net pressure coefficients of both the windward and
leeward sides were smaller than the individual negative external peak pressure coefficients
at the outer and inner sides of the roof. Herein, the negative pressures generated on the
roof’s outer side and inner side offset each other, thus decreasing the absolute value of the
negative peak net pressure coefficient.
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Figure 17b shows the negative peak net pressure coefficients at the 90◦ wind direction.
On the windward side, these values and the changes are similar to those in the 0◦ wind
direction. However, on the leeward side, they are smaller because the representative length
changes with the wind direction. As the wind direction increases to 90◦, the roof length
shortens, thus decreasing the thickness of the boundary layer at the center of the dome and
increasing the negative pressure. Thus, considering that the negative pressure on the outer
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surface increases by a greater extent than that along the 0◦ wind direction, the negative
pressures on the outer and inner sides further offset each other, thereby decreasing the
negative peak net pressure coefficient of the leeward side.

Figure 18 shows the graphs of the positive peak net pressure coefficients at the wind
directions of 0◦ and 90◦. The absolute value at the wind direction of 0◦ on the leeward
side (Figure 18a) was somewhat larger than that of the 90◦ wind direction (Figure 18b)
because, as mentioned previously, the representative length decreases owing to the change
in the wind direction, thus causing the negative pressure in the center of the dome to
increase. Additionally, the positive peak net pressure coefficient on the windward side
was smaller than the positive external peak pressure coefficient on the outer side of the
roof. Moreover, on the leeward side, the positive external peak pressure coefficient on
the outer side of the roof was greater. The same reason is applied to the negative peak
net pressure coefficient. this is attributed to the dominant negative pressure and minimal
influence of the positive pressure. On the inner side of the roof, the influence of the negative
pressure increases owing to separation, thus leading to an upward pressure due to the
wind pressure difference.
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3.4. Comparison of Experimental Values for Different Wind Load Codes

This study used the internal peak pressure coefficients of the Korean wind load code
(KDS 41 10 15) to compare the peak net pressure coefficients of the center-open dome
roof. For internal peak pressure coefficients, the Japanese wind load code (AIJ–RLB (2015))
proposes distinct values for positive and negative pressures, whereas the Korean wind load
code (KDS 41 10 15) proposes values for two cases (with and without a dominant opening)
in details. Table 2 shows the internal peak pressure coefficients proposed by the Japanese
(AIJ–RLB (2015)) and Table 3 shows Korean wind load codes (KDS 41 10 15).

Table 2. Internal peak pressure coefficients for cladding design prescribed in AIJ–RLB (2015) [6].

AIJ–RLB (2015) [6]

partially open buildings without dominant openings 0 or −0.5

Table 3. Internal peak pressure coefficients for cladding design prescribed in KDS 41 10 15 [12].

KDS 41 10 15 [12]

Closed 0.00 or −0.52

partially open buildings without dominant openings +0.83 or −0.83
dominant openings +1.40 or −1.40

open 0

Peak Net Pressure Coefficients

Figure 19a graphically compares the positive peak net pressure coefficients of both
codes at the 0◦ wind direction. The influence of the negative pressure due to the separation
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on the inner surface and leeward side at normalized diameter values in the proximity of 0.2
was greater than that on the outer side. Thus, the negative pressure was not offset, and the
negative peak net pressure coefficient exceeded the positive peak net pressure coefficient
calculated based on the value of 0.83 (dotted line) by at most 1.1 times. In contrast, at the 90◦

wind direction, as shown in Figure 19b, the values indicated by both codes were consistent.
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Considering the negative peak net pressure coefficients, as the negative pressure
is dominant on the inner surface at both the 0◦ (Figure 20a) and 90◦ (Figure 20b) wind
directions, it offsets the negative pressure generated on the outer surface, confirming that
both code values were not only satisfied but overestimated.
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3.5. Comparison with Proposed Peak Pressure Coefficients for Spherical Dome with Opening

Table 4 shows the proposed values by Cheon et al. [7] of the peak net pressure coef-
ficients for cladding designs obtained via wind tunnel tests of a center-open retractable
circular dome roof. The tests were conducted with dome roof opening ratios of 30% and
50% (opened length defined as the opening ratio), f /D = 0.1, h/D = 0.1, 0.2, 0.3, 0.4, and
0.5, power-law index α = 0.21, and a moving average time of 1 s. The same experimental
conditions were used in this study.

This study compared the proposed values of the 50-% circular dome roof for the
models with opening ratios of 30% and 50% because it is more similar to the roof area with
an opening ratio of 30% in the model tested in this study.

As shown in Table 4, the area proposed in the previous study was divided into
two zones: For Zone 1, five Ra values were proposed for all the h/D in the area correspond-
ing to 60% of the dome roof end. For Zone 2, one value of Rb was proposed for all the h/D
values in the area corresponding to the remaining 40% of the dome roof.
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Table 4. Proposed peak net pressure coefficient for cladding design for dome with an opening ratio
of 50% (Cheon et al. [7]).

Negative Peak Net Pressure Coefficients

f /D α h/D Zone 1 (d × 0.6) Zone 2 (d × 0.4)

0.1 0.21

0.1 −2.0

−1.8
0.2 −2.3
0.3 −2.3
0.4 −2.4
0.5 −2.1

Positive peak net pressure coefficients

f /D α h/D zone 1 (d × 0.6) zone 2 (d × 0.4)

0.1 0.21

0.1 1.4

1.1
0.2 1.2
0.3 1.0
0.4 1.0
0.5 1.0
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Figure 21 shows the comparison of the proposed values for the circular dome roof in
the previous study (with a 50-% opening ratio), h/D = 0.4 (the height at which the largest
negative peak net pressure coefficient was obtained) and h/D = 0.1 (the height where
the largest positive peak net pressure coefficient was obtained), with the negative and
positive peak net pressure coefficients at the experimental values in this study, h/D = 0.1,
0.2, 0.3, 0.4, and 0.5. Figure 20a shows that the negative peak net pressure coefficients
yielded similar trends with no significant differences between the proposed values and
experimental values in both the Ra and Rb zones at all the h/D values. In contrast, for the
positive peak net pressure coefficients, as shown in Figure 20b, the experimental values at
all the h/D exceeded the proposed values by at most 1.3 times in the central zone of the
dome, Rb.
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Figure 21. Comparison of peak net pressure coefficients with previous research: (a) Cpn,min and
(b) Cpn,max.

3.6. Proposal of Peak Net Pressure Coefficients

According to the above-mentioned analysis, for a center-open dome roof with a 30-%
opening ratio, it was appropriate to use the proposed values of the previous study for the
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negative peak net pressure coefficients as they satisfied the code at all conditions according
to a comparison with the proposed values for a circular dome roof of Cheon et al. [7].

For the positive peak net pressure coefficients, the experimental values at all the h/D
exceeded the proposed values in only the central zone of the dome, Rb, and satisfy the code
in the end zone of the dome, Ra. Therefore, a code was proposed based on the experimental
values only in the central zone of the dome, Rb, and was limited to the positive peak net
pressure coefficient. Additionally, in the previous study, as similar Rb values were observed
regardless of changes in h/D at the central zone of the dome, only one positive peak net
pressure coefficient was proposed, whereas the absolute values of the experimental values
in this study tended to change according to changes in h/D because the representative
length (length of the open space) varying with changes in the wind direction, with the
negative external peak pressure coefficient on the inner surface changing accordingly.

Therefore, negative peak net pressure coefficients for each h/D were proposed as
shown in Table 5. Similar to that of the previous study, the proposed area was divided into
two zones.

Table 5. Proposed peak net pressure coefficient for cladding design for elliptical dome with opening
ratio of 30%.

Positive Peak Net Pressure Coefficients

f /D α h/D
Zone 1 (d × 0.6)

r/D = 0.3

0.1 0.21

0.1 1.4
0.2 1.4
0.3 1.3
0.4 1.2
0.5 1.2
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Figure 22 shows the proposed positive peak net pressure coefficients for each h/D in
the zones of a center-open retractable elliptical dome roof with an opening ratio of 30%.
The figure shows the absolute value of the pressure tap (Cpn,max), indicating the largest
absolute value in the various wind directions. The red dotted line corresponds to h/D = 0.1,
indicating the largest absolute value among all the h/D values. The proposed Rb values
range from 1.2 to 1.4 for each h/D in the central zone of the dome.
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4. Conclusions

This study proposed a code for the cladding design of elliptical dome roofs based on
an analysis of wind pressure characteristics and a comparison of existing codes of center-
open elliptical dome roofs. The external peak pressure and peak net pressure coefficients
analyzed based on wind tunnel tests were compared with the proposed external peak
pressure coefficients for retractable circular dome roofs in a previous study based on the
Korean wind load code KDS 41 10 15. The main results are summarized as follows:

(1) The trend of the external peak pressure coefficient on the inner surface of the center-
open elliptical dome roof was dominated by the negative pressure, rendering the
absolute values of the negative external peak pressure coefficients constant on the
windward side. On the leeward side, the values and trends were similar to those of
the negative external peak pressure coefficients on the outer surface of the roof owing
to separation.

(2) Considering the trends of the peak net pressure coefficient, the negative pressure was
offset on the windward side compared with the outer side owing to the influence of
the negative pressure on the inner surface, and the absolute value of the peak net
pressure coefficient decreased. The positive peak net pressure coefficients were similar
to the positive external peak pressure coefficients on the outer and windward sides of
the roof. On the leeward side, because the negative pressure significantly increased
owing to the separation that occurred on the inner side of the roof, upward pressure
was generated owing to the difference in wind pressure. As a result, the positive peak
net pressure coefficient was larger than the positive external peak pressure coefficient
on the outer side of the roof, and the absolute value of the negative peak net pressure
coefficient decreased as the large negative pressures offset each other.

(3) The peak net pressure coefficients were compared with the Korean wind load code
KDS 41 10 15. When h/D = 0.3, the experimental values of the positive peak net
pressure coefficient exceeded the code by 1.1 times in the Rb zone.

(4) The peak net pressure coefficients for the cladding design of center-open elliptical
dome roofs were proposed based on the experimental values. For the negative peak
net pressure coefficient, a proposal was unnecessary because the values were similar
to the proposed values in a previous study for center-open circular dome roofs. The
proposed values for the positive peak net pressure coefficient ranged from 1.2 to 1.4
according to the h/D value in the Rb zone. Thus, the same proposed values in the
previous study for the Ra region could be used.

(5) While the experimental values exceeded the proposed values of the previous study,
they exceeded the values in specific areas rather than those in the entire area in
some cases. Conversely, they occasionally satisfied the proposed values. For dome
roof structures with specific shapes, such as elliptical roofs, appropriate external
peak pressure coefficients should be proposed for each area to consider stability and
prevent overdesigning.

The result of this study proposes a peak pressure coefficient for cladding design of
a retractable dome roof, which currently has no standard worldwide, and is expected to
contribute to wind load estimation.
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