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Abstract: Chirality depends on particular symmetries. For crystal structures it describes the absence
of mirror planes and inversion centers, and in addition to translations, only rotations are allowed
as symmetry elements. However, chiral space groups have additional restrictions on the allowed
screw rotations as a symmetry element, because they always appear in enantiomorphous pairs. This
study classifies and distinguishes the chiral structures and space groups. Chirality is quantified using
Hausdorff distances and continuous chirality measures and selected crystal structures are reported.
Chirality is discussed for bulk solids and their surfaces. Moreover, the band structure, and thus,
the density of states, is found to be affected by the same crystal parameters as chirality. However,
it is independent of handedness. The Berry curvature, as a topological measure of the electronic
structure, depends on the handedness but is not proof of chirality because it responds to the inversion
of a structure. For molecules, optical circular dichroism is one of the most important measures for
chirality. Thus, it is proposed in this study that the circular dichroism in the angular distribution of
photoelectrons in high symmetry configurations can be used to distinguish the handedness of chiral
solids and their surfaces.

Keywords: chirality; chirality measure; chiral space groups; chiral elements, compounds, and surfaces;
electronic structure; dichroism

1. Introduction

Compounds without a center of inversion, that is, non-centrosymmetric compounds,
are of particular interest because of their symmetry-dependent physical properties in addi-
tion to hosting various interesting topological properties. Pyroelectricity, ferroelectricity,
piezoelectricity, and optical activity or nonlinear optical behavior are employed in nu-
merous applications. These properties require the absence of centrosymmetry. However,
describing a compound simply as non-centrosymmetric is insufficient because its prop-
erties depend on additional details of the crystalline structure. Consequently, various
relations between crystallographic structures, symmetries, and physical properties of non-
centrosymmetric compounds were proposed and are summarized in Table 1 (compare
Ref. [1]). Second-order nonlinear optical behavior (second harmonic generation) possesses
symmetry requirements similar to that of piezoelectricity. Cubic compounds are either chi-
ral (Laue classes 23, 432) or solely piezoelectric (Laue class 43m). Gyrotropic crystals [2] are
only found among the groups in the first three classes of Table 1. The gyrotropic point group
symmetry cannot differentiate between axial and polar vectors, and only structures from
the first non-centrosymmetric class (Laue classes 1, . . . , 4, and 6) are both enantiomorphous
and polar.

In this study, chiral structures were focused upon. The definition of chirality was
presented in 1894 by Lord Kelvin: “I call any geometrical figure, or group of points, chiral, and
say that it has chirality, if its image in a plane mirror, ideally realized, cannot be brought to coincide
with itself.” [3,4]. For an object to be chiral, it must not possess either a mirror plane, a
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center of inversion, or any rotation–reflection axes [5]. If an object possesses either one of
these symmetry elements, it can be superimposed on its mirror image and is, therefore,
achiral [3,5]. However, when considering terms such as chirality and handedness further
attention is needed [6]. (The terms chirality and handedness are often used in very different
contexts. Cintas traced their use in chemistry in a comprehensive essay [7].) As mentioned
above, chirality is defined by the lack of certain features of symmetry, thereby resulting in
an object that cannot be superimposed on its mirror image. Handedness classifies (chiral)
objects into right-handed and left-handed [8]. Handed geometric objects are chiral, but not
all chiral objects are handed [9], and this is referred to as Ruch’s shoe–potato problem [6,9].

Table 1. Structure–symmetry–property relations in 7 non-centrosymmetric classes composed from
the 21 non-centrosymmetric Laue classes.

Property
No. Laue Class E PY O PI

1 1, 2, 3, 4, 6 � � � �
2 222, 32, 422, 622, 23 � � �
3 432 � �
4 m, mm2 � � �
5 3m, 4mm, 6mm � �
6 4, 42m � �
7 6, 62m, 43m �

E = enantiomorphism (chirality), PY = polar (pyroelectric, ferroelectric), O = optical active, and PI = piezoelectric
and nonlinear optics.

Moreover, handedness is sometimes also assigned to the helicity (rotational direc-
tion) (In chemistry, helicity assigns the rotation sense of screw-type entities e.g.: a helix in
molecules [5]. In physics, it stands also for the projection of the spin on the linear momen-
tum) of rotating objects. The rotation is a result of a cross-product. In addition, it is invariant
under horizontal mirror operations and thus achiral. In general, right- and left-(handed)
rotations are not necessarily chiral although they are characterized considering handedness.
The situations are illustrated in Figure 1.

Figure 1. Chirality and handedness. (a) A pair of shoes is chiral and handed. The right shoe is the
mirror image of the left shoe, but none of the mirror images coincide with itself; (b) potatoes are
chiral because there exists no mirror operation that transform them into themselves; however, they
are not handed, and there exist no left- or right-handed potatoes; (c) a rotating ball can exhibit a left
(clockwise) or a right (“handed”) (anti-clockwise) rotation and thus it may be called handed; however,
one of its mirror images coincided with itself and therefore it is not chiral but helical.
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It is worthwhile to note that there exist several more definitions of chirality and
handedness in other disciplines, for instance in magnetism, particle physics, cosmology, or
biology. As an example, optical handedness is defined in Ref. [4] as: “A chiral medium is
called optically right- or left-handed according as the propagational velocity of right-handed or of left-
handed circularly polarized light travelling through it is the greater”. The most part of the present
work is related to the chirality of the crystal structure which is a static problem, in contrast
to the chirality of elementary particles which is a dynamic problem. L.D. Barron [10]
distinguished these two cases by the terms true or false chirality, respectively. The definition
of static chirality by Barron is: “true (static) chirality is exhibited by systems that exist in two
distinct enantiomeric states that are interconverted by space inversion (parity), but not by motion
reversal (time reversal), combined with any proper spatial rotation” [11]. K. Mislow [12] criticized
the true/false characterization of Barron as infelicitous and used the terms geometric and
motion-dependent chirality instead. The dynamical aspect of chirality plays a major role
in magnetic systems, as was reviewed by Togawa et al. [13], Cheong and Xu [14], and
Inoue [15]. Chiral molecular magnets were reviewed by Train et al. [16]. However, the
present work concentrated on crystalline systems with non-magnetic space groups.

In the following, tables are presented that provide the necessary information for the
classification of chiral compounds in terms of space group symmetry and their surfaces by
plane groups. Subsequently, various examples are presented, and, furthermore, a set of
chiral compounds, which was of particular interest, is selected. Their crystal structures are
listed and for certain selected materials the electronic band structures are reported. Finally,
the relation between chirality and circular dichroism via photoelectron spectroscopy is
demonstrated for two selected compounds.

2. Chirality in Three Dimensions

The symmetry of the three-dimensional solids can be described using space groups.
(the hierarchy of the crystallographic space groups is explained for example in Ref. [17]).
When considering crystals, the definition of chirality is [18]: A crystal is to be considered
chiral if its space group contains only proper operations. To determine the chiral crystals,
only those crystals that have space groups satisfying this definition must be identified.
The overall 230 space groups can be divided into three classes. Class I comprises the
165 space groups that contain at least one improper operation (inversion, mirror, glide,
or Sn (a rotation followed by a reflection in a plane perpendicular to the axis of rota-
tion) operations). In addition, solids in these space groups are always achiral even if the
3-dimensional asymmetric unit is chiral. Class II comprises the 22 chiral space groups
(11 enantiomorphous pairs) that contain at least one screw axis that is not the 21-screw axis.
Solids in these space groups are always chiral even in cases where the asymmetric unit
is achiral. Finally, class III is often considered confusing, where it comprises the 43 space
groups that contain only proper rotations and the 21-screw rotation. Although there are no
reflections and inversions, among other things, these space groups are achiral. Moreover,
although Class III space groups are achiral, the crystals that are fabricated using them
always have a chiral structure. Table 2 summarizes the 65 space groups under classes II and
III, wherein the chiral crystal structures are determined. These space groups are referred to
as the Sohncke groups. The subset of chiral Sohncke groups is asymmorphic.

As mentioned above, not all of those 65 space groups are chiral when considered
individually, although the crystal structures in these space groups are always chiral. The
43 class III groups are transformed into themselves when the atomic positions are inverted,
thereby demonstrating that they are achiral. Moreover, the inversion of the atomic positions
results in a reversal of the chirality sense in the accompanied chiral structures or in at least
one of their substructures.
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Table 2. The Sohncke groups: 65 space groups for chiral structures.

Crystal Laue Point Hermann-Mauguin Symbol Space Group
System Class Group Number

Triclinic 1 C1 P 1 1
Monoclinic 2 C2 P 121, P 1211, C 121 3–5
Orthorhombic 222 D2 P 222, P 2221, P 21212, P 212121, 16–. . .

C 2221, C 222, F 222, I 222, I 212121 . . . –24
Tetragonal 4 C4 P 4, P 41, P 42, P 43, I 4, I 41 75–80

422 D4 P 422, P 4212, P 4122, P 41212, P 4222, P 42212, 89–. . .
P 4322, P 43212, I 422, I 4122 . . . –98

Trigonal 3 C3 P 3, P 31, P 32, R 3 143–146
32 D3 P 312, P 321, P 3112, P 3121, P 3212, P 3221, R 32 149–155

Hexagonal 6 C6 P 6, P 61, P 65, P 62, P 64, P 63 168–173
622 D6 P 622, P 6122, P 6522, P 6222, P 6422, P 6322 177–182

Cubic 23 T P 23, F 23, I 23, P 213, I 213 195–199
432 O P 432, P 4232, F 432, F 4132, I 432, 207–. . .

P 4332, P 4132, I 4132 . . . –214

The chiral crystal structures are related to screw axes. The various 2-, 3-, 4-, and 6- fold
screw rotations are shown in Figure 2. Via inversion, screw rotations Nn are transformed
into a screw rotation Nm, where m + n = N. Nn implies a rotation by 2π/N followed by a
shift of τ = n/N applied to a lattice point, where τ is in relative coordinates. Consequently,
the following pairs of enantiomorphous screw rotations exist: {31, 32}, {41, 43}, {61, 65},
and {62, 64}, with each being chiral. The three screw rotations 21, 42, and 63 are invariant
under inversion and thus cannot be considered as enantiomorphous pairs. These neutral
screw rotations with n = N/2 are achiral, that is, they have no enantiomorphous partner,
although an atomic distribution around any of these screw axes is chiral. Moreover, the
neutral screws do not have a definite helicity. Further, the pure screws Nn are those where N
and n have no common divisor (21, {31, 32}, {41, 43}, {61, 65}). 21 is the only neutral as well
as pure screw [19]. 42 and {62, 64} result from combinations of 21 or {31, 32} screws with
a 2-fold rotation axis, whereas 63 screws imply a 3-fold rotational symmetry. Regarding
the screw axes that are not neutral, n < N/2 results in right and n > N/2 in left screws
(see Figure 2). In general, the screw axes for n > N/2 may also be realized with negative
values n′ = n− 1, where, for example, 32 ≡ 3−1.

The {31, 32}, {41, 43}, {61, 65}, and {62, 64} screw rotations result in the appearance
of the 22 chiral groups of class II. The first partner of these pairs is defined as right-
handed while the second as left-handed. The 22 chiral-helical space groups that occur
as 11 enantiomorphous pairs are tabulated in Table 3. Most of the databases for crystal
structures typically provide only one of the chiral space groups for the chiral structures
because the second one is redundant. For example, in the Pearson database [20] only
structures with space group number 213 can be found but not with number 212.

Within the cubic space groups only one enantiomorphous pair exists, which comprises
the groups P 4332 (212) and P 4132 (213). The hexagonal crystal systems contain four pairs,
whereas the trigonal or tetragonal systems comprise three pairs each. Further, orthorhombic
or lower symmetry crystal systems do not contain enantiomorphous pairs and thus the
related space groups are achiral. Thus, only primitive (P) space groups out of the Sohncke
groups are chiral, whereas the centered ones are not (C, I, or F).
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Figure 2. The 2-, 3-, 4-, and 6-fold screw axes. For each screw, the relative translation τ = n
N along the

z axis after the rotation is assigned by an arrow. For the neutral axes a positive or negative rotation
about the z-axis (e.g., rotation by ±π in case of the 21 screw rotation) yields the same result.

Table 3. The 22 chiral space groups of class II in 11 enantiomorphous pairs (columns as in Table 2).

Tetragonal 4 C4 P 41, P 43 (76,78)
422 D4 P 4122, P 4322 (91,95)

P 41212, P 43212 (92,96)
Trigonal 3 C3 P 31, P 32 (144,145)

32 D3 P 3112, P 3212 (151,153)
P 3121, P 3221 (152,154)

Hexagonal 6 C6 P 61, P 65 (169,170)
P 62, P 64 (171,172)

622 D6 P 6122, P 6522 (178,179)
P 6222, P 6422 (180,181)

Cubic 432 O P 4332, P 4132 (212,213)

Two types of symmetry axes, chiral and polar, can be defined to describe the properties
of the Sohncke groups. According to Ref. [1], a direction is referred to as polar if its two
directional senses are geometrically or physically different, and a polar symmetry direction
of a crystal is referred to as a polar axis. Only proper rotation or screw axes can be polar.
Moreover, as mentioned earlier, chiral and polar are not the same things. Polar axes are
linked to a polar property or geometry whereas chiral axes are linked to a chiral property
such as enantiomorphism. In Ref. [21], the chiral axes were defined in analogy to polar axes.
Table 4 lists the chiral and polar axes of the Sohncke groups, and the ones of the remaining
non-centrosymmetric structures can be found in Refs. [1,21] along with all nonchiral and
non-polar directions. The symmetry axes of different types coincide only for the Laue
classes 2, 3, 4, and 6, whereas class 1 has no definite symmetry axes.
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Table 4. Chiral and polar axes of the Sohncke groups. c is assumed to be a unique axis for the
monoclinic system. The rhombohedral axes are assumed for trigonal systems (e.g., 32), for hexagonal
setting Laue class 321 must be distinguished from 312. Single axes are denoted by [], groups of axes
are denoted by 〈 〉.

Crystal System Laue Class Point Group Chiral Axes Polar Axes

Monoclinic 2 C2 [001] [001]
Orthorhombic 222 D2 [001], [100], [010] None
Tetragonal 4 C4 [001] [001]

422 D4
[001], [100],
[010], None

[110], [110]
Trigonal 3 C3 [001] [001]

32 D3 [111], [110], [110],
[011], [101] [011], [101]

Hexagonal 6 C6 [001] [001]

622 D6
[001], [100],
[010], None

[110], [110],
[210], [120]

Cubic 23 T 〈111〉, 〈100〉 〈111〉

432 O 〈111〉, 〈100〉,
〈110〉 None

3. Chirality in Two Dimensions

Chirality in reduced dimensions is crucial to solid surfaces or projections of the crystal
structure along a particular direction. In such cases, the symmetry is described by the
17 plane space groups or wallpaper groups. Out of the 17 groups, only 5 contain pure
rotations, namely, the groups pn with n = 1, 2, 3, 4, and 6 which contain the purely
rotational subgroups Cn of the full rotational group SO(3). The remaining 12 groups
describe achiral objects.

The plane space groups are listed in Table 5 (compare Refs. [22,23]) coupled with those
marked that describe chiral objects. These five groups are often referred to as the chiral
plane groups, which is somewhat misleading because they do not exist in enantiomorphous
pairs and thus, are not chiral by themselves. However, objects that adopt their symmetry
are chiral similar to the achiral subset of the Sohncke groups in three dimensions.

Table 5. Plane lattices and space groups. The 5 groups without mirror operations, that are hosts for
chiral objects, are marked in bold. The numbering of the groups is according to Ref. [22].

Bravais Lattice Point Group Plane Group Number

Oblique C1 p1 1
C2 p2 2

Rectangular Cs pm, pg 3, 4
C2v p2mm, p2mg, p2gg 6, 7, 8

Rhombic Cs cm 5
C2v c2mm 9

Square C4 p4 10
C4v p4mm, p4gm 11, 12

Hexagonal C3 p3 13
C6 p6 16
C3v p3m1, p31m 14, 15
C6v p6mm 17
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4. Chirality Measures

Determining and quantifying the chirality and handedness of molecular and crys-
talline structures can be challenging. Problems related to the crystallography of chiral
compounds and their structure were discussed in Refs. [24,25], whereas those related to
quantifying chirality were discussed vividly in [6,26–32]. Chirality measures are special
cases of symmetry measures [33]. Various measures for chirality have been proposed in the
literature that are mostly based on distances [34,35]. Avnir’s continuous chirality measures
are based on the mean square of distances [36–39]. Although the chirality measures have in
most cases been developed for chiral molecules, they may be extended to solids through
certain modifications [40].

The Hausdorff distances [34,41,42] are defined by the Euclidian distances d(x̂, x̂′)
between the points x̂ of a structure X and those (x̂′) of a reference structure Xref (here:
sup := supremum, that is the least upper bound and inf := infimum, that is the greatest
lower bound):

h(q) = sup
x̂∈X

g(x̂(q)), (1)

g(x̂(q)) = inf
x̂′∈Xref

d(x̂(q), x̂′).

for a particular parameter q or a set of parameters depending on the dimensionality. The
abstract parameter set q will later be identified as the position parameters of the atoms
in crystals. To determine a chirality measure, the reference system is usually chosen to
be achiral. h(q) is always positive by definition, because d(x, x′) =

√
(x− x′)2. Further,

the Hausdorff distance may be normalized to H(q) = h(q)/hmax or similar by choosing a
suitable value and reference system for hmax. However, herein, primarily unnormalized
Hausdorff distances were used.

The unnormalized (lower case) and normalized (upper case) continuous chirality
measures are defined by:

s2(G) =
n

∑
i=1

∥∥∥pi − psym
i

∥∥∥2
, (2)

S2(G) =
s2(G)

N

N =
n

∑
i=1

∥∥∥pchiral
i − psym

i

∥∥∥2
.

where ‖. . .‖ is the norm and G assigns an abstract manifold or group of parameters, that
is related to the appearance of the investigated system. For example, it may comprise the
symmetry operations and structural parameters of molecules or crystals. Here, pi are the
points in the actual crystal structure depending on the positions of the atoms, psym

i are
the closest points of the nearest achiral structure, and pchiral

i are the points of the chiral
structure where N is at maximum. Alternatively, the square root of the continuous chirality
measure: S(G) =

√
S2(G) may be used. When normalized, it has the same range 0 ≤ S ≤ 1

as its square S2. A square root normalization was also used in the chirality functions of
Cossé-Barbi and Raji [43].

Apart from S2(G), the chirality measure S(G) can be directly interpreted as a type
of distance similar to the Hausdorff measure; however, it exhibits different behavior.
Hausdorff distance and continuous chirality measure are of different characters. h(q) is an
extremal and S2(G) an average property (mean square deviation). In cubic systems, relative
position parameters are used, such that both measures, continuous chirality and Hausdorff,
are independent of the lattice parameter a. In contrast, in tetragonal or hexagonal systems
the c/a ratio must be respected as well if the z-parameter is provided relative to c.

An achiral structure may be determined by averaging over the positions of an enan-
tiomorphous pair of structures. In addition, the chirality measures may be defined in
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slightly different ways as well. In principle, the distances between the positions of the
enantiomorphous pair of structures may also be employed as a measure of chirality.

The chirality measures are illustrated by means of a simple cubic structure with four
atoms in the primitive cell, where the basis is the space group P 213 with one Wyckoff
position 4a (u, u, u) occupied, as illustrated in Figure 3a ((u, u, u) is used for the position
to avoid confusion with the coordinates x, y, z). For special values of u (e.g., ±1/8), the
symmetry changes to one of the enantiomorphous space groups P 4332 or P 4132.

Figure 3. Screw rotations and simple structure in space group 198. (a) Arrangement of the atoms
on position 4a. (b) Position of the 2- (blue) and 3-fold (red) screw axes. The three 21 screw axes are
parallel to the principle axes. The three 32 screw axes are parallel to

〈
111
〉

type axes. The [111] axis
shown in a) (green diagonal line) is a simple 3-fold rotational axis.

Space group P 213 contains 12 symmetry elements. In addition to the unity operator,
these are three 2-fold screw rotations, five simple, 3-fold rotations, and three 3-fold screw
rotations. The three axes for the 21 screw rotations are parallel to the principle axes along
the lines [1/4,0,z], [0,y,1/4], and [x,1/4,0]. For instance, one of the axis of a simple C3 rotation
is along [1,1,1] (for others see [22]). Further, the three 32 screw rotations have axes parallel
to [1,1,1], [1,1,1], [1,1,1] that is in detail along the lines [x + 1/6,x + 1/6,x], [x + 1/3,x + 1/6,x],
and [x − 1/6,x + 1/3,x]. The axes of the six screw rotations are illustrated in Figure 3b. These
six screw rotations are the same in the enantiomorphous space groups 212 and 213, which
contain in addition three more 21 as well as overall six 4-fold (41 and 43) screw rotations as
symmetry elements.

As an achiral reference system for the determination of the chirality measures, a
face-centered cubic lattice ( f cc) was used. The positions of the atoms in the three types
of structures are compared in Table 6. It is evident that the chiral simple cubic structures
are produced by shifting the atoms out of the high symmetry positions of the achiral f cc
structure with space group F m3m.

Table 6. Atom positions in cubic, achiral and chiral structures related to space group P 213. Tabulated
are the positions for u ≤ 1/8. Others may be found using a shift vector (n/4, n/4, n/4) (n = 1, 2, 3) and
the equivalence of positions with −u and 1− u. The minimum distance of the positions between
P 213 and F m3m is in all four cases u

√
3.

F m3m P 213 P 4332

(0, 0, 0) (u, u, u) (1/8, 1/8, 1/8)
(1/2, 1/2, 0) (1/2 + u, 1/2− u,−u) (5/8, 3/8, − 1/8)
(1/2, 0, 1/2) (1/2− u,−u, 1/2 + u) (3/8, − 1/8, 5/8)
(0, 1/2, 1/2) (−u, 1/2 + u, 1/2− u) (− 1/8, 5/8, 3/8)

Figure 4 shows the Hausdorff distance h(u) and continuous chirality measure S2(u)
with variation of the u parameter of the 4a Wyckoff position in space group 198, P 213.
For special values of u, the structure adopts a higher symmetry. Both, H(u) and S2(u),
vanish for u = i/4, i ∈ N when the structure adopts the Cu or A1 type [44] f cc structure
with space group F m3m. The chirality is largest for u = 1/8, 6/8 or u = 3/8, 7/8 where
a structure with one of the chiral space groups P 4332 or P 4132 was adopted. The latter
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two cases may be referred to as ideal chiral structures. The 21 screw axis of P 213 does not
have a definite helicity; therefore, the handedness (R for right and L for left) for variation
of u may be adopted from the closest chiral space group with 43 or 41 screw axes. Space
group 198 is a subgroup of the enantiomorphous groups 212 or 213, accordingly, structures
or substructures that are close to one of these are assigned as an L or R type structure.
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Figure 4. Hausdorff distance h(u) and continuous chirality measure S2(u) in a chiral cubic compound
based on space group 198 with a single 4a Wyckoff position occupied. Shown are the dependencies
of h(u) and S2(u) on the position parameter u of the Wyckoff position 4a. The character (R and L) of
structures in space group 198 is adopted from the handedness of the closest chiral space group 213
or 212.

5. Chiral Systems: From Crystalline Elements to Compounds
5.1. Elements with Chiral Structures

The only elemental metal with a chiral structure is β-Mn (Mn, cP20, 213, P 4132) [20]
(here and subsequently, the prototypes are provided in braces by name, Pearson symbol,
number, and name of the space group according to [20] and following the Nomenclature
of Inorganic Chemistry – IUPAC recommendations 2005 [45].). The Strukturbericht no-
tation for this structure is A13 [44]. Two other chiral elements are Se and Te, with the
prototype structures (Se, hP3, 152, P 3121) or (Te, mP4, 4, P 1211), where the latter is a high
pressure phase.

Here, the A8 [44] crystal structure of γ-Se (Se, hP3, 152, P 3121) is of particular interest
as the space group P 3121 is chiral in an enantiomorphous pair (see Table 3). The inverted
structure belongs to the enantiomorphous space group P 3221 (154). In the first type (152),
the Wyckoff positions are 3a with (0.23, 0, 1/3), and in the second type (154), the Wyckoff
positions are 3a with (0.23, 0, 2/3). Equivalently, it ispossible to change 3a from (0.77, 0.77, 0)
to (0.23, 0.23, 0) while going from P 3121 to P 3221. A pure inversion of the atomic position
in the same space group would result in an entirely different structure and not only in a
different helicity because the 3a type would be changed to a 6c type position. Moving the
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atom from 3a with (0.23, 0, 2/3) to (1/3, 0, 2/3) changes the symmetry to space group R 3m
(166) while the structure becomes achiral. However, Se at high pressure (>80 GPa) adopts a
β-Po structure, which also belongs to space group R 3m with the atoms on (0, 0, 0) [46].

The chirality measures h and S2 of the (Se, hP3, 152, P 3121) structure are shown in
Figure 5. The maxima of the chirality measure appear at 1/6, 1/2, and 7/6. At u = 1/2, the
structure adopts the P 62,422 space group, depending on whether it started with the 31 or
32 screw rotation. As expected, the chirality measure becomes zero at u = 0, 1/3, 2/3, and
1 when the structure becomes achiral. Further, at uSe = 0.23 and uTe = 0.2636 as reported
for Se and Te, the chirality measures are approximately S2

Se = 38.4% and S2
Te = 17.5%,

respectively. Moreover, the u parameter can be varied by external pressure. In experiments
performed on Se, it varies from 0.2254 under ambient conditions to 0.2487 at a pressure of
86 GPa [47], which results in a decrease of S2

Se from 41.9 to 25.8%.
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Figure 5. Chirality of the A8 structure of γ-Se. Shown are the Hausdorff distance h and the continuous
chirality measure S2 as a function of the internal parameter u. Open symbols assign the values at
optimized and experimental u values (Section 7.1) and closed symbols mark the parameters where the
space group changes away from P 3121. The range of u and S2 under pressure in the experiment [47]
is marked by the thick red line.

5.2. Compounds with Chiral, Cubic Structures

This paragraph addresses cubic structures, of which certain have recently been very
prominent in work on topological materials [48,49]. As mentioned above, within the cubic
space groups, only one enantiomorphous pair exists, comprising P 4332 (212) and P 4132
(213). Moreover, these groups are not polar, implying that crystals with this symmetry
do not exhibit pyroelectricity. There are two simple binary chiral compounds reported
to belong to the chiral cubic space group 213, P 4132, which are BaSi2 and SrSi2. The
prototype structure is (SrSi2, cP12, 213, P 4132). Other binaries crystallizing in space
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group 213 are more complicated and have much more atoms in the primitive cell. Cer-
tain prototype structures are (space group information not repeated) (Mg3Ru2, cP20),
(V8C7, cP60), (K6Sn25, cP124), (K8Sn25, cP136), and (RuZn6, cP252). Certain prototypes
for ternaries in this space group are (Mo3Al2C, cP24), (CsBe2F5, cP32), (Ag3AuS2, cP48),
(Zn2Ge3O8, cP52), (Cu3Mn3O8, cP56), and (LiFe5O8, cP56).

Several alloys exist that crystallize in the A13 structure of β-Mn. They have non-integer
and random site occupations. Ordered derivatives of this structure are the binary prototype
(AlAu4, cP20, 198, P 213) and the ternary (Mn3IrSi, cP20, 198, P 213). In both cases, the 8c
Wyckoff position (u, u, u) of the A13 structure is split into two 4a positions of space group
198 with different site occupations. Further, position 12d (1/8, u, 1/4 + u) becomes 12b.
However, the splitting of the 8c position causes the change of symmetry from space group
P 4132 to P 213.

Another large number of compounds with chiral structure exists in the cubic space
group 198, P 213. This group is not polar and the compounds do not exhibit pyroelectricity;
however, they are optically active and can be piezoelectric. Famous in space group 198 are
the B20 compounds, which will be dealt with in more detail. In addition, solid ammonia
is in this space group as well. The B20 compounds exhibit not only a chiral crystalline
structure but also a chiral magnetic order (for example MnSi and FeGe are hosting the
skyrmions). Further compounds with the B20 prototype structure (FeSi, cP8, 198, P 213)
are AuBe, CoGe, CoSi, CrGe, CrSi, FeGe, FeSi, HfSn, HfSb, MnGe, MnSi, NiSi, OsSi, PdAl,
PdGa, PtAl, PtGa, PtMg, ReSi, RhGe, RhSi, RhSn, RuGe, RuSi, TcSi, and ZrSb.

These compounds with a B20 structure possess various different physical properties,
which are for example:

• Semiconductivity: FeSi, OsSi, RuZ (Z=Si, Ge) [50]
• Kondo insulators [50]
• Magnetic order: MnZ, CoZ, (Z=Si, Ge), and FeGe as well as some mixed alloys

(Fe1−xCox, etc.)
• Superconductivity: AuBe, ReSi
• Topological types: CoSi, RhSi, PtAl

The structure of the prototype (FeSi, cP8, 198) is shown in Figure 6. A FeSi racemate
contains the same amounts of an enantiomorphous pair of structures with opposite chirality
sense. Here, the enantiomorphous pair is given for example by the pairs RL and LR with
(uFe, uSi) = (0.3858, 0.094) and (0.6142, 0.906), respectively. The u parameters are provided
for the standardized crystallographic data. RL implies that the sublattice of the Fe is of
R type and the Si sublattice is of L type. In contrast, the opposite is true for LR. (Some
work uses alternatively R and S (from Latin sinistram = left) whereas for molecules often
D (from Latin dexter) and L (from Latin laevus) are used (see also [26]). In other cases,
the two enantiomers of the B20 structure are assigned by A and B [51,52].) Both structures
are shown for views along the [111] axes and along arbitrary axes. The Fe (or Si) atoms
observed in the triangles of the [111] view are in the same (111) plane, whereas atoms in the
center, on the [111] axis, are in different planes. In addition, the projection of the positions
onto the [111] axis is p111 = 1− u for the off-axis atoms and p0 = u

√
3 for the on-axis atoms

at (u, u, u). Owing to the different chiral character of the two sublattices, the structure of
most of the B20 compounds cannot be directly assigned a particular handedness even for
the case of enantiopure single crystals. Thus, the handedness would only be definite if
one of the species occupied high symmetry sites of the cubic lattice whereas the other one
is located on sites with lower symmetry resulting in a screw axis. An example would be
(uFe, uSi) = (0 < uFe < 1/4, 1/2) with the highest chirality measure of 50% at (1/8, 1/2) at
an Hausdorff distance of 1/8 (compare also Figures 4 and 7). In such cases, one still stays
in space group number 198.
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Figure 6. The B20 structure of FeSi. The enantiomorphous pair RL and LR is shown with (uFe, uSi) =

(0.3858, 0.094) and (0.6142, 0.906), respectively. RL implies that Fe atoms are positioned in an R type
and Si in an L type structure and the opposite for LR. Both structures are shown for views along
the [111] axes and arbitrary axes. Fe (or Si) atoms in the triangles of the [111] view are in the same
(111) plane; these planes appear at a distance of (2− ui)/

√
3 from the origin. Atoms in the center, on

the [111] axis, are in a different plane ui
√

3 away from the origin. See Figure 3 for the positions of
the screw axes. Connections between atoms are drawn for better visibility and may not be confused
with bonds.
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Figure 7. Chirality and nearest neighbor distances of the compounds with FeSi structure. Shown are on
top the nearest neighbor distances and on the bottom the continuous chirality measure S2(uTM, uMG)

for space group 198 with two 4a Wyckoff positions occupied (B20 compounds). The values for FeSi
(LR), the space groups of the achiral structures where S = 0, or the chiral space groups where S = 1 are
assigned in the graph. Important note: The borderline parameters (uTM, uMG) = (0, 1), and (1/2, 1/2)
are not possible as is evident from the graph of the nearest neighbor distances. Note that the largest
possible nearest neighbor distance in B20 compounds is dNN,max/a =

√
3/(1 +

√
5).



Materials 2022, 15, 5812 13 of 32

The continuous chirality measure is defined by Equation (3). Here, the positions pi are
defined by the position parameter u of the transition metal (uTM) and main group element
(uMG) such that n = 2. p0 denote the values for the closest achiral structure either with
space groups F m3m (225) or F 43m (216) that appear for position parameters u0 = 0, 1/4,
1/2, 3/4, or 1. The closest implies that p0 is chosen such that the norm ‖pi − p0‖2 is at
its minimum. Further, for parameter pairs (uTM, uMG) = (0, 1/2), (1/4, 3/4), or similar,
the rocksalt (NaCl type) structure with space group 225 is observed, whereas the pairs
(uTM, uMG) = (0, 1/4), (1/2, 3/4), or similar result in the zincblende (ZnS type) structure
with space group 216.

Moreover, S2(G) is normalized by the structure that appears when both u parameters
attain the paired values (1/8, 5/8), or (3/8, 7/8) resulting in min(‖pe − p0‖2) = 3/64. In
contrast to the simple cubic problem with a single site of Section 4 above, the enantiomor-
phous pair of space groups (212), (213) appears for these u parameters only when the
difference between the two parameters is 1/2 and thus both sublattices exhibit the same
handedness. This implies that the compounds adopt at S2(G) = 1 not necessarily one of
the chiral space groups, as explained above.

Figure 8 summarizes the position parameters u and the resulting continuous chirality
measure S2 for various B20 compounds reported in literature. It is evident that the chirality
measure of the considered compounds is in the range of 60 to 75% but does not depend
on the lattice parameter a. Thus, this reflects the fact that the u parameters are not that
dependent on the lattice parameter. The average position parameters for the compounds
shown in Figure 8 are uTM = 0.39 and uMG = 0.093. In addition, the average chirality
measure is 66.5%.

α-N2 (prototype: [N2], cP8, 198, P 213) has a similar chiral structure. Owing to the
appearance of N2 molecules it is slightly different from the B20 compounds. The u parame-
ters of α-N2 are (0.180, 0.2878) [53]. α-CO has the same structure with position parameters
(uC, uO) = (0.292, 0.183) [54]. Both systems may be viewed as chiral molecular solids.

For the body-centered cubic space group 199 in the Pearson database [20], the binaries
CoLa and CoU (CoU, cI16, 199, I213) can be found. However, the 1:1 composition of CoLa
is not stable, but CoLax is stable [55,56]. In addition, various oxides with the samarium
oxide structure (Sm2O3, cI80, 199, I213) adopt this space group as well.

There are also many simple ternary compounds found in space group 198. They adopt
the NiSSb (Ullmanite) or F01 structure. Two equivalent prototypes are assigned to that
structure, namely (NiSbS, cP12, 198) and (ZrSO, cP12, 198). In principle, the structure is
based on the C1b or (CuMgSb, cF12, 216) structure of the XYZ Heusler compounds with
1:1:1 stoichiometry. However, here the atomic positions are shifted away from the high
symmetry positions of the C1b structure.

The F01 structure hosts the oxides ZrSO and HfSO with 16 valence electrons in the
cell. Furthermore, based on elements from the Co group 9 (VIII), we obtain with 16 valence
electrons: IrBaP and IrSrP, or with 20 valence electrons: CoAsS, RhBiSe, RhSbS, RhSbSe,
RhPSe, RhSbS, RhSbSe, IrBiS, IrBiSe, IrSbSe, IrPSe, IrSbS, IrSbSe, and IrSbTe.

Based on elements from the Ni group 10 (VIII) we obtain with 16 valence electrons:
PdBaSi, PdSrSi, PtCaSi, PtBaSi, PtSrSi, and PtBaGe, PtSrGe; with 17 valence electrons:
PtBaAs and PtBaP; with 21 valence electrons: NiAsS, NiBiSe, NiSbS, NiSbSe, NiPS, PdAsS,
PdAsSe, PdBiSe, PdSbS, PdSbSe, PdSbTe, PtBiSe, PtSbS, and PtSbSe.

However, the Pearson data base [20] reports certain compounds that do not exist in
the F01 structure, such as PtCrSb and PtFeSb [57]. To date, no chiral compound that has a
typical Heusler composition with two different 3d transition metals and one main group
element has been reported.



Materials 2022, 15, 5812 14 of 32

0

1/8

1/4

3/8

1/2

4.4 4.5 4.6 4.7 4.8 4.9
55

60

65

70

75

Co
Si

N
iS

i
Fe

Si
M

nS
i Cr
Si

Co
G

e
A

uB
e

Rh
Si

Fe
G

e Ru
Si

O
sS

i

Re
Si Cr

G
e

Ru
G

e
Rh

G
e

Pt
A

l

Rh
Sn

H
fS

n

O
sS

i

 

 

Po
sit

io
n 

pa
ra

m
et

er
  u

(a
)

  transition metal

  main group element

 

 

Ch
ira

lit
y 

 S
2 (a

) [
%

]

Lattice parameter   aexp [Å]

(uTM, uMG) = (1/8,3/8)    100% 
Pd

A
l

Figure 8. Chirality of the B20 compounds. Continuous chirality measures of B20 compounds where
the complete structure determination is reported in Pearson’s database [20]. The full and dashed
lines mark u values of 1/8 and 7/8, respectively.

The only known compounds with one main group and two transition metal elements
are LaRhSi and LaIrSi. Further, rare earth-containing compounds reported with F01 struc-
ture are CeIrSi, NdIrSi, and PrIrSi with 16 + n4 f valence electrons, where n4 f is the number
of 4 f electrons, and further EuIrP, EuPdSi, EuPtSi, and EuPtGe with 17 + n4 f valence elec-
trons. Among those, LaRhSi and LaIrSi are known to be superconductors with transition
temperatures of 4.35 and 2.3 K, respectively [58]. In the same work [58] it was proposed
that the magnetic structure of NdIrSi is probably non-collinear.

Figure 9 summarizes the continuous chirality measure of various F01 compounds. It
is evident that the chirality of the considered compounds is in the range of 52 to 66% but
does not depend on the lattice parameter, as was already discussed for the B20 compounds.
Further, an ideal F01 structure will still belong to space group 198, for example with the
three u parameters 1/8, 3/8, and 5/8, whereas the achiral case with space group F 43m
appears exemplary for u1,2,3 parameters of 0, 1/4, and 1/2. Moreover, in many cases the
u parameter of the transition metal atom is close to zero; that is, its contribution to the
chirality measure that is defined by the positions of the main group elements is minimal.
The set of u parameters with 0, 3/8, and 5/8 still results in a chiral structure, albeit with
a reduced continuous chirality measure of 2/3. However, the small contribution of the
transition metals to the chirality measure is different from the B20 compounds, where they
are mainly responsible for the size of the chirality measure and Hausdorff distance.
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The high-pressure structure of PdF2 is also reported to appear in this space group
(PdF2, cP12, 198, P 213). Under moderate pressure (p > 1.4 GPa) the structure of PdF2
changes from rutile (TiO2, tP6, 136, P 42/mnm) to a C2 pyrite (FeS2, cP12, 205, P a3) or
to the F01 ullmannite type structure, that is, from an achiral form to a chiral one. The
fluorine site at u = 0.3431 of the C2 structure splits into two positions with u1 = 0.344 and
u2 = 0.658 at a nearly unchanged lattice parameter of aexp = 5.329 Å. In other words, the
two fluorine atoms are in F01 on screw axes with opposite chirality sense (see Figure 4).
Pd is placed at the achiral site with u0 = 0 in both structures, C2 and F01. Therefore, the
chirality in the F01 structure is defined solely by the fluorine atoms. Further, the splitting of
the fluorine positions away from the one observed in the C2 structure is very small. Here
the C2 structure is the closest achiral structure and not C1 (CaF2, cF12, 225, F m3m) or C1b,
which results in very small chirality measures. Compared to the two achiral structures,
the Hausdorff distances are h(C2) = 0.001 and h(C1) = 0.093. This demonstrates the
necessity of determining and always using the closest achiral structure when calculating
chirality measures.

5.3. Compounds with Tetragonal Chiral Structures

WOBr4 and WOCl4 are interesting tetragonal systems as they have a rather simple
structure (WOCl4, tI12, 79) with only three different atomic positions. This structure is chiral
as well as polar and belongs to space group I 4. Tungsten occupies a high symmetry 2a
position at (0,0,0) of the tetragonal lattice, whereas the oxygen (0, 0, u) and halogen (x, y, z)
atoms occupy Wyckoff positions 2a and 8c with free parameters. The experimentally
reported free parameters of WOCl4 for oxygen and chlorine are u = 0.545 and (x, y, z) =
(0.0669, 0.2584, 0.0789), respectively. In addition, the symmetry remains unchanged if
the oxygen positions are changed while the chlorine positions are maintained. A close
centrosymmetric structure can be easily determined by setting u = 1/2, x = z = 0,
and y = 1/4. The resulting structure has I 4/mmm (139) symmetry and is achiral and
non-polar. Another achiral and non-polar structure is found by setting u = 1/2 and
only z = 0 resulting in I 4/m (87). Furthermore, the chirality can be removed while
maintaining the structure as non-centrosymmetric, when setting the chlorine parameters
to (x, y, z) = (0, 1/4, 0), but keeping the u parameter of the oxygen atoms. Consequently,
the resulting structure possesses I 4mm (107) symmetry and is no longer chiral although
still polar. The chirality measures for WOBr4 and WOCl4 are presented in Table 7. The
Hausdorff distance is dominated by the oxygen position, whereas s depends on both, O
and halogen positions. The closest achiral structure is the one with the smallest continuous
chirality measure and thus I 4 in both cases. This example shows the manner in which to
select the achiral structure for comparison.
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Table 7. Chirality of WOZ4 compounds (Z = Br, Cl). Given are the unnormalized Hausdorff
distances, h, and continuous chirality measures, s, with respect to different possible achiral structures.

Achiral Group Polar WOBr4 WOCl4
h s h s

I 4/m N 0.049 0.0650 0.045 0.0642
I 4/mm Y 0.049 0.0654 0.045 0.0645
I 4/mmm N 0.049 0.0818 0.045 0.0800

5.4. Compounds with Hexagonal or Trigonal, Chiral Structures

Several sets of chiral space groups appear for hexagonal structures. Among the inter-
esting chiral materials is quartz SiO2 as its C40 structure belongs to the chiral space group
(180). This space group, P 6222, has an enantiomorphous partner, namely P 6422. Further,
the prototype of the C40 structure is CrSi2 (hP9, P 62,422, 180, 181) and several transition
metal (T) silicides TSi2 crystallize with the same structure. Additional compounds with
this structure are CrSi2, VSi2, NbSi2, TaSi2, MoSi2, WSi2, VGe2, NbGe2, TaGe2, WAl2, HfSn2,
and NiMg2. SiO2 is a wide band gap (>5.9 eV) insulator and CrSi2 is a narrow band gap
(0.35 eV) semiconductor with trivial topology [59]. The remaining compounds with a C40
structure are metals or semimetals.

The atoms of compounds with C40 structure are placed on Wyckoff positions 3c
(1/2, 0, 0) and 6i (u, 2u, 0) (or 3d (1/2, 0, 1/2) and 6j (u, 2u, 1/2) (see Figure 10). In the
prototype CrSi2, u = 0.16577 can be observed. However, the structure becomes achiral
when the Cr atoms are placed at 3a,b (0, 0, w) and simultaneously the Si atoms on 6i,j
(1/3, 2/3, w), where w = 0 or 1/2. The resulting achiral structure belongs to space group
P 6/mmm (191). Table 8 summarizes the chirality of the compounds with C40 structure
where the complete structure was determined according to the Pearson database [20].

P P

Figure 10. The CrSi2 structure of quartz (SiO2) and transition metal C40 compounds. The enantiomor-
phous pair of structures in the chiral space groups P 6222 (180) and P 6422 (181) are shown. Transition
metal atoms (Cr) are green (dark), and the main group elements (Si) are shown in grey (light). (For
quartz, green atoms correspond to Si and grey ones to O).

The Hausdorff distance for the atoms on the 3c position is fixed because this position
has no free parameter. The former has the value h1 = 1/2. However, the value of the atoms
in the 6i position varies and is h2 = u sin(60◦) = u

√
3/4 for 0 ≤ u ≤ 1/2 (u = 0 or 1/2

cannot be reached, because the distance between atoms cannot vanish). Consequently, the
largest value of the continuous chirality measure attained is S2(u) = 1. The normalized
chirality measure of CrSi2 is S2 = 27%.
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Table 8. Chirality of compounds with C40 structure. Given are the lattice (a, c) and position (u)
parameters, as well as the continuous chirality measures (S2). Lattice parameters are from the Pearson
database [20].

a [Å] c [Å] u S2

CrSi2 4.4283 6.3680 0.1658 0.2706
MoSi2 4.6220 6.6460 0.1642 0.2702
NbSi2 4.7974 6.5923 0.1593 0.2690
TaSi2 4.7839 6.5700 0.1590 0.2689
VSi2 4.5726 6.3744 0.1626 0.2698
WSi2 4.6180 6.6740 0.1640 0.2702
NbGe2 4.9670 6.7830 0.1631 0.2699
TaGe2 4.9380 6.7300 0.1640 0.2702
WAl2 4.7422 6.6057 0.1618 0.2696

Cinnabar (HgS, hP6, P 3121, 152) with a B9 structure is the prototype for a set of chiral
binary compounds within the chiral space group 152. HgS, HgSe, HgTe, HgO, and partially
ZnTe adopt this structure. Moreover, the topological status of HgS and the other mercury
compounds in space group 152 is trivial [59]. Sometimes the prototype is assigned to CdTe,
however, CdTe also exists in other structures. In addition, the structure was also observed
in a high-pressure phase of GaAs. Furthermore, at high pressure (11.2 GPa) a chiral phase
of ZnTe (ZnTe, hP6, P 31, 144) was reported that is derived from the Zincblende structure.

Both positions (3a (u1, 0, 1/3) and 3b (u2, 0, 5/6)) of the hexagonal HgS structure
have free parameters ui that determine the chirality. The continuous chirality measure
of the cinnabar structure is S2 = 2(u′21 + u′22) where the position parameters are reduced
to u′ = min(u, |1− u|). Consequently, it becomes S2

HgS = 0.637 using uHg = 0.28 and
uS = 0.51. Further, u1 = u2 = 1/2 results in the chiral space group P 6422 (181), whereas
u1 = u2 = 0 results in P 6/mmm (191) and thus the structure becomes achiral.

Before continuing with 2-dimensional systems we would like to point to an overview
of chiral metals given by Riva [60], reporting mostly intermetallic compounds with many
more atoms in the cell than considered in this study. The chiral oxides were compiled very
complete by Halasyamani and Poeppelmeier [61]. Yiwen Li et al. [62] focused on chiral
transition metal oxides. Recently, the properties of chiral, nanostructured materials and
their applications [63] have been reviewed [63].

6. Chirality at Solid Surfaces

The occurrence of surfaces has drastic effects on symmetry. The translational symmetry
along the surface normal is broken and inversion as well as horizontal mirror operations in
the surface are removed as the latter two would exchange bulk and vacuum. Moreover, the
symmetry is no longer described by the 3-dimensional space groups and thus the wallpaper
groups (see Section 3) are used instead. With respect to chirality, four different situations
may arise:

1. achiral bulk with a chiral surface,
2. chiral bulk with an achiral surface,
3. chiral bulk with a chiral surface,
4. achiral bulk with an achiral surface.

The last case of an achiral bulk with an achiral surface is the most trivial and will
not be considered here. In addition, surfaces may also be modified to become chiral via
reconstruction or adsorption of atoms, molecules, or chiral molecules. These cases will also
not be included in the discussion. We consider certain simple examples. The importance of
chiral inorganic crystalline surfaces for chiral selection and discrimination was reviewed
by Hazen and Sholl [64]. The chiral geometry of the surfaces of metal nanocrystals was
reviewed by the group of Ki Tae Nam [65]. The case of two-dimensional chiral molecular
assembly on solid surfaces was reviewed by Chen et al. [66].
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6.1. Achiral Bulk with Chiral Surface

The most prominent examples for the first case are the high index surfaces of elemental
metals. Particular examples are the f cc(hkl) surfaces with (hkl) = (531), (643), and (874).
Typical for this type of surface is the occurrence of narrow (111) oriented terraces with high
densities of steps and kinks. The kinks serve as chiral centers. The enantiomorphous pair of
surfaces (hkl) and (hkl) with h 6= k 6= l 6= 0 are denoted by (hkl)R and (hkl)S, respectively.
The upper indices assign the clockwise (R) or anticlockwise (S) decrease of the atom density
about the kink atoms [67]. f cc(hkl), f cc(hkl), and f cc(hkl) are equivalent to f cc(hkl).

Figure 11 shows the enantiomorphous pair of f cc(643)S,R surfaces. Such high index
surfaces are observed for Au, Ag, Cu, or Pt and, in particular, many of the high index Pt
surfaces are very stable. The edge and kink sites are drawn in different colors to allow
a better comparison of the handedness. However, the surface atoms are not coplanar as
is evident from the side view. Moreover, the plane group symmetry of the surface is p2,
thereby confirming its chirality.

(643)S (643)R

Figure 11. The chiral f cc(643) surface. The two modifications f cc(643)S and f cc(643)R with opposite
handedness from different perspectives are shown. Different colors are used to better distinguish
edge and kink atoms from those on terraces.

Chiral surfaces appear in f cc as well achiral sc, bcc, or hcp structures, see [68,69].
Similar to the case of f cc structures, chiral bcc(hkl) surfaces are characterized by three
inequivalent Miller indices (h 6= k 6= l 6= 0) and those f cc(hkl) and bcc(hkl) surfaces with
identical Miller indices exhibit the same handedness. In certain cases, the indices S and R
are replaced by D and L, respectively, where the latter are often used to characterize chiral
molecules as well. However, the case of hcp surfaces is more complex, and a complete
description of chiral and achiral surfaces of the elemental metals with bcc, f cc, or hcp
structures was reported by Jenkins and Pratt in Ref. [68].

6.2. Surfaces of Chiral Bulk Materials

The question that arises is whether the surfaces of chiral bulk materials also need
to be high indexed as in the case of achiral structures. Certain special projections for the
space groups mentioned in previous sections are listed in Table 9. The remaining space
groups may be found in Ref. [22]. It is obvious that certain projections along low index,
high symmetry directions of chiral structures are achiral although the symmetry of the
bulk is described by a chiral space group. However, there also exist certain low indexed
projections that are chiral. For example, in space group 198 the symmetry of the projection
along [111] belongs to the plane group p3 and thus, this projection is chiral.
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Table 9. Symmetry of special projections of the chiral space groups. Chiral projections are marked by
printing their plane groups (pi, i = 1, 3, 4, 6) in bold. The cubic, achiral Sohncke group 198 is given
for comparison.

cubic [001] [110] [111]
212,213 p4gm p2gm p3m
198 p2gg pg p3

hexagonal [0001] [1120]
180,181 p6mm p2mm
178,179 p6mm p2gm
171,172 p6 pm
169,170 p6 pg

trigonal [001] [100] [210]
152,154 p3m p2 pm
151,153 p3m pm p2
144,145 p3 p1 p1

tetragonal [001] [100] [110]
92,96 p4gm p2gg p2gm
91,95 p4mm p2gm p2gm
76,78 p4 pg pg

The projections are ideally plane 2D structures without an extension in 3D space.
In contrast, solid surfaces have an extension also in the direction perpendicular to the
plane defining the surface. The difference lies in the fact that the periodicity along the
surface normal is broken. Regarding binary or higher compounds, both the symmetry
and the termination of the surface are vital and the element that defines the surface layer
is important.

The appearance of chiral surfaces of a chiral material will be illustrated for the example
of space group 198 using the FeSi(001) surface. It is assumed that the surface is terminated
by the Fe layer. This top layer exhibits a fourfold symmetry (p4mm) as is expected for a
cubic crystal (Figure 12a). Further, the first Si layer is only slightly below the top Fe layer
(Figure 12b), and removes the fourfold rotational symmetry as well as the mirror planes.
Moreover, the surface appears to be closed when including four layers (Figure 12c). In the
projection, the Fe and Si atoms appear to follow each a zig-zag line, and similar to the chiral,
high index f cc surface, the atoms forming the closed surface are not coplanar, although
kinks that serve as chiral centers do not appear. In reality, the structure comprises simple
atom rows of different heights that are shifted with respect to each other.

a) top layer

(001)

b) top 2 layers c) top 4 layers

[0
0
1
]

Figure 12. The FeSi(001) surface. The evolution of the surface structure and symmetry is shown by
increasing the number of layers in (a–c). The upper row shows the side view and the lower row the
top view. Fe atoms are drawn in red (dark) and Si atoms in grey (light).

The evolution of the FeSi(111) surface structure is illustrated in Figure 13. The starting
point is the Fe atom at (uFe, uFe, uFe) as center of the topmost layer in Figure 13a. This layer
(type A) exhibits a sixfold rotational symmetry (p6mm) and has a hexagonal cell with a
basis of one atom. It is followed by the Si layer (type B) shown in Figure 13b, whose cell
has the same shape but with a basis of three atoms, resulting in a threefold symmetry. The
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orientation of the triangles of atoms depends on the position of the atoms in the three-
dimensional cubic cell. The combination of these first two layers already results in the
chiral p3 symmetry shown in Figure 13c. The completed chiral surface structure is shown
in Figure 13d. Similar to the case of the FeSi(001) surface, no chiral centers were observed;
however, the threefold rotational axes serve as chiral axes. Moreover, four different types
of surfaces depending on the termination are expected: Fe type A, Si type A, Fe type B,
or Si type B. The positions of the layers with respect to the origin along [111] are uFe

√
3,

(2− uSi)/
√

3, (2− uFe)/
√

3, and uSi
√

3.

a) Top layer (Fe) b) 2nd layer (Si)

c) Top 2 layers (Fe+Si) d) Complete FeSi stack

Figure 13. An Fe terminated FeSi(111) surface. The evolution of the surface structure and symmetry
are shown for increasing number of layers in (a–d), assuming that the surface is terminated by Fe
with layer type A (see text).

The surfaces of opposite sites of a chiral are not completely equivalent because of the
lack of inversion and mirror symmetries. For example, the four-fold (001) and (001) in space
group P 213 are not equivalent, in contrast to the (001) surfaces of a W type body-centered
cubic structure with space group I m3m. Consequently, this affects the measurements
that are surface sensitive. For a full characterization of surfaces of chiral crystals, at least
four measurements may be necessary, which are two each for the opposite surfaces of an
enantiomorphous pair of crystals.

As a final example, the four different (0001) type surfaces of the chiral CrSi2 structure
(compare Figure 10) are illustrated in Figure 14.

P

P

Figure 14. Different CrSi2(0001) surfaces and their (0001) counterparts. The upper row shows the
right-handed and the lower row the left-handed crystal, with the indicated space group. The stacking
order is sketched in the middle using [1120] as viewing directions.
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Upon comparing the chiral surfaces of chiral and achiral structures it is evident that
the predominating difference is the appearance of chiral axes and centers in the first and
second cases, respectively.

7. Electronic Structure and Chirality

This section discusses the relations between chirality and electronic structure. Simple
prototypical elemental and binary systems, such as Se and FeSi were chosen. Details of the
electronic structure calculations are summarized in Appendix A.

7.1. Electronic Structure of Se

Se exhibits various different crystal structures [20]. Here, the chiral γ-Se structure
is considered with respect to its electronic structure. The calculated band structure of
Se is shown in Figure 15, where the calculations are based on the crystal structure with
space group P 3121. Subsequently, the position parameter u and thereby the chirality S2

was varied. Further, the lattice parameters a and c were optimized for each u 6= uexp
to avoid unphysically small nearest neighbor distances. Herein, uopt corresponds to a
full structural optimization for a, c, and u. The variation of the chirality S2 with u was
already shown in Figure 5. Moreover, the calculations for the opposite handedness using
the enantiomorphous space group P 3221 result in identical band structures, which also
includes space groups P 6222 and P 6422.
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Figure 15. Electronic structure of chiral and achiral (u = 1/3) Se. The band structures are calculated
for variation of the chirality by changing the position parameter u. From left to right: (a) u = 1/6
(S2 = 100%), (b) u = 0.22 (optimized) (S2 = 45.2%), (c) u = 0.23 (experiment) (S2 = 38.4%),
(d) u = 1/3 (S2 = 0), (e) u = 1/2 (S2 = 100%). The corresponding chirality measures are given in
brackets (compare also Figure 5). Note that the parameters u = 1/3 (R 3m) and u = 1/2 (P 6422)
result in different space groups and symmetry. Calculations are for variation of the position parameter
at optimized lattice parameters.

Se was determined to be a semiconductor at the experimental lattice parameters
including the position parameter (u = 0.23 with S2 = 0.38) as well as at optimized lattice
and position parameters. For u = 1/6, S2 = 1 was obtained, and the band gap was the
largest. However, Se becomes metallic in the achiral structure with u = 1/3 and S2 = 0
and is also metallic at u = 1/2 where the chiral space group P 6422 is reached.

Considering the band structure at the experimental lattice parameters (Figure 15c),
a highly degenerated state appears at Γ approximately 4 eV below the Fermi energy.
A detailed analysis shows that there is a small splitting of only 11 meV between the upper
a1 and the lower e states. However, the small variation of the u parameter from 0.23 to 0.22
already results in a much larger splitting of 266 meV in the optimized structure (Figure 15b).
Simultaneously, another highly degenerate state at K, approximately 3 eV below εF, stays
rather unoffended.

However, a dependence of the electronic structure on the (free) u parameter is also
observed in achiral systems. Therefore, it is concluded that the general character of the
band structure E(k, u) depends predominantly on the position parameters (u), with the
dependence on the chirality S2(u) or handedness being only indirect.
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7.2. Electronic Structure of FeSi and Other Compounds with B20 Structure

Before discussing certain details of the electronic structure of FeSi, the problem of
“how to change the chirality’ of a given structure is addressed. If the atomic positions
are fixed by the composition then an external parameter that is able to change these
positions in a controlled manner is required. One external parameter is pressure. Here,
hydrostatic pressure was simulated in the calculation by changing the volume away from its
equilibrium to smaller values. Thereafter, the pressure was determined using the equation
of state. The results obtained for the prototype FeSi are illustrated in Figure 16. The position
parameters remain, with a change of approximately 1 . . . 3%, nearly unaffected while the
chirality decreases from 68 to 65% with increasing pressure (0 ≤ p ≤ 60 GPa). In addition,
the band gap decreases by only 10 meV when applying a pressure of approximately 60 GPa.
Consequently, much higher pressures (up to 500 GPa) would be needed to approach the
ideal position parameter of Vocadlo et al. [70].
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Figure 16. Pressure dependence of the chirality of FeSi. The position parameters (symbols connected
by lines) for Fe and Si and the continuous chirality measure S2(p) are shown. The position parameters
resulting in S2 = 1 are marked in the upper part by full (1/8) and dashed (3/8) lines (blue).

The calculated band structure of FeSi is shown in Figure 17 as a function of position
parameters u and chirality measure. Similar to the case of Se, the band structures are
identical when the chirality sense of the structure is reversed by applying mirror operations
or inversion to the crystal structure. In addition, the lattice parameter a was optimized
at fixed position parameters u to allow for a better comparison. The change in the u
parameters result in rather large differences in the lattice parameters caused by the variation
of the nearest neighbor distances. At the optimized lattice and position parameters, FeSi
is a semiconductor with an indirect band gap of ≈170 meV. Further, in the achiral ZnS
structure, the size of the band gap is reduced to ≈50 meV. Consequently, the compound
becomes semimetallic with a small overlap of approximately 30 meV between valence and
conduction bands when the u parameters are changed such that S = 1. However, the space
group P 213 is maintained. In the case of the structure with chiral space group P 4321, the
band gap is zero without an overlap of bands. Although not shown here, two other cases
are also remarkable. FeSi would become metallic in the NaCl structure with space group
F m3m, while, an indirect band gap of approximately 150 meV is still retained when only
Fe determines the chirality and (uFe, uSi) = (1/8, 1/2). Furthermore, the effect of pressure
up to 60 GPa on the band structure is minimal.
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Figure 17. Band structure of FeSi, calculated for variation of the chirality by changing the position
parameters uFe and uSi. From left to right: (a) F 43m achiral, (b) P 213 at 60 GPa pressure, (c) P 213
optimized, (d) P 213 with S2 = 1, and (e) P 4321 also with S2 = 1. Calculations are for variation of the
position parameter at optimized lattice parameter a for each structure. Note that the ∆ direction (ΓX)
has in space group 198 only a 2-fold rotational symmetry, therefore, the perpendicular directions MX
and XM′ are not equivalent. (Please note the different Brillouin zone of the face-centered space group
in (a)).

RuSi, RuGe, and OsSi are also semiconductors, with their band structure being very
similar to FeSi, provided the spin–orbit interaction is neglected. They were investigated
theoretically in Ref. [71], where it was found that the RL type structure can be distinguished
from LR via the electric polarization response to a magnetic field. However, this has
yet to be verified experimentally. Recently, it was shown that the crystal symmetry can
yield free fermionic excitations thereby giving rise to Fermi arcs in non-Weyl systems [72].
Consequently, a notable number of publications demonstrated that these excitations are
found in the B20 compounds CoSi, RhSi, and PtAl [48,49,73,74]. The observed Fermi arcs
are interesting because of their unusual Chern numbers (±2). The conduction band of FeSi
reveals a four-fold degeneracy at the R point (at ≈0.5 eV above εF). However, this point
becomes six-fold degenerated when spin–orbit interaction is included. The appearance of
the four- and six-fold degenerate states has been explained using theoretical methods in
Ref. [72]. For CrSi, with fewer electrons occupied, a highly degenerate point at R coincides
with the Fermi energy (at 0 eV), with the energies at the Γ point being above and below
0 eV. In addition, in Ref. [49] the B20 compound PtAl was discovered to be a topological
metal that hosts four- and six-fold fermions with Chern numbers of ±2 resulting in long
Fermi arcs.

Thus, it was found that the characteristic quantities of the electronic structure, namely
the band structure and consequently the density of states, depend on the position parame-
ters of the atoms in the crystal structure but are not indicative of chirality and handedness.

7.3. Berry Curvature and Chirality

In the previous section, the band structures E(k) were determined to be independent
of the chirality sense of a crystal. They are the same in the enantiomorphous pair, although
the symmetry elements of the Hamiltonian are different. This is because the important
information on the wave functions arising from the chiral potential is not included in these
quantities. Another quantity being related more directly to the wave functions is the Berry
curvature [75,76] and it is expected to carry certain information on the chirality. Certain
crystals lacking an inversion center are known to exhibit piezoelectricity (see Table 1),
which is connected to the Berry phase. The sign of the Berry phase is changed when the
structure is inverted. However, not all chiral materials are piezoelectric, and vice versa.
Therefore, piezoelectricity cannot be used in all cases to distinguish between enantiomers.
In particular, space group P 213 (198) provides piezoelectricity and thus, the compounds
with B20 or F01 structure may be piezoelectric. However, piezoelectricity can only be
measured for insulating materials, which requires usually large band gaps. Here, the
influence of chirality and structural inversion on the Berry curvature instead of the Berry
phase will be briefly investigated for FeSi.
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The Berry curvature ~Ω(k) as a function of the electron momentum k is defined in the
pseudovector form by the equation [77]:

~Ω(k) = −=
(〈

~∇kuk|×|~∇kuk

〉)
(3)

where |uk〉 = e−ik·r|Ψk〉 are periodic Bloch wave functions, and = assigns the imaginary
part. Here, ~Ω was calculated using Wannier functions based on first principle calculations
of the electronic structure (see Appendix A).

Figure 18 shows the calculated in-plane components of the Berry curvature of FeSiRL

and FeSiLR in the (001) plane through the Γ-point (kz = 0). The z-component vanishes in
this plane. The absolute value of the Berry curvature is the same and has an achiral C2v
symmetry similar to the band structure. This is because of the sign and thus any phase
information is lost when calculating it. However, the sign information is still present in the
x and y components of Ω, to a certain extent. The x and y components have mirror planes
that are absent in the crystal structure. Certain details and differences of the Berry curvature
can be better observed from the plot of the vector field ~Ω(kx, ky), as shown in Figure 18.
Remarkably, the rotational sense of the vector field distribution is opposite for FeSiRL

compared to FeSiLR, thereby demonstrating that the Berry curvature is a characteristic
quantity of the electronic structure that is also sensitive to the handedness (or more general
chirality sense) of a chiral crystal structure. The appearance of magnetic moments induced
by a current as well as other Berry curvature-related gyrotropic effects in chiral Tellurium
were investigated in detail by Tsirkin et al. [78] using first-principles methods.
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Figure 18. Berry curvature of FeSi, calculated for the two enantiomers of FeSi. The x and y components
Ωx,y(kx, ky) in the (001) plane through the Γ-point (kz = 0) and the corresponding in-plane vector
field ~Ω(kx, ky) are shown.

At present, there exist no experimental methods to measure directly the vectorial Berry
curvature and to distinguish the enantiomers in this manner. Moreover, as changes in the
sign of Ωn already appear through the inversion of the structure in achiral systems without
an inversion center, they cannot be used to decide whether a structure is chiral. Therefore,
they must be distinguished using results from circular dichroism and in particular circular
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dichroism in the angular distribution of photoelectrons. However, the Berry curvature is a
ground state property whereas photoelectron spectroscopy deals with excited states and
the ground state is included only in an indirect way.

7.4. Circular Dichroism, Chirality, and Electronic Structure

In contrast to the band structure, the optical absorption depends on the handedness of
a crystal and measures the transition between occupied and unoccupied states. Obviously,
the transitions between different states are affected by at least one physical quantity that is
not observed from the usual electronic structure representations. Indeed, the band structure
does not contain information regarding the phase of the wave functions related to the
states. Photoemission, that is emission of electrons excited by photons, is complementary
to photoabsorption and also exhibits dichroic effects. Photoabsorption or angular inte-
grated photoemission average over the momentum space. Angular resolved photoelectron
spectroscopy (see [79,80] and references there) offers the advantage of being able to scan
the momentum (k) space. Therefore, the circular dichroism in photoemission allows the
investigation of the interrelation between structural chirality and electronic structure.

The circular dichroism (CD) in photo absorption is typically a small effect (order 10−3

and less) that is based on electric dipole–electric quadrupole (E1–E2) or electric dipole–
magnetic dipole (E1–M1) interaction. In contrast, large effects (order 1) can be observed
when investigating the circular dichroism in the angular distribution of the photoelectrons
(CDAD), which already arise in pure electric dipole approximation (E1–E1 interaction).

The CDAD is essentially a non-magnetic effect appearing even in the absence of spin–
orbit interaction. It was first proposed by Ritchie for chiral molecules in the gas phase,
where the effect was small [81,82]. Later it was found by Cherepkov that large effects should
appear already for achiral but oriented molecules when a handedness is enforced by the
experiment [83]. In particular, photon incidence and molecular orientation, and direction
of electron emission should not be coplanar. This effect was demonstrated first through
the experiments conducted by Westphal, Schönhense et al. for CO adsorbed on Pt [84,85].
Feder [86] showed that the effect also appears in photoemission from solids, which was later
subsequently observed in experiments as well. Further, Fecher et al. [87,88] investigated the
role of the surface on the CDAD in emission from solids. A recent, extensive review of the
group of Schönhense explained the present experimental possibilities for investigating the
electronic structure of solids employing CDAD [89]. To date, the CDAD with its handedness
enforced by the handedness of the experiment has been used to investigate achiral systems.
However, it is also a powerful tool for investigating the electronic structure of chiral solids
as shown below.

The impact of the symmetry on the CDAD was investigated by Cherepkov and co-
workers for oriented achiral systems belonging to the point groups C2v [90], C3v [91], and
C4v [92], and more general under consideration of the solid surface [93]. It was found
that the CDAD vanishes when the quantization axis, photon spin, and electron emission
are collinear. In addition, it also vanishes in the mirror planes of the experiment. These
symmetry considerations indicate the manner in which to use CDAD for investigation of
chiral systems. To avoid a handedness enforced by the geometry normal incidence should
be used where the surface normal coincides at best with the high symmetry (chiral) axis
of the crystal. The dichroic response to a change of the helicity of the circularly polarized
photons can subsequently be observed in normal emission of the electrons.

Figure 19 demonstrates the appearance of the CDAD from the FeSi(001) surface (see
Figure 12) for the normal incidence–normal emission case using first principle calculations
(Appendix A). The polarization-dependent spectra were calculated for a photon energy
of hν = 21.2 eV and were then compared to the band structure in the ∆-direction. The
comparison allows us to determine which states contribute to the photoemission process.
However, changing the photon polarization has a distinct effect, although the spectra are
calculated in the direction of photon incidence. The largest positive dichroism appears at
3 eV below the Fermi energy (εF), where it amounts to 42%, while the most negative value
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of −44% is observed at 0.7 eV below εF. The normal emission spectra calculated for the RL
enantiomer with σ+ polarization cannot be distinguished from those for the LR enantiomer
and σ− polarization. Consequently, the circular dichroism spectrum ICDAD = I+ − I−

has an opposite sign, whereas the bare intensity spectra with I0 = I+ + I− are the same.
Further information regarding the handedness of the crystal is included in the angular
distribution as will be demonstrated next.
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Figure 19. Polarization dependent photoelectron spectra and CDAD from FeSi(001). The polarization-
dependent spectra are shown in comparison to the band structure along ∆ for one of the enantiomers.
The calculations are for normal incident photons of 21.2 eV energy and opposite helicity. For the
enantiomorphous pair, the resulting circular dichroism is compared to the total intensity.

The missing dichroic response in mirror planes of the achiral system enables the
investigation of the handedness of chiral crystals. Using normal incidence along a high
symmetry surface normal, the angular distribution of the electrons in the half-space above
the surface reflects the symmetry of the crystal by the CDAD. An example is provided
using VSi2 crystallizing with the chiral space groups 180 or 181.

The circular dichroism in the angular distribution of the photoelectrons emitted from
the hexagonal VSi2(0001) surface (see Figures 10 and 14) is illustrated in Figure 20. It
was chosen because it is metallic and thus has states crossing the Fermi energy. The
calculations were performed for the normal incidence of the photons with an energy of
hν = 21.2 eV. Further, the energy of the photoelectrons was set to the Fermi energy and
thus reflected a part of the Fermi surface. Consequently, the changes in the intensity
distributions between the two enantiomers with changing photon polarization are striking
and result in a memorable CDAD. The intensity distributions and the dichroism clearly
reflect the absence of mirror planes and the rotational structure with opposite handedness.
The maximum dichroism was ±53% with respect to the intensity maxima. Moreover,
an integration of the angular distribution ICDAD(kx, ky) shown in Figure 20 results in a
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circular dichroism of 1.86% for the right-handed (P 6222, 180) surface and −1.86% for the
left-handed (P 6422, 181) one. Thus, the sign of the circular dichroism is opposite for the
crystals with opposite handedness.
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Figure 20. CDAD from VSi2(0001). The intensity distributions for excitation by circularly polarized
photons of opposite helicity with normal incidence (that is along the (0001) surface normal) are shown.
The intensities and circular dichroism (CDAD) from crystals belonging to the two space groups with
opposite handedness are compared.

These two examples, one for a chiral structure and another for a chiral space group,
demonstrate the manner in which angular resolved photoelectron spectroscopy can be
used to investigate the electronic structure of chiral solids when using circular dichroism.
The method is particularly interesting for metals that are not transparent for photons
with optical wavelengths (infrared to visible light). Owing to its ability to scan the k-
space it carries much more information compared to photoabsorption methods, including
for example the natural X-ray circular dichroism [94] which also depends on the E1–E2
interference term. Moreover, the CDAD method is also suitable for investigating chiral
surfaces or chiral molecules adsorbed at chiral or achiral surfaces. Recently, the relations
between optical rotation, circular dichroism, and the chirality of light have been reviewed
by A. Liniger et al [95]. The use of super-chiral and optimal chiral light will allow different
pathways to examine chiral solids making use of novel dichroic effects.

8. Discussion, Summary, and Conclusions

The study presented an overview of chiral structures and chiral space groups, distin-
guishing structures from space groups. Chiral space groups are related to special but not
neutral screw rotations as symmetry elements and always appear in enantiomorphous pairs.
Two measures of chirality were introduced to quantify and distinguish chiral structures:
Hausdorff distance and the continuous chirality measure. Examples of these characteristic
quantities were reported for selected crystal structures. The discussion of the chirality
measures revealed that the transition from achiral to chiral structures (and vice versa) is
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smooth and can be forced by very small displacements of the atoms forming the crystal
structure. Further, the chirality was discussed for bulk solids and their surfaces where the
latter is vital to catalysis and photoelectron spectroscopy. In addition, the chiral surfaces
and the surfaces of chiral crystals were distinguished through several examples. For the
electronic structure, it was found that its basic characteristic quantities, the band struc-
ture, and density of states, were affected by the same crystal parameters as the chirality.
However, these quantities are independent of the handedness, implying that they stay the
same when the handedness of the crystal structure is changed through mirror operations
or inversion. Further, the Berry curvature depends on the handedness but is not proof of
chirality because it reflects the inversion of a structure also in achiral crystals. Finally, it was
proposed that the circular dichroism in the angular distribution of photoelectrons allows
the distinguishing of the handedness of chiral solids and their surfaces. The chiral response
of the photoelectron distribution excited by circularly polarized photons of opposite helicity
was demonstrated through two examples. Consequently, the appearance of handedness of
the experiment, which also produces dichroism, was avoided when using high symmetry,
collinear configurations.

In the presented work, four main aspects were dealt with and have been concretized
using various materials as examples:

(I) chirality, chirality measure, chirality sense, handedness, and helicity;
(II) chiral structures and chiral crystallographic space groups;
(III) chirality in two and three dimensions;
(IV) material properties depending on chirality measures or chirality sense.

In particular, it was shown that the 22 chiral space groups result in handed structures
but not the 43 achiral Sohncke groups. Nevertheless, the chiral structures described
by those achiral type III space groups can have opposite chirality senses, resulting in
enantiomorphous pairs. Further, achiral bulk materials may have chiral surfaces. Chirality
measures have been used to quantify chirality and to compare different chiral compounds
with the same structure type. So far, chirality measures do not distinguish the chirality
sense. It is also not seen in the standard quantities of the electronic structure of solids that
are the density of states and band structure, even though chirality is definitely present in
the charge density distribution through the crystal structure. Finally, it was demonstrated
that circular dichroism in photoelectron spectroscopy is able to determine the chirality of
the electronic structure.
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Appendix A. First Principles Calculations

In the main part, certain calculated band structures were shown. The reported elec-
tronic structures were investigated with ab initio calculations using the full potential
linearized augmented plane wave method as implemented in WIEN2k [96]. The exchange–
correlation functional was considered within the generalized gradient approximation in the
parameterization of Perdew et al. [97]. For integration, 16,000 k-points of the full Brillouin
zone were used for cubic and 9000 k-points for hexagonal structures. The final numbers of
k-points were reduced to the irreducible wedges of the Brillouin zones and thus depend
on the symmetry. Further, the energy convergence criterion was set to 10−5 Ry, and simul-
taneously the criterion for charge convergence to 10−3e−. In addition, a force criterion of
0.2 mRy/aB (aB = Bohr’s radius) was used during the optimization of the free u parameters
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and full structure optimizations. Wannerisation was performed using Wien2Wannier [98]
and the Wannier functions have been analyzed with Wannier90 [99]. Photoelectron spectra
were calculated with the spin-polarized full relativistic MUNICH SPRKKR code [100,101]
with modifications based on the full relativistic slab code RSLAB of Braun [102]. Both codes
are based on Korringa–Kohn–Rostoker (KKR) type multiple scattering methods and use
four-component Dirac-type wave functions. Here, spin–orbit interaction is an intrinsic
property of the Dirac equation and is not introduced as a perturbation.

Appendix B. Relation Between Chiral Structures, Symmorphic Space Groups, and
Topological Spaces

The only allowed symmetry operations in symmorphic space groups are pure ro-
tations, pure reflections, and roto-reflections, of which the latter two result in achiral
structures. Combining the 32 point groups with the allowed translational lattice types,
73 out of the 225 space groups are found to be symmorphic. The symmorphic groups are
listed in Table A1. Further, 23 out of these groups contain only proper rotations and thus,
also belong to the set of Sohncke groups. However, none of these space groups belonging
simultaneously to both sets is chiral by itself although they describe chiral structures, imply-
ing that all symmorphic space groups are achiral even though certain structures belonging
to those groups might be chiral. In other words, all chiral space groups are asymmorphic.

A total of 35 out of the 65 Sohncke groups have orbifolds belonging to S3 (3 spheres)
topological space. Only 13 out of these are symmorphic. They are marked in Table A1. Five
pairs of the non-symmorphic Sohncke groups belonging to S3 are chiral, namely P 41,322,
P 31,212, P 61,522, P 62,422, and P 41,332.

Table A1. The 23 symmorphic Sohnke groups. Printed in bold are those groups belonging to S3

(3 spheres) topological space.

Crystal System Space Group

Triclinic P 1
Monoclinic P 2, C 2
Orthorhombic P 222, C 222, I 222, F 222
Tetragonal P 4, P 422, I 4, I 422
Trigonal P 3, P 312, P 321, R 3, R 32
Hexagonal P 6, P 622
Cubic P 23, I 23, I 432, F 23, F 432
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