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Abstract: The Poisson effect, measured by the Poisson’s ratio, plays an important role in the regulation
of the elastic properties of composite materials, but it is not considered in the conventional Voigt
(iso-strain) and Reuss (iso-stress) formulas, which explains why the formulas are inaccurate even if
the iso-strain or the iso-stress conditions are satisfied. To consider the Poisson effect, we derived a set
of new formulas based on the governing equations of elasticity. The obtained formulas show greater
mathematical complexity. To further understand how the Poisson effect influences composite elastic
properties, two types of finite element models (FEM) were constructed to simulate the situations
where the Poisson effect does or does not have an influence. The results show that the conventional
Voigt and Reuss formulas are special cases of the newly derived ones. The Poisson effect induces
secondary strains and stresses into the phase materials, which demands more strain energy to achieve
the same deformation in the primary (loading) direction, and thus increases composite stiffness; the
magnitude of the increase is dependent on the contrast of phase properties. The findings may have
significant impact on the study of the emerging nanocomposites and functionally graded materials,
where the conventional Voigt and Reuss formulas have wide applications.

Keywords: the Poisson effect; iso-strain and iso-stress conditions; Voigt and Reuss formulas; effective
elastic properties; secondary strains and stresses

1. Introduction

The Voigt and Reuss formulas [1,2], also known as the rule of mixtures and the
inverse rule of mixtures in the literature, are the oldest and the simplest equations for the
estimation of composite elastic properties. The formulas are derived from the iso-strain
and the iso-stress assumptions, respectively, which represent the two extreme scenarios
that the phase materials work together. Under the iso-strain condition, the phase materials
work in parallel to achieve the maximum stiffness; while under the iso-stress condition, the
phase materials work in serial to attain the maximum compliance or flexibility. The actual
situation in a particulate composite is somewhere between the two extremes.

The Voigt and Reuss formulas, as well as their modified versions, are widely used
for estimation of the upper and lower bounds of composite elastic properties [3,4] and for
prediction of the elastic moduli of unidirectionally reinforced composites [5–8]. They also
have applications in the study of emerging composites such as nanocomposites [9–16] and
functionally graded materials [17–20], mainly due to their simplicity. For the unidirection-
ally reinforced composites, if the loading is applied only either in the longitudinal or in
the transverse direction, the iso-strain or the iso-stress conditions are seemingly satisfied;
therefore, the formulas should be accurate for the prediction of the respective modulus.
Nevertheless, the predictions are inaccurate, especially for the transverse modulus. There
exist a few discrepancies that are probably responsible for the inaccuracy. First, the Voigt
and Reuss formulas treat the elastic properties, i.e., Young’s modulus, shear modulus, bulk
modulus and Poisson’s ratio, as completely independent parameters, but they are actually
related to each other via the elasticity relations. Second, in the Voigt and Reuss models,
phase materials are assumed perfectly bonded to each other at their interface, and the
Poisson effect is not considered. However, the Poisson effect induces lateral strains in the
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phase materials, at the bonded interface the phase strains are ‘forced’ to be the same. To
the author’s best knowledge, the effect of the above discrepancies on the accuracy of the
conventional Voigt and the Reuss formulas has not been fully studied.

In this paper, we first derive a set of new formulas, which are the counterparts of the
Voigt and the Reuss formulas but with the Poisson effect considered. Then, we conduct
a finite element investigation to understand how the Poisson effect influences composite
elastic properties under the respective iso-strain and iso-stress conditions.

2. Methods

To study the Poisson effect, let us consider the representative volume element (RVE)
of a two-phase composite shown in Figure 1a, where the phase materials are represented
by two blocks and their properties are described by the parameters shown in the figure.
The symbols that describe the phase properties and phase variables are listed in Table 1. It
is assumed that the phase materials are homogeneous and isotropic.
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Table 1. Symbols of the involved parameters and variables.

Symbol Meaning

Ei(i = 1, 2) Young’s modulus of Phase i
νi(i = 1, 2) Poisson’s ratio of Phase i
fi(i = 1, 2) Volume fraction of Phase i
εi

x, εi
y, εi

z(i = 1, 2) Strain components in Phase i
σi

x, σi
y, σi

z(i = 1, 2) Stress components in Phase i
εx, εy, εz Average strain components in the RVE
σx, σy, σz Average stress components in the RVE
Vi(i = 1, 2 ) The volume of Phase i

Under the iso-strain condition shown in Figure 1b, the effective Young’s modulus of
the RVE in the x (or y) direction is determined by the Voigt formula [1],

EVoigt = Ex = Ey = f1E1 + f2E2 (1)

Under the iso-stress condition in Figure 1c, the effective Young’s modulus of the RVE
in z direction is decided by the Reuss formula [2],

EReuss = Ez =
E1E2

f2E1 + f1E2
(2)

Equations (1) and (2) are also applied to calculate the effective shear modulus, bulk
modulus and Poisson’s ratio, with the Young’s moduli replaced by the relevant properties.
This practice actually assumes that the elasticity constants are independent to each other. It
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should be also noted that the phase Poisson’s ratios do not appear in either Equation (1)
or Equation (2), implicitly assuming that phase Poisson’s ratios have no influence on the
effective Young’s moduli.

To correct the above discrepancies, a set of new formulas of effective Young’s modulus
and effective Poisson’s ratio under the iso-strain or the iso-stress conditions are derived,
with the Poisson effect considered. The derivation starts with the governing equations
of elasticity. The detailed derivation steps can be found in Appendix A. The resulting
formulas for the iso-strain condition in Figure 1b are given in Equations (3a)–(3c),

Eiso−strain = Ex = Ey =
[ f1(1− ν2)E1 + f2(1− ν1)E2] · [ f1(1 + ν2)E1 + f2(1 + ν1)E2]

f1
(
1− ν2

2
)
E1 + f2

(
1− ν2

1
)
E2

(3a)

νP
iso−strain = νxy =

[ f1ν1(1− ν2) + f2ν2(1− ν1)] · [ f1(1 + ν2)E1 + f2(1 + ν1)E2]

f1
(
1− ν2

2
)
E1 + f2

(
1− ν2

1
)
E2

(3b)

νT
iso−strain = νxz =

f1ν1
(
1− ν2

2
)
E1 + f2ν2

(
1− ν2

1
)
E2

f1
(
1− ν2

2
)
E1 + f2

(
1− ν2

1
)
E2

(3c)

and those for the iso-stress condition in Figure 1c are provided in Equations (4a) and (4b).

Eiso−stress = Ez =
E1E2[ f1(1−ν2)E1+ f2(1−ν1)E2]

E1E2[ f 2
1 (1−ν2)+ f 2

2 (1−ν1)]+ f1 f2[(1+ν2)(1−2ν2)E2
1+4ν1ν2E1E2+(1+ν1)(1−2ν1)E2

2]
(4a)

νiso−stress = νzx = νzy =
E1E2[ f1(1−ν2)ν1+ f2(1−ν1)ν2]

E1E2[ f 2
1 (1−ν2)+ f 2

2 (1−ν1)]+ f1 f2[(1+ν2)(1−2ν2)E2
1+4ν1ν2E1E2+(1+ν1)(1−2ν1)E2

2]
(4b)

In Equations (3a)–(3c), (4a) and (4b), E and ν represent the effective Young’s modulus
and effective Poisson’s ratio, respectively; the subscripts ‘iso-strain’ and ‘iso-stress’ indicate
the corresponding conditions; the subscripts x, y and z, or their combinations, refer to the
coordinate axes shown in Figure 1a. It should be pointed out that, in Equations (3b) and (3c)
two effective Poisson’s ratios, νP

iso−strain (or νxy) and νT
iso−strain (or νxz), are derived under the

iso-strain condition, because when a deformation is induced in the x direction, the lateral
deformations in the y direction and in the z direction are different. The superscript P indi-
cates that the lateral deformation is in the isotropic plane x-y; while the superscript T means
that the lateral deformation is transverse to the isotropic plane. The Voigt formula can only
predict one effective Poisson’s ratio. Furthermore, in Equations (3a)–(3c), (4a) and (4b),
the effective Young’s modulus and effective Poisson’s ratio are dependent on the phase
Young’s moduli and the phase Poisson’s ratios. It can be verified by mathematical op-
erations, if ν1 = ν2, Equation (3a) will degenerate to Equation (1); if ν1 = ν2 = 0,
Equation (4a) will become Equation (2). Therefore, the conventional Voigt and Reuss formu-
las, i.e., Equations (1) and (2), can be considered as special cases of Equations (3a) and (4a),
respectively. It should be noticed that the conditions for Equation (4a) to degenerate to
Equation (2) are more stringent than those from Equation (3a) to Equation (1).

Although a comparison of the expressions in Equations (3a) and (4a) with those in
Equations (1) and (2) shows the mathematical differences induced by the consideration of
the Poisson effect, the underlying physical mechanism is still not clear. Therefore, a finite
element study is conducted to understand how the Poisson effect influences the effective
properties. In the finite element study, two models of the phase interface as shown in
Figure 2 are considered. In the model shown in Figure 2a, the phase interface is sliding;
while in Figure 2b, the phase interface is fully bonded.

The constraints on the displacements on the two sides of the interfaces are

Sliding Interface u−x 6= u+
x , u−y 6= u+

y , u−z = u+
z

Bonded Interface u−x = u+
x , u−y = u+

y , u−z = u+
z

(5)
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where the superscripts ‘+’ and ‘–’ represent the two sides of the interface; the subscripts, x,
y and z refer to the corresponding coordinate axes.
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In addition to the two models of phase interface, two possible boundary conditions
are applied onto the free surfaces of the RVE, one is homogeneous boundary conditions
(HBC), the other is inhomogeneous boundary conditions (IBC). A free surface of the RVE
has neither loading nor displacement constraint. In HBC, the finite element nodes on a free
surface are forced to have the same displacement in the normal direction; while in IBC, the
nodes are allowed to have different displacements in the normal direction. The boundary
conditions for the implementation of the iso-strain condition in Figure 1b and the iso-stress
condition in Figure 1c are described in Table 2.

Table 2. RVE boundary conditions for the characterization of effective properties.

RVE Surface

Iso-Strain [Figure 1b] Iso-Stress [Figure 1c]

Ex, νxy, νxz Ez, νzx = νzy

HBC IBC HBC IBC

x = 0 ux = 0 ux = 0 ux = 0 ux = 0

y = 0 uy = 0 uy = 0 uy = 0 uy = 0

z = 0 uz = 0 uz = 0 uz = 0 uz = 0

x = L ux = 1 ux = 1 Homogeneous ux Free

y = L Homogeneous uy * Free Homogeneous uy Free

z = L Homogeneous uz Free uz = 1 uz = 1
* All nodes on the surface y = L are forced to have the same displacement uy.

In this finite element study, all quantities required for the determination of effective
Young’s modulus and effective Poisson’s ratio of the RVE are computed using ANSYS
Mechanical APDL (2020R2, ANSYS Inc., Canonsburg, PA, USA). RVE Young’s modulus (Ei)
and Poisson’s ratio (νij) are determined from the average stresses (σi) and average strains
(εi) by [20],

Ei =
σi
εi

, (i = x, y, z) (6)

νij = −
εj

εi
, (i, j = x, y, z) (7)

The average stresses and the average strains are calculated from the finite element
stresses (σi) and strains (εi) as

σi =
1
V

∫
V

σi dV, εi =
1
V

∫
V

εi dV (i, j = x, y, z) (8)
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V is the volume of the RVE. Equation (8) can be also used to calculate average stresses in
phase materials, simply with the RVE volume V replaced by the phase volumes V1 and V2.

Although a number of finite element models can be created from the combinations
of the interface models and the types of boundary conditions, we mainly focus on the
following two finite element models.

FE Model I: The sliding phase interface Figure 2a is combined with the IBC in Table 1.
This model is expected to be consistent with Equations (1) and (2) and has no influence
from the Poisson effect.

FE Model II: The bonded phase interface Figure 2b is combined with HBC in Table 1.
This model is anticipated to agree with Equations (3a)–(3c) and (4a), (4b) and reflect the
influence of the Poisson effect.

To investigate how the contrast of phase properties affects the influence of the Poisson
effect, the four composites listed in Table 3 are studied, which represent different combina-
tions of phase property contrasts. A property contrast is defined as the ratio between the
higher value to the lower one.

Table 3. Two-phase composites with different contrasts of phase properties.

Composite #

Softer Phase Stiffer Phase Phase Contrast of

Young’s
Modulus

(MPa)

Poisson’s
Ratio

Young’s
Modulus

(MPa)

Poisson’s
Ratio

Young’s
Modulus

Poisson’s
Ratio

1 80.0 0.20 120.0 0.15 Small Small

2 80.0 0.45 120.0 0.15 Small Large

3 80.0 0.20 12,000.0 0.15 Large Small

4 80.0 0.45 12,000.0 0.15 Large Large

The objective of this finite element study is to investigate differences between FE
Model I and II in:

• The average phase stresses as calculated by Equation (8).
• The total strain energy in the RVE, which can be computed from the finite element

stress and strain vectors, σ and ε, by U = 1
2

∫
V σ · ε dV.

• The effective Young’s modulus and Poisson’s ratio as determined by Equations (6) and (7).

and ultimately to understand the physical mechanism that causes the differences
between Equations (1) and (2) and Equations (3a) and (4a).

3. Results

To compare stresses in the two finite element models, the average phase stresses are
distinguished into primary stress and secondary stresses. The primary stress is the normal
stress in the loading direction, while the secondary stresses include all the other stress
components. It was found that the fundamental difference between FE Model I and II is
that no secondary stress is introduced for FE Model I no matter it is the iso-strain or the
iso-stress condition, while secondary normal stresses are always induced for FE Model II.
It should be mentioned that, for FE Model II, if the IBC is applied in replacement of HBC,
the secondary stresses would also include shear stresses. The HBC are used because they
are consistent with those considered in the derivation of Equations (3a)–(3c) and (4a), (4b).

Although the magnitudes of secondary stresses are different, the same phenomenon as
described in the above was observed in the four composites with various volume fractions.
As an example, the average phase stresses in Composite #2 under the iso-strain and the
iso-stress conditions are plotted, respectively, in Figures 3 and 4, the volume fraction of
Phase 2 is 0.35.
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It was found that the total strain energy in FE Model II is always higher than that in FE
Model I under the same conditions, no matter which composite and what volume fraction
are simulated. The increases of strain energy in FE Model II compared with FE Model I in
Composite #2 with a volume fraction of 0.35 are displayed in Figure 5, where the increase
percentage is calculated as

Increase (%) of Strain Energy =
FE Model II− FE Model I

FE Model I
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For the iso-strain condition, the effective Young’s moduli and effective Poisson’s ratios
predicted by the analytical formulas and the finite element modeling are presented in
Figures 6 and 7.
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It should be pointed out that for FE Model I, the effective Poisson’s ratio (νxy) under
the iso-strain condition and the effective Poisson’s ratios (νzx and νzy) under the iso-stress
condition cannot be determined by the finite element modeling, because the phase materials
have different lateral deformation and a simple averaging of the deformation is not able to
produce meaningful results.

The following observations can be made from the results shown in Figures 6–9.

• There is an excellent agreement between Equations (1) and (2) and FE Model I, and
between Equations (3a)–(3c) and (4a), (4b) and FE Model II, suggesting that FE Model
I and II do have the ability to simulate, respectively, the scenarios without and with
the Poisson effect.

• The effective Young’s moduli predicted by either Equations (3a) and (4a) or FE Model
II are always larger or at least equal to those by Equations (1) and (2) and FE Model I, cf.
Figures 6 and 8, indicating that the Poisson effect has the ability to increase composite
stiffness.

• The Poisson effect has much greater influence over the effective Poisson’s ratio than
over the effective Young’s modulus. The Voigt and the Reuss formulas generally have
very low accuracy if they are applied to estimate the effective Poisson’s ratio.

• The Poisson effect has much greater influence over the effective properties under the
iso-stress condition than under the iso-strain condition, compare Figures 8 and 9 vs.
Figures 6 and 7.

4. Discussion

Based on the results presented in the previous section, the physical mechanism that
introduces differences between Equations (1) and (2) and Equations (3a) and (4a) can
now be interpreted. The Poisson effect induces lateral or secondary deformation into the
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phase materials in both FE Model I and II. However, in FE Model I, the phase materials
can deform freely and no secondary stresses are introduced. While in FE Model II the
secondary deformation is constrained by the bonded phase interface and the homogeneous
boundary conditions, secondary stresses are thus induced. The development of secondary
stresses and strains in FE Model II demands more strain energy to achieve the same primary
deformation than in FE Model I, and therefore, the effective Young’s moduli predicted
by FE Model II are generally larger than those by FE Model I. The Poisson effect is able
to influence the elastic properties of the composites, the magnitude of the influence is
dependent on the contrast of phase properties, especially the contrast of phase Poisson’s
ratios.

In general, the Voigt formula is more accurate than the Reuss formula for the prediction
of effective Young’s modulus under the respective conditions; only if the composite has
a large contrast in phase Poisson’s ratios and also has similar phase Young’s moduli, the
Voigt formula has low accuracy, cf. Figure 6b. It appears that the influence from a large
contrast of phase Poisson’s ratios can be ‘cancelled’ by a large contrast of phase Young’s
moduli, comparing Figure 6b,d. On the other hand, the Reuss formulas is accurate only if
the composite has a small contrast in both of its phase Young’s moduli and phase Poisson’s
ratios, cf. Figure 8a. This is probably because the iso-stress condition is more stringent than
the iso-strain condition. However, neither the Voigt nor the Reuss formula is accurate for
the prediction of effective Poisson’s ratio. The newly derived counterparts of the Voigt
and Reuss formulas, i.e., Equations (3a)–(3c) and (4a), (4b), are able to accurately predict
effective Young’s modulus and effective Poisson’s ratio under the respective conditions,
due to the consideration of the Poisson effect.

It has been found that for unidirectional composites [21–23], the longitudinal Young’s
modulus can be predicted by the Voigt formula with satisfactory accuracy, but the Reuss
formula is usually inaccurate for the prediction of the transverse Young’s modulus. There
are two possible reasons. One is the neglection of the Poisson effect in the formulas, and
the Poisson effect has stronger influence over the Reuss formula than on the Voigt formula;
the other reason is that for unidirectional composites, the iso-strain condition is satisfied
by the ‘longitudinal model’, but the iso-stress condition is not satisfied by the ‘transverse
model’. It can be verified by finite element modeling, the average strains in the fibers and
in the matrix are equal to each other, if a uniform stretching is applied in the longitudinal
direction; However, the average stresses in the fibers and in the matrix are not equal to
each other when a uniform loading is applied in the transverse direction. The difference
is caused by the fact that the fibers are continuous in the longitudinal direction, but not
continuous in the transverse direction.

The Voigt and Reuss formulas are increasingly applied in the study of emerging
nanocomposites and functionally graded materials [9–20], mainly used to determine the
effective properties, either for a whole RVE or at a specific location. Since the effective
properties is the base for us to understand the material behavior at the macroscopic scale,
they must be accurate and reliable. The study results suggest the conventional Voigt and
Reuss formulas may be inaccurate because the Poisson effect is not considered. The newly
developed formulas, Equations (3a)–(3c) and (4a)(4b), can be applied in replacement of
the conventional formulas for the study of novel composite materials. The study results
presented in Figures 6–9 may also serve as a guide to judge the accuracy in case that the
Voigt and Reuss formulas are still preferred due to their simplicity.

5. Conclusions

The analytical derivation and the numerical results show that the conventional Voigt
and Reuss formulas are special cases of the newly derived counterparts, the Voigt formula
and especially the Reuss formula are accurate for effective Young’s modulus only under the
special conditions that can devoid or diminish the Poisson effect; neither of the formulas
is accurate for the prediction of effective Poisson’s ratio. The physical mechanism is,
the Poisson effect induces secondary strains and stresses into the phase materials, which
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demands more strain energy to achieve the same deformation in the loading (primary)
direction, and thus increase composite stiffness. The increase in composite stiffness is
dependent on the contrasts of phase properties, the contrast of phase Poisson’s ratios
is more influential than that of phase Young’s moduli. The newly derived formulas,
i.e., Equations (3a)–(3c) and (4a), (4b), can be used in the replacement of the conventional
Voigt and Reuss formulas for the prediction of composite elastic properties under the
iso-strain and the iso-stress conditions. The above findings may have significant impact on
the study of emerging nanocomposites and functionally graded materials, where the Voigt
and Reuss formulas have wide applications.
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Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.
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Appendix A

The formulas of effective Young’s modulus and effective Poisson’s ratio under the
iso-strain and the iso-stress conditions with the consideration of the Poisson effect are
derived from the elasticity equations, by following a similar development in [24]. The
parameters and variables involved in the derivation are listed in Table 1.

Figure A1 illustrates the iso-strain condition imposed on the composite RVE. Uniform
tension or compression is applied at the top and the bottom surface, so that the phase
materials experience the same strain (ε0) in the x direction.
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Relations between the normal strains and the normal stresses in phase 1 and phase 2 are
established from the constitutive equations of isotropic material, as shown in Equations (A1)–(A3)
and Equations (A4)–(A6).
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ε2
z =

1
E2

(
σ2

z − ν2σ2
x − ν2σ2

y

)
(A6)

Imposition of equilibrium condition in, respectively, x, y and z direction produces the
following relations between average stresses in the RVE and phase stresses.

σx = f1σ1
x + f2σ2

x (A7)

σy = f1σ1
y + f2σ2

y = 0 (A8)

σz = σ1
z = σ2

z = 0 (A9)

The following relations between average and phase strains are obtained by imposing
kinematic constraints.

εx = ε1
x = ε2

x = ε0 (A10)

εy = ε1
y = ε2

y (A11)

εz = f1ε1
z + f2ε2

z (A12)

Equations (A1)–(A6), (A8)–(A11) are solved, favorably using a symbolic computational
software such as MAPLE or MATHEMATICA, for the 12 variables ε1

x, ε1
y, ε1

z, σ1
x , σ1

y , σ1
z , ε2

x,
ε2

y, ε2
z, σ2

x , σ2
y and σ2

z . It should be noticed that each of Equations (A9) and (A10) contains
two equations. The solved variables are then substituted into Equations (A7) and (A12) for
the determination of σx and εz. Iso-strain formula of the effective Young’s modulus of the
RVE is derived as

Eiso−strain = Ex = σx
εx

=
[ f1(1−ν2)E1+ f2(1−ν1)E2]·[ f1(1+ν2)E1+ f2(1+ν1)E2]

f1(1−ν2
2)E1+ f2(1−ν2

1)E2

(A13)

The average transverse strains in y and z direction, i.e., εy and εz, are not the same.
Therefore, two Poisson’s ratios, νxy and νxz, are required to describe the transverse defor-
mation of the RVE.

νP
iso−strain = νxy = − εy

εx
=

[ f1ν1(1−ν2)+ f2ν2(1−ν1)]·[ f1(1+ν2)E1+ f2(1+ν1)E2]

f1(1−ν2
2)E1+ f2(1−ν2

1)E2

(A14)

νT
iso−strain = νxz = − εz

εx
=

f1ν1(1−ν2
2)E1+ f2ν2(1−ν2

1)E2

f1(1−ν2
2)E1+ f2(1−ν2

1)E2

(A15)

Iso-stress formulas can be derived in a similar way. Figure A2 shows that the iso-
stress condition is applied to the composite RVE. The strain-stress relations in the phase
materials are the same as those established in Equations (A1)–(A6). Relations between
RVE average and phase stresses (or strains) are also obtained by imposing iso-stress equi-
librium and kinematic conditions on the RVE. The resulting equations are provided in
Equations (A16)–(A18) and Equations (A19)–(A21), respectively.
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σx = f1σ1
x + f2σ2

x = 0 (A16)

σy = f1σ1
y + f2σ2

y = 0 (A17)

σz = σ1
z = σ2

z = σ0 (A18)

εx = ε1
x = ε2

x (A19)

εy = ε1
y = ε2

y (A20)

εz = f1ε1
z + f2ε2

z (A21)

Solve Equations (A1)–(A6), (A16)–(A20) for the 12 variables ε1
x, ε1

y, ε1
z, σ1

x , σ1
y , σ1

z , ε2
x, ε2

y,
ε2

z, σ2
x , σ2

y and σ2
z . The solutions are then used to determine the effective Young’s modulus

and the effective Poisson’s ration of the RVE.

Eiso−stress = Ez =
σz
εz

=
E1E2[ f1(1−ν2)E1+ f2(1−ν1)E2]

E1E2[ f 2
1 (1−ν2)+ f 2

2 (1−ν1)]+ f1 f2[(1+ν2)(1−2ν2)E2
1+4ν1ν2E1E2+(1+ν1)(1−2ν1)E2

2]
(A22)

Since the x-y plane is the so-called isotropic plane, the average strain in the x and y
direction, i.e., εx and εy, are theoretically the same. Therefore, Poisson’s ratios in the two
directions are equal, i.e.,

νiso−stress = νzx = νzy = − εy
εz

=
E1E2[ f1(1−ν2)ν1+ f2(1−ν1)ν2]

E1E2[ f 2
1 (1−ν2)+ f 2

2 (1−ν1)]+ f1 f2[(1+ν2)(1−2ν2)E2
1+4ν1ν2E1E2+(1+ν1)(1−2ν1)E2

2]
(A23)

It should be pointed out that, in finite element modeling of the RVE, Equation (A11)
in the iso-strain condition and Equations (A19) and (A20) in the iso-stress condition, are
implemented as homogeneous boundary conditions.
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