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Abstract: This article describes a model based on concepts of Fracture Mechanics to evaluate the
flexural strength of fiber-reinforced concrete (FRC) sections. The model covers the need by structural
engineers to have tools that allow, in a simple way, the designing of FRC sections and avoiding
complex calculations through finite elements. It consists of an analytical method that models FRC
post-cracking behavior with a cohesive linear softening law (σ − w). We use a compatibility equation
based on the planar crack hypothesis, i.e., the assumption that the crack surfaces remain plane
throughout the fracture process, which was recently proven true using digital image correlation.
Non-cracked concrete bulk follows a stress–strain law (σ − ε) combined with the Bernoulli–Navier
assumption. We define a brittleness number derived from non-dimensional analyses, which includes
the beam size and the softening characteristics. We show that this parameter is key to determining
the FRC flexural strength, characterizing fiber-reinforced concrete, and reproducing the size-effect of
sections in flexure. Moreover, we propose an expression to calculate the flexural strength of FRC as a
function of the cited brittleness number. The model also gives the ratio between the residual strength
in service conditions and the flexural strength. Model results show a good agreement with tests in
the scientific literature. Finally, we also analyze the brittle–ductile transition in FRC sections.

Keywords: cohesive fracture; fiber-reinforced concrete; size effect; brittleness number; FRC flexural
strength

1. Introduction

Fiber-reinforced concrete (FRC) is a composite material characterized by a cementi-
tious matrix and discrete fibers. The matrix is either concrete or mortar. Fibers can be of
steel, polymers, carbon, glass, or natural materials and they provide post-cracking residual
strength [1,2]. Thus, FRC can be considered inside the group of quasibrittle materials, char-
acterized by the presence of a fracture process zone ahead of the real crack tip. The interest
in the FRC as a structural material grew gradually throughout the last years, after the
publication of design codes and recommendations in Europe [3], for example: [4–7]. Hence,
there exists an increasing interest in designing tools for structural engineers regarding the
application of FRC as a structural material [8].

The flexural strength in quasibrittle materials, such as FRC, does not coincide with
the tensile strength and it is widely accepted that it is size-dependent [9]. Indeed, this
size effect is included nowadays in some structural design concrete codes: Model Code
2010 [6,7]. The presence of a fracture process zone (FPZ) at the crack front, whose extension
depends mainly on the microstructure of the material, has been accepted as the main
cause of the transitional behavior from small to large sizes [10]. As FRC is a composite
material characterized by a cement matrix and discrete fibers, the FPZ is larger than in
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plain concrete [11]. The main consequence is that the flexural strength in FRC is bigger
than in plain concrete.

The post-cracking residual strength is defined by a softening function. Its implementa-
tion follows either (i) the fictitious crack model by [12], which uses a stress–crack width
(σ − w) law to represent the softening, or (ii) the smeared crack band model firstly ad-
vanced by [13], which does so by a stress–strain width (σ − ε) relation. The latter depends
on the width of the crack band [14]. In most cases, a computational FEM approach with
tensile softening material behavior implemented is necessary to predict flexural strength in
plain concrete and FRC [15–17].

Crack band models need to define a specific internal length (Li) to connect contin-
uum mechanics, governed by a stress–strain constitutive relationship (σ − ε), and fracture
mechanics, governed by a stress–crack opening relationship (σ − w). Hence, the aforemen-
tioned internal length is not a structural material property, but an artifact related to the
length of the fracture process zone, the width of the band and the dimensions of the speci-
men. To properly perform this connection and prevent mesh dependency, several methods
have related the internal length to physical parameters, such as maximum aggregate size
for non-local approaches [17,18], or element size for local approaches [15,16]. In addition,
several numerical crack models have been developed, such as the discontinuous numerical
modeling of cracks using embedded discontinuities [19], the discrete strong discontinuity
approach [20–22], dynamic fragmentation [23], the sequentially linear analysis method [24],
or even a machine learning [25].

Based on this concept to relate discrete and continua media, a structural characteristic
length (lcs) is defined as a parameter to convert stress–crack width (σ − w) curves into
stress–strain (σ − ε) curves [26]. Although this structural length is used like the internal
length (Li) mentioned above, it has a different meaning. While the first one, Li, is related
to the distance between cracks and the depth of the neutral axis (macroscopic effects), the
second one depends on the length of the fracture process zone (material properties) [27,28].
In all cases, these length parameters convey the idea that FRC is a continuous material,
when in fact the main consequence of concrete post-cracking behavior is crack localization,
which introduces a discontinuity in the material. Moreover, the Li parameter implies
a structural dependence on the stress–strain curve (σ − ε), despite it should be totally
independent of the type of structure considered.

To avoid the use of these length parameters, the present paper gives an analytical
solution to evaluate flexural strength in FRC based on concepts of Fracture Mechanics.
We model tension in cracked FRC by means of a softening law (σ − w). In this paper
we use the linear function included in Model Code 2010 [3,7], but any other softening
function included in codes or bibliography can be similarly adopted. The method uses a
compatibility equation based on the planar crack hypothesis, e.g., on the assumption that
the crack surfaces remain plane throughout the fracture process, which has been recently
proven true by means of digital image correlation [29]. The compressive behavior of FRC
is modeled through a linear elastic law (σ − ε) in conjunction with Navier’s hypothesis,
applied only to the ligament. The crack opening is evaluated from the applied moment and
the crack depth, obtaining a stress profile in the section in each crack step [30–33], using
an expression proposed by [34]. Crack patterns are not evaluated because the model only
considers a 1D section. The analytical solution fits tests results and expressions derived
from cohesive models solved by finite element techniques.

One may wonder about the need for analytical solutions provided FEM-based ex-
pressions are already available. There are several reasons for this: (i) our analytical model
is based on simple and well-known assumptions, (ii) in addition to the strength, it also
gives the depth of the fracture zone and the stress profile distribution, (iii) its small- and
large-size asymptotic behavior is correct, and (iv) it provides a better understanding of the
relevant parameters [35]. So, the present paper aims at providing the theoretical frame for
the planar crack approach in FRC sections and a tool to be used by structural engineers for
designing FRC sections.
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The paper is structured as follows. The subsequent section describes the material
constitutive assumptions. Section 3 describes the crack propagation model. A detailed
analysis of flexural behavior in FRC sections and its experimental validation is included
in Section 4. Section 5 presents an analysis of the size effect in flexural strength. Section 6
shows a practical methodology based on model results to evaluate flexural strength and
its validation range. Section 7 presents an analysis of the transition between ductile and
brittle behavior. Finally, Section 8 summarizes the results of the paper and draws several
conclusions.

2. Materials Hypothesis

The behavior of FRC is divided into two hypotheses depending on whether concrete
tensile strength reached or not. It is considered one hypothesis for the non-cracked zone
and another for the cracked zone.

2.1. Non-Cracked Zone

In the non-cracked area, concrete behavior is considered as an elastic material, which
is represented by its elastic modulus. Navier’s hypothesis, e.g., planar sections remain
planar after deformation, is used as a compatibility equation in the non-cracked area, see
Figure 1. A linear stress distribution is adopted, where tension and compression stresses
are proportional to the corresponding strain. A section without reinforcement bars and
no compressive failure of concrete is assumed for this model. In the case of FRC sections
without reinforced bars, during the crack progress, compression strength is only reached
when the crack front is near to reach the beam depth [30]. Thus, compression failures
normally occur after a long crack development.
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Figure 1. Material hypotheses. Cracked area is modeled according to the crack planar hypothesis
and non-cracked area according to Navier’s hypothesis.

2.2. Cracked Zone

Based on the cohesive model, a stress–crack opening law (σ − w) in uniaxial tension
is defined as constitutive law for representing the post-cracking behavior of FRC. For the
model development it is used the linear stress–crack opening law included in Model Code
2010 [7]; however, as aforementioned, the model can be adapted to any other softening
function included in codes or bibliography. The σ − w used in the model presented in
this paper is shown in Figure 2. The model in this paper is only valid for the case of
post-cracking softening, meaning that a single discrete crack is localized in the FRC section.
Post cracking hardening must be modeled using plasticity as no crack localizations will
take place.
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In Figure 2, fFts represents the serviceability residual strength, defined as the post-
cracking strength for serviceability crack openings, and fFtu represents the ultimate residual
strength. fFts and fFtu are calculated through the residual values of flexural strength by
using the following equations:

fFts = 0.45 fR1 (1)

fFtu = fFts −
wu

CMOD3
( fFts − 0.5 fR3 + 0.2 fR1) (2)

where fR1 is the residual flexural strength corresponding to a crack mouth opening dis-
placement (CMOD) of 0.5 mm and fR3 is the residual flexural strength corresponding to a
CMOD of wu. These parameters are determined by performing a three-point bending test,
on a notched beam, according to [36] (see Figure 3). wu is usually taken as 2.5 mm.
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The ultimate tensile strength fFtu in this linear model depends on the required ductility
that is related to the allowed crack width. The ultimate crack width should not exceed
2.5 mm in any case. From Figure 2, the crack opening, w, in post-cracking constitutive law
can be expressed as a function of the residual stress, σ:

w =
fFts − σ

fFts − fFtu
wu (3)
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The area under the softening function is represented by AF,FRC. This area represents
the theoretical energy required to open a unit area of crack surface, considering a linear
softening.

AF, FRC =
fFts + fFtu

2
wu ⇒ wu =

2AF, FRC

fFts + fFtu
(4)

The planar crack assumption is used as a compatibility equation in the non-cracked
area. This hypothesis was experimentally proven by [29]. The results of their study show
that the crack propagation in the FRC predominantly occurs in the pre-peak and the
post-peak softening response immediately following the limit of proportionality (LOP)
as per [36]. Softening behavior in the load response immediately following the LOP is
significantly influenced by the presence of fibers. The crack profile remains significantly
planar after LOP, also when the crack depth approaches the beam height (formation of a
localized hinge).

Based on the planar crack hypothesis, and in conjunction with a linear softening law, a
linear stress profile can be considered during the crack processes on the cohesive ligament,
see Figure 4.
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3. Modeling of Crack Propagation

A rectangular FRC section is considered. The different geometric variables relevant to
the problem are displayed in Figure 4. The section has a depth of h, and a width equal to b.
The crack depth is represented as z and the neutral axis depth as yn.

All these dimensions can be expressed in a non-dimensional way by dividing them
by h. In this manner, we define ξ = z/h as the non-dimensional crack depth, and γn = y/h
as the non-dimensional depth of the neutral axis; these parameters vary between 0 and 1.
The non-dimensional crack opening is obtained by dividing it by the ultimate crack width,
w* = w/wu.

The stress at the bottom of the section is named σb and the stress at the top is σt.
Non-dimensional stresses are obtained by dividing by the serviceability residual strength,
fFts. So, we define σb* = σb/fFts and σt* = σt/fFts.
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Crack propagation is divided into two different cases depending on the value of the
crack opening at the mouth of the crack. FRC section is in case 1 when it is less than the
ultimate crack width, wb < wu, and it is in case 2 when the crack mouth opening is bigger
than the ultimate crack width wb > wu, see Figure 4.

In case 2, the crack depth for the critical opening is represented as z0. This value
increases monotonically during the cracking process, so case 2 represents a decreasing
curve [37] and for this reason, our study is focused on the development of case 1, where
maximum load takes place.

The section equilibrium forces in case 1 can be expressed as:

∑ F = 0 ⇒ σt

2
(h− yn)b−

fFts
2

(yn − z)b +
(

fFts + σb
2

)
zb = 0 (5)

Expressing Equation (5) in a non-dimensional form, the following equation is obtained:

σ∗t =
γn + σ∗b ξ

1− γn
(6)

The compatibility condition in the non-cracked zone is represented based on Navier’s
hypothesis:

εT
h− yn

=
εct

yn − z
⇒ σt

h− yn
=

fFts
yn − z

(7)

Expressing Equation (7) in a non-dimensional form allows deriving the following
equation:

γn =
1 + σ∗t ξ

1 + σ∗t
(8)

In the cracked zone, the constitutive law is formulated as:

wb(M, z) = wb(σb) (9)

Crack opening, wb (M,z) can be evaluated by the expression given by [34]. wb (σb) is
defined considering the softening law, Equation (3). Thus, Equation (9) can be expressed as:

24M
bh2Ec

z f (ξ) =
fFts − σb

fFts − fFtu
wu (10)

where f (ξ) is the following shape function:

f (ξ) = 0.76− 2.28ξ + 3.87ξ2 − 2.04ξ3 +
0.66

(1− ξ)2 (11)

If we define a characteristic length as:

lch,FRC =
Ec AF,FRC

f 2
Fts − f 2

Ftu
=

Ecwu

2( fFts − fFtu)
(12)

A brittleness number can also be defined as:

βH,FRC =
h

lch,FRC
=

2h( fFts − fFtu)

Ecwu
(13)

This brittleness number has the same form of the Hillerborg’s brittleness number [8]
but it is particularized for the case of linear softening with a residual stress, as it is shown
in Figure 2. This brittleness number represents the size ratio between the section depth and
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the material characteristic length, which is a material property. Thus, Equation (10) in a
non-dimensional form is expressed as:

σ∗b = 1− 12M∗βH,FRCξ f (ξ) (14)

where M* is the bending moment in the section expressed in a non-dimensional form:

M∗ =
M

bh2 fFts
(15)

So, the bending moment in the section is equal to Equation (16):

M =
1
3

σt(h− yn)
2b +

1
3

fFts (yn − z)2b +
(

fFts + σb
2

)
z

[
yn − z

(
1
3 fFts + 1

6 σb
1
2 ( fFts + σb)

)]
b (16)

Equation (16) in a non-dimensional form is:

M∗ =
1
3

σ∗t (1− γn)
2 +

1
3
(γn − ξ)2 +

(
1 + σ∗b

2

)
ξ

[
γn − ξ

(
2 + σ∗b

3
(
1 + σ∗b

))] (17)

To evaluate the section stress profile, the crack opening, and the bending moment for
a given crack depth, ξ, a system of four equations, Equations (6), (8), (14), and (17), can be
solved analytically. The results of the equation system are σb*, σt*, γn, and M*, the only
input data is βH,FRC. The crack depth, ξ, is used as a control parameter during the crack
process. For each crack depth, only one equilibrium solution exists.

The crack opening at the bottom part of the section is evaluated as:

w∗b = 12M∗βH,FRCξ f (ξ)
(

1
1− α

)
(18)

where α is defined as the ratio between fFtu and fFts, (fFtu/fFts). Crack opening depends on
the brittleness and on the α ratio previously defined. The maximum value for wb* in case 1
is 1.0. Once this value is surpassed, case 2 applies.

4. Model Response and Experimental Validation

In this section, it will be shown how the brittleness number βH,FRC influences the
behavior of the FRC section. In Figure 5a,b, the x-axis represents the non-dimensional crack
mouth opening, wb*, and the y-axis the non-dimensional bending moment during crack
growth, M*. In Figure 5a, the ratio between fFts and fFtu, α, has a constant value of 0.8. The
initial point of all curves is the cracking moment. If we consider an elastic material, this
crack has a non-dimensional value of 0.167. As the brittleness number decreases, peak load
increases. Thus for smaller values of βH,FRC the softening length development is bigger.
Therefore, this is the main reason for the increase in peak load. Section behavior is analyzed
through moment versus crack opening curves, instead of the moment versus curvature
curves, normally used in reinforced concrete section design. These curves give a more
physical approximation to the FRC sections’ flexural behavior.

Figure 5b shows the influence of the ratio between fFtu and fFts, α, in the fiber reinforced
concrete behavior. As in the previous case, the x-axis represents the non-dimensional crack
mouth opening, wb*, and the y-axis represents the non-dimensional bending moment
during crack growth, M*. The brittleness number βH,FRC has a constant value of 0.01 in
the results shown. The peak load is not influenced by this parameter, as it is shown in the
figure. As α increases, the nondimensional crack opening also increases. Therefore, when
the slope of the softening curve decreases, so does the slope of the moment-opening curve
after the peak.
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Figure 5. Influence of (a) the brittleness number, βH,FRC; and (b) the ratio between fFtu and fFts, α.

In Figure 5a,b, it is observed that maximum load can be reached as an absolute
maximum of the curve into the crack opening interval [0, 1], see, for example, the curve
for βH,FRC = 0.01 and α = 0.4 in Figure 5b, or the maximum is reached in the interval limit,
wb* = 1.00, see, for example, the curve for βH,FRC = 0.1, and α = 0.8 in Figure 5a. This last
case takes place when wu* is reached at the bottom part of the crack, and the maximum is
not within the interval [0, 1] of wb*.

To validate the response of the model, we compared the results obtained with ex-
perimental results from the bibliography [38–44]. All of them correspond to contents of
steel fibers of around 45–60 kg/m3, which is a usual range in fiber reinforced concrete
elements. Figure 6 and Table 1 show the comparison, the x-axis represents the brittle-
ness number, βH,FRC, and the y-axis the maximum non-dimensional bending moment
during crack growth, Mmax*. The model follows the experimental trends of experimental
results with good agreement. Dotted horizontal lines represent the theoretical limits to the
non-dimensional moment Mmax* as will be explained in the next section.
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This could be useful to take into account for FRC sections in the structural design, thus
the prediction of the non-dimensional moment Mmax* depending on the brittleness number,
βH,FRC, is easy to obtain.
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Table 1. Experimental results from the bibliography compared in Figure 6 with numerical results from the planar crack model.

Reference Vf (kg/m3) Pmax (kN) fR,1 (MPa) fR,3 (MPa) b (m) h (m) L (m) Ec (MPa) wu (mm) fFts (MPa) fFtu (MPa)
Af,FRC

(N/mm)
βH

40 kg/m3 [38] 40 16.00 7.13 5.69 0.10 0.20 1.20 35,728 2.50 3.21 1.42 5.79 0.0080
Malgorzata-0.57H [39] 45 16.29 3.61 2.22 0.15 0.15 0.50 43,281 2.50 1.63 0.39 2.52 0.0034

Malgorzata-0.57CH [39] 45 16.49 3.27 1.78 0.15 0.15 0.50 41,903 2.50 1.47 0.24 2.13 0.0035
Michels. 0.65% [40] 51 31.40 7.73 6.93 0.15 0.15 0.60 30,000 2.50 3.48 1.92 6.75 0.0062
Michels. 0.52% [40] 41 30.60 7.47 6.67 0.15 0.15 0.60 30,000 2.50 3.36 1.84 6.50 0.0061

Zhang (78.4 kg/m3) [41] 78 16.50 9.60 6.00 0.10 0.10 0.40 32,000 2.50 4.32 1.08 6.75 0.0081
Doo-S13 (157 kg/m3) [42] 157 27.90 12.15 9.00 0.10 0.10 0.30 50,876 2.50 5.47 2.07 9.42 0.0053

Doo-S16.3 (157 kg/m3) [42] 157 32.90 13.50 12.60 0.10 0.10 0.30 46,260 2.50 6.08 3.60 12.09 0.0043
Doo-S19.5 (157 kg/m3) [42] 157 37.90 14.85 15.75 0.10 0.10 0.30 46,126 2.50 6.68 4.91 14.48 0.0031

Barros (60 kg/m3) [43] 60 11.50 2.20 1.90 0.15 0.15 0.45 33,366 2.50 0.99 0.51 1.88 0.0017
Barros (45 kg/m3) [43] 45 7.50 1.40 1.20 0.15 0.15 0.45 33,935 2.50 0.63 0.32 1.19 0.0011

Ali (60 kg/m3) [44] 60 28.00 7.00 5.67 0.15 0.15 0.60 34,484 2.50 3.15 1.43 5.73 0.0060
Ali (40 kg/m3) [44] 40 28.00 7.33 6.33 0.15 0.15 0.60 35,808 2.50 3.30 1.70 6.25 0.0054
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5. Size Effect on Flexural Strength for FRC

The flexural strength or modulus of rupture of a FRC section is defined as:

fR =
6Mmax

bh2 =
6M∗maxbh2 fFts

bh2 = 6M∗max fFts (19)

In Figure 7a, the x-axis represents the brittleness number, βH,FRC, and the y-axis
represents the non-dimensional flexural strength, fR*, which is defined as the ratio between
the flexural strength, fR, and fFts. The results obtained with the model are plotted with the
expressions for the flexural strength evaluated by Uchida et al. [45] and Planas et al. [46].
These expressions were derived following a classical computational approach based on
a cohesive constitutive law, in which secondary cracking is neglected [8]. Model results
follow the same trend than the computational results, and they show the dependency of
the flexural strength on the brittleness number, which represents the intrinsic size of the
section.
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Figure 7b shows the asymptotic behavior given by the model. The model response
satisfies the asymptotic condition fR*→ 3 for βH,FRC→ 0 (plastic limit solution for cohesive
cracks, Mmax* = 0.5) and fR* → 1 for βH,FRC → ∞ (linear elastic solution, Mmax* = 0.166).
Moreover, the plot represents the usual brittleness number ranges for FRC and plain
concrete. For FRC members, the flexural strength can be 150% to 200% higher than the
tensile strength (fFts in FRC) while for plain concrete this range is around 10–25%.

Note that for the lowest values of βH,FRC, the FEM approach shows an asymptotic
behavior that does not satisfy the plastic limit solution, fR*→ 3, see Figure 7a. The existence
of a non-negligible compressed area in the upper zone of the section stalls the crack growth,
and therefore the plastic limit solution cannot be reached. Thus, for structural engineering
purposes, it may be convenient to limit the value of fR* to 2.5.

Size effect also can be understood through the non-dimensional stress profiles. In
Figure 8, the x-axis represents the brittleness number, βH,FRC, and the y-axis represents the
value of σb*, γn, and ξ obtained with the proposed model.

We observe that, as βH,FRC increases, the crack depth and the depth of the neutral
axis decrease. Crack depth shows an asymptotic trend of 0, and the neutral axis of 0.5,
as is expected for the linear elastic solution. σb* also decreases as βH,FRC increases, but
its influence on the flexural strength gets smaller because the softening zone also shrinks,
compared to the depth, as βH,FRC increases. As an example of how the stress profiles vary,
Figure 9 plots the non-dimensional stress distributions for several values of βH,FRC, namely
1, 0.1, 0.01, and 0.001.
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The transition from the linear elastic to the plastic limit solution is seen in the non-
dimensional stress profiles in Figure 9. For the usual brittleness number range of values
for FRC (0.001–0.01), see Figure 7b, the crack depth has a value of over 0.6–0.7. So, we
can conclude that the fracture process zone in FRC usually occupies most of the section
height at maximum load. Thus, the scale effect in flexural strength in FRC is quantified and
explained through the proposed model.

6. Practical Expression to Determine the Flexural Strength in FRC

Considering the equation form proposed by [46], the non-dimensional flexural strength,
fR*, can be expressed, fitting our model results, as:

f ∗R = 1 +
1

0.5 + 4.3
√

βH,FRC
(20)
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It satisfies the asymptotic behavior discussed in Section 4. From Equations (19) and (20)
is evaluated the ultimate non-dimensional bending moment, which is:

M∗max =
1
6
+

1
3 + 25.8

√
βH,FRC

(21)

So, for structural purposes, the bending moment that a FRC section resists is ex-
pressed as:

Mmax =

(
1
6
+

1
3 + 25.8

√
βH,FRC

)
bh2 fFts (22)

All parameters included in this expression can be evaluated according to normalized
tests or based on codes’ recommendations as Model Code 2010 [7] and new Eurocode 2
draft [47]. Safety factors also can be applied to FRC residual strength as described in the
cited codes in order to use the design values fFts,d and fFtu,d.

Moreover, an expression to evaluate crack depth at maximum load (flexural strength)
can be derived from the model predictions:

ξmax =
1

1 + 5
√

βH,FRC
(23)

Figure 10a shows the results given by Equation (20) together with the results given
by the model. Figure 10b shows the maximum non-dimensional crack depth versus the
brittleness number.

Materials 2022, 15, x FOR PEER REVIEW 11 of 17 
 

 

6. Practical Expression to Determine the Flexural Strength in FRC 
Considering the equation form proposed by [46], the non-dimensional flexural 

strength, fR*, can be expressed, fitting our model results, as: 𝑓ோ∗ = 1 + 10.5 + 4.3ඥ𝛽ு,ிோ (20) 

It satisfies the asymptotic behavior discussed in Section 4. From Equations (19) and 
(20) is evaluated the ultimate non-dimensional bending moment, which is: 𝑀௫∗ = 16 + 13 + 25.8ඥ𝛽ு,ிோ (21) 

So, for structural purposes, the bending moment that a FRC section resists is ex-
pressed as: 𝑀௫ = ቆ16 + 13 + 25.8ඥ𝛽ு,ிோቇ 𝑏ℎଶ𝑓ி௧௦ (22) 

All parameters included in this expression can be evaluated according to normalized 
tests or based on codes’ recommendations as Model Code 2010 [7] and new Eurocode 2 
draft [47]. Safety factors also can be applied to FRC residual strength as described in the 
cited codes in order to use the design values fFts,d and fFtu,d. 

Moreover, an expression to evaluate crack depth at maximum load (flexural strength) 
can be derived from the model predictions: 𝜉௫ = 11 + 5ඥ𝛽ு,ிோ (23) 

Figure 10a shows the results given by Equation (20) together with the results given 
by the model. Figure 10b shows the maximum non-dimensional crack depth versus the 
brittleness number. 

  
(a) (b) 

Figure 10. Planar crack model results for the non-dimensional flexural strength, fR*, and correspond-
ing crack-depth, ξmax, fitted by (a) fR* given by Equation (20), and (b) ξmax given by Equation (22), 
respectively. 

Considering the residual strength fR1 given in Table L.2: Residual Strength Classes for 
SRFC (Annex L) from Eurocode 2 draft [47] and Equation (22), it is possible to draw the 
maximum bending moment versus fR1. Figure 11 shows the variation of the curve depend-
ing on the ductility class. We considered two depths of the section (20 and 40 cm), for a 
characteristic compressive strength of concrete equal to 25 MPa. Elasticity modulus has 
been calculated according to Model Code 2010 [7]. 

Figure 10. Planar crack model results for the non-dimensional flexural strength, fR*, and correspond-
ing crack-depth, ξmax, fitted by (a) fR* given by Equation (20), and (b) ξmax given by Equation (22),
respectively.

Considering the residual strength fR1 given in Table L.2: Residual Strength Classes
for SRFC (Annex L) from Eurocode 2 draft [47] and Equation (22), it is possible to draw
the maximum bending moment versus fR1. Figure 11 shows the variation of the curve
depending on the ductility class. We considered two depths of the section (20 and 40 cm),
for a characteristic compressive strength of concrete equal to 25 MPa. Elasticity modulus
has been calculated according to Model Code 2010 [7].

The major influence resides in the depth of the section. There is an increment of
roughly 300% between the bending moment for 20 cm and 40 cm of depth. On the other
hand, the ductility class and the variation of the characteristic compressive strength are
less relevant. So, these figures are practical to design the structural section according to the
results from the tests.
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Section 4. So, based on the cited condition. Figure 12 shows graphically the value ranges of
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Figure 12. Validity range for the proposed formulation.

Equations (20)–(23) cover ratios of fFtu/fFts between 0 and 0.8 for conventional FRC,
which correspond with ratios fR3/fR1 in the range a–d according to Mode Code 2010 [7]. So,
we conclude that the proposed expression covers most practical applications and can be
used for structural design. In all cases, as mentioned in Section 5, for structural engineering
purposes, it may be convenient to limit the value of fR* to 2.5.

7. Brittle–Ductile Transition in Flexural Failure for FRC Sections

A minimum quantity of fiber in FRC elements can be determined to avoid brittle
failure by imposing that the maximum cracking load, due to the matrix behavior, is lower
than the ultimate load. This critical fiber quantity value is a limit that provides a ductile
post-peak response of FRC members [48]. Figure 13 illustrates this brittle–ductile transition
in a cracked FRC section.
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The limit condition is:
Mcr = Mmax (24)

where Mcr is the cracking moment of the concrete matrix and Mmax is described in Section 5
and can be evaluated from the model showed in this paper. Thus, Equation (24) can be
expressed as:

ft = fR (25)

where ft is the tensile strength of the concrete matrix and fR is the flexural strength or
modulus of rupture. So, the behavior of the FRC section can be described in a non-
dimensional form as:

f ∗t > f ∗R Brittle behavior (26)

f ∗t < f ∗R Ductile behavior (27)

where ft*, is equal to ft/fFts. So, if ft* is bigger than fR*, fiber concrete section presents a
brittle behavior, and, if ft* is lower than fR*, fiber concrete section presents a ductile behavior.
Rearranging Equation (20) as a function of βH,FRC, and considering the limit condition in
Equation (25), Equation (28) gives the value of the maximum brittleness number that has a
ductile behavior for a given base concrete tensile strength. In other words, if a section has a
brittleness number, βH,FRC, less than βH,FRC,max, for a given value of ft*, this section will be
ductile.

βH,FRC,max =

[
1

4.3

(
1

f ∗t − 1
− 0.5

)]2
(28)

Thus, the ductile or brittle response of a FRC section is determined by only two
parameters, namely the tensile strength of the base concrete, ft, and the brittleness number,
βH,FRC. In Figure 14, the x-axis represents the brittleness number, βH,FRC, and the y-axis the
non-dimensional tensile strength of the base concrete, ft*. Two areas are drawn defining
the FRC section behavior (ductile or brittle). The boundary curve between brittle–ductile
behavior is given by Equation (28).
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8. Conclusions

An analytical model based on concrete Fracture Mechanics is presented to evaluate
the flexural strength of FRC sections. The following conclusions can be drawn from the
study:

• The planar crack assumption can be considered as an alternative to Navier’s hypoth-
esis to model the FRC cracked zone. Using this approach, we avoid using length
parameters as lcs to evaluate strains from crack openings, as is commonly carried out
in models based on stress–strain laws.

• We propose a brittleness number, βH,FRC, analogous to the one of Hillerborg, as a char-
acterization parameter of FRC structural sections. It is derived from a nondimensional
analysis, which includes the beam size and FRC softening characteristics.

• The model fits experimental results very well. Moreover, the model reproduces the
asymptotic behavior expected from plastic limit solution for cohesive cracks—very
short depths—to the linear elastic solution—overly large depths.

• We offer an expression to calculate the flexural strength of a fiber-reinforced concrete
section based on the model results. It depends on the brittleness number, βH,FRC and
on the serviceability residual stress, fFts. Its range of validity covers most of practical
cases and thus, it can be profitably used for the structural design of FRC sections.

• The model, also, allows studying the ductile–brittle transition in FRC sections. It
depends only on two parameters, namely the related tensile strength of the base
concrete, ft, and the brittleness number, βH,FRC.

• The planar crack model contributes to a better understanding of the nature of flexural
behavior of FRC sections and gives a more physical approach to their failure behavior.
In addition, the expressions derived from the model results can be used for structural
engineering purposes, constituting a design toolset that avoids complex calculations
through finite elements.
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Nomenclature

b beam width
Ec longitudinal elastic modulus of concrete
fFts serviceability residual stress of concrete
fFtu ultimate residual stress of concrete
fR flexural strength
fR* non-dimensional flexural strength
fR1 residual flexural tensile strength corresponding to CMOD = 0.5 mm
fR3 residual flexure tensile strength corresponding to CMOD = 2.5 mm
ft tensile strength of concrete
ft* non-dimensional tensile strength of concrete
AF,FRC area under the softening crack law (energy per unit area to open a crack up to the

ultimate crack opening)
h beam height
lcs,FRC structural characteristic length of FRC
Li specific internal length
M bending moment
M* nondimensional bending moment
Mcr critical bending moment
Mmax maximum bending moment during crack growth
Mmax* maximum nondimensional bending moment during crack growth
w crack opening
w* nondimensional crack opening
wb crack mouth opening displacement (opening of the crack at the bottom edge of the section)
wb* non-dimensional crack mouth opening displacement
wu ultimate crack opening
yn neutral axis depth
z crack depth
z0 crack depth at critical opening
α relation between fFtu and fFts
βH,FRC brittleness number for FRC
γn non-dimensional neutral axis depth
ε strain
εb strain at bottom part of the beam
εt strain at the top part of the beam
ξ non-dimensional crack depth
ξmax maximum nondimensional crack depth
σ stress
σb stress at the bottom part of the beam
σb* non-dimensional stress at the bottom part of the beam
σt stress at the top part of the beam
σt* non-dimensional stress at the top part of the beam
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