
Citation: Qian, C.; Xu, B.; Xia, Q.;

Ren, Y.; Yang, D.; Wang, Z. A

Dual-Input Neural Network for

Online State-of-Charge Estimation of

the Lithium-Ion Battery throughout

Its Lifetime. Materials 2022, 15, 5933.

https://doi.org/10.3390/ma15175933

Academic Editor: Ricardo Alcántara

Received: 17 July 2022

Accepted: 24 August 2022

Published: 27 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

materials

Article

A Dual-Input Neural Network for Online State-of-Charge
Estimation of the Lithium-Ion Battery throughout Its Lifetime
Cheng Qian 1, Binghui Xu 1, Quan Xia 1,2, Yi Ren 1 , Dezhen Yang 1,* and Zili Wang 1

1 School of Reliability and Systems Engineering, Beihang University, Beijing 100191, China
2 School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China
* Correspondence: dezhenyang@buaa.edu.cn

Abstract: Online state-of-charge (SOC) estimation for lithium-ion batteries is one of the most impor-
tant tasks of the battery management system in ensuring its operation safety and reliability. Due
to the advantages of learning the long-term dependencies in between the sequential data, recur-
rent neural networks (RNNs) have been developed and have shown their superiority over SOC
estimation. However, only time-series measurements (e.g., voltage and current) are taken as inputs
in these RNNs. Considering that the mapping relationship between the SOC and the time-series
measurements evolves along with the battery degradation, there still remains a challenge for RNNs
to estimate the SOC accurately throughout the battery’s lifetime. In this paper, a dual-input neural
network combining gated recurring unit (GRU) layers and fully connected layers (acronymized as
a DIGF network) is developed to overcome the above-mentioned challenge. Its most important
characteristic is the adoption of the state of health (SOH) of the battery as the network input, in
addition to time-series measurements. According to the experimental data from a batch of LiCoO2

batteries, it is validated that the proposed DIGF network is capable of providing more accurate SOC
estimations throughout the battery’s lifetime compared to the existing RNN counterparts. Moreover,
it also shows greater robustness against different initial SOCs, making it more applicable for online
SOC estimations in practical situations. Based on these verification results, it is concluded that
the proposed DIGF network is feasible for estimating the battery’s SOC accurately throughout the
battery’s lifetime against varying initial SOCs.

Keywords: lithium-ion battery; SOC estimation; lifetime; recurrent neural network; SOH

1. Introduction

Rechargeable lithium-ion batteries have been widely used in electric vehicles (EVs),
energy storage systems, etc., due to their merits of a low self-discharge rate, high power
density, a long lifespan, etc. [1–4]. For a steady-state operation of batteries, the online
SOC estimation throughout its lifetime plays a key role in the battery management system.
On the one hand, from the perspective of user experience, the online SOC estimation of
the batteries is an important promise that predicts the remaining driving range of EVs,
which is meaningful in reducing the range anxiety of drivers [5,6]. On the other hand,
from the perspective of battery management, the online SOC estimation also helps to avoid
over-charge and over-discharge of the batteries, thus ensuring a high level of safety and
reliability. For these reasons, the online SOC estimation of lithium-ion batteries has been a
hot research topic in past decade.

As introduced in the literature [7–9], the lithium-ion battery’s SOC estimation ap-
proaches are mainly divided into four categories, which include the ampere-hour integral
(AHI) methods [10–12], the open-circuit voltage (OCV)-based methods [13–15], the model-
based methods, and the data-driven methods. The former two methods are relatively
simple and easy to operate, but at the expense of uncontrollable SOC estimation error. For
instance, the AHI methods obtain the battery’s SOC by integrating the battery current
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over time. However, an accurate initial SOC of battery is hard to obtain in practice as
the charge/discharge behavior of the end-users is uncertain. The OCV-based methods
are usually applied to estimate the battery’s SOC based on the nonlinear monotonical
relationship between the SOC and the OCV. They are, unfortunately, not suitable for online
estimation as they require the battery to rest sufficiently to measure its OCV. Moreover,
during the operational process, the OCV–SOC curve of the battery shows an obvious shift
with the battery state of health (SOH) degradation [16], resulting in a limitation in using
the OCV-based methods for batteries over their entire lifetime.

In the model-based methods, models describing the dynamic behavior of LIBs, such
as the equivalent circuit model (ECM), the electrochemical model and the electrochemical
impedance model are commonly used for SOC estimation. Taking the ECM as an example,
circuit elements including capacitors, resistors, and voltage source, etc., are utilized to
model the dynamic response between the battery’s terminal voltage and the current. On
the basis of those models, advanced filter technologies, such as Kalman filter [17], the ex-
tended Kalman filter [18], the unscented Kalman filter [19], the particle filter [20], etc., and
observers, such as the sliding mode observer [21], the discrete-time nonlinear observer [22],
the extended state observer [23], etc., are frequently utilized to estimate the battery’s SOC.
However, the performance of the model-based methods is highly dependent on the accu-
racy of the battery models, which are still facing challenges in reaching a comprehensive
adaptability for different operating conditions.

In contrast to the model-based methods, data-driven methods take the battery as a
black box without paying attention to the physical essence of it. These methods estimate
the battery’s SOC directly by learning non-linear relationships between the SOC and
the battery measurements (such as current and voltage) [24–33]. In particular, more and
more neural networks have been developed for SOC estimation due to their strong ability
for nonlinear fitting [34]. Among them, feedforward neural networks were first used
for SOC estimation by using voltage, current, and temperature measured at a single
step as inputs [27]. Afterwards, RNNs, such as the long short-term memory (LSTM)
network [28,29] and the GRU network [30], which take time-series battery measurements
as inputs, have also been applied for battery’s SOC estimation. Based on their flexible
and powerful capacity in modeling sequential data, the RNNs exhibit high performance
in SOC estimation. However, there still exist problems that limit its application over the
battery’s entire lifetime. For instance, only time-series measurements (such as current,
voltage, and temperature of the battery) are employed for SOC estimation in these RNNs,
while the battery’s SOH is ignored. Considering that the mapping relationship between
the battery’s SOC and the time-series measurements is dynamically changed during the
degradation of the battery’s SOH [35], ignoring the battery’s SOH will diminish the accuracy
of the SOC estimation over its lifetime. In order to solve the above issue, a DIGF network
was developed by taking both the time-series voltage and current measurements and the
battery’s SOH as inputs in this paper.

2. Methodology
2.1. DIGF Network

As shown in Figure 1, the outputs of the RNN at the timestep t are related with the
inputs Xt at that timestep and the outputs ht−1 at the previous timestep. This chain-like
nature allows the RNN to memorize information from the past, and it is therefore capable
of handling sequential data in a large number of applications [36]. However, limited by
the vanishing gradient phenomenon in its training process, the traditional RNN can only
learn from short-term time-series data [37]. To involve long-term dependencies with a high
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efficiency, a GRU layer was developed by Cho et al. in 2014 [38]. Generally, the GRU layer
can be formulated as: 

zt = σ(wizxt + whzht−1 + bz)
rt = σ(wirxt + whrht−1 + br)

h′t = tanh(winxt + rt ∗ whnht−1 + bn)
ht = (1− zt) ∗ h′t + zt ∗ ht−1

(1)

where Xt ∈ Rµ×1, ht−1 ∈ Rν×1 represent the inputs at timestep t; ht ∈ Rhs×1 is the output
at timestep t; and zt, rt, h′t are the outputs of the update gate, reset gate, and candidate state,
respectively, and wiz ∈ Rhs× f s, whz ∈ Rhs×hs, wir ∈ Rhs× f s, whr ∈ Rhs×hs, win ∈ Rhs× f s,
whn ∈ Rhs×hs, bz ∈ Rhs×1, br ∈ Rhs×1, and bn ∈ Rhs×1 are the parameters of the update
gate, reset gate, and candidate state that need to be trained. The µ is the number of features
in the input Xt and the hyperparameter ν is the number of features in the output ht. The
schematic structure of the GRU is illustrated in Figure 2. The update gate zt determines the
dependencies between the current output ht and the previous output ht−1 or candidate state
h′t. Additionally, a small zt close to 0 indicates a high dependency between ht and h′t. The
reset gate rt determines how much the previous output ht−1 is used to calculate candidate
state h′t. Those gates help the GRU layer to avoid the problem of gradient vanishing and
therefore ensure its capability to learn long-term dependencies from sequential data.
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By the merits introduced above, the GRUs are employed in this work to provide SOC
estimations. In addition, to take the battery’s SOH into account, a fully connected (FC)
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layer, as formulated by Equation (2), is added in between the GRU layers to compose a new
dual-input neural network (i.e., a DIGF network), as illustrated in Figure 3.

out f c = tan h
(

w f cx f c

)
(2)

where x f c ∈ Rα×1, out f c ∈ Rβ×1 is the input and output of the FC layer, and w f c ∈ Rβ×α

are the parameters of the layer that need to be trained. In addition, α is the number of
features in the input x f c, and hyperparameter β is the number of features in the output
out f c. Considering that the battery’s SOC is within 1, the hyperbolic tangent function
tan h() is employed as the activation function of the FC layer.
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As shown in Figure 3, the proposed DIGF network consists of 5 layers in total, in-
cluding 3 GRU layers (i.e., layers 1, 2, 4) and 2 FC layers (i.e., layers 3, 5). Referring to
the sensitivity analysis in [30], the hyperparameters of each layer in the DIGF network
are determined and listed in Table 1. The battery’s SOC at timestep t of cycle k is then
estimated by two types of inputs, including the measurements (In1

t ) and the battery’s SOH
(In2

t ), which are arranged by Equation (3).
In1

t =

[
Vk

t
Ik
t

]
2×1

In2
t =

[
SOHk−1

]
1×1

(3)



Materials 2022, 15, 5933 5 of 13

where Vk
t , Ik

t are the voltage and current measurements at timestep t of cycle k, and SOHk−1

is the SOH of the battery at cycle k− 1. It is noted that, as it is not likely to obtain an accurate
SOHk estimation based on few measurements at the beginning of the cycle k, the SOHk−1

is employed for the SOC estimation at cycle k as the battery SOHs obtained from two
adjacent cycles are quite close. In our study, this SOHk−1 value is obtained based on the
measurements from the cycle k− 1 by an another convolutional neural network model
we have developed in [39]. In summary, the proposed DIGF network can be formulated
as follows: 

O1
t = fGRU1

(
In1

t , O1
t−1
)

O2
t = fGRU2

(
O1

t , O2
t−1
)

O3
t = fFC1

([
O2

t
In2

t

])
O4

t = fGRU3
(
O3

t , O4
t−1
)

Ot = fFC2
(
O4

t
)

(4)

where fGRU1(), fGRU2(), fGRU3() are the functions of the GRU layers that have been illus-
trated in Equation (1); fFC1(), fFC2(). are the functions of the FC layers that have been
illustrated in Equation (2); O1

t , O2
t , O3

t , O4
t are the outputs of layer 1, layer 2, layer 3, layer 4,

respectively; and the Ot is the output of the DIGF network at timestep t.

Table 1. Hyperparameters of the DIGF network.

Hyperparameter Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

µ 50 50 - - -
β - - 50 50 1

2.2. SOC Estimation Procedure

The procedure for obtaining the SOC estimation by using the proposed DIGF network
contains three steps, i.e., data preprocessing, DIGF network training, and SOC estimation,
as illustrated in Figure 4.
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Figure 4. Procedure of SOC estimation of the battery by using the proposed DIGF model.
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2.2.1. Data Preprocessing

Firstly, to minimize the effect of different sampling frequencies, the voltage and current
measurements are interpolated quadratically in terms of equidistant discharged capacities
with an increment of dq. The dq is calculated by Equation (5):

dq =
C0

N
(5)

where C0 is the battery’s rated capacity, and N is equal to 120 in this paper.
Next, a scaling normalization, shown by Equation (6), is performed on all interpolated

voltage and current data to improve the stability of the DIGF network and to speed up the
training process as well [40].

xi
norm = −1 + 2×

xi −min
(
xi

train
)

max
(
xi

train
)
−min

(
xi

train
) (6)

where xi
train is the unnormalized current/voltage in the training dataset, and xi, xi

norm
are the unnormalized and normalized discharge voltage/current in the training or testing
datasets, respectively.

2.2.2. DIGF Network Training

As the Adam optimizer is capable of handling sparse gradient problems and is easy
to implement where the default hyperparameters perform well on most problems [41], it
is employed to iteratively update the parameters of the proposed DIGF network in the
training process. The formulation of the Adam optimizer is summarized in Equation (7).

gn = ∇θ Ln(θn−1)
mn = β1mn−1 + (1− β1)gn
vn = β2vn−1 + (1− β2)g2

n
m̂n = mn

1−βn
1

v̂n = vn
1−βn

2
θn = θn−1 − η√

v̂n+ε
m̂n

(7)

where θn represents all the parameters of the DIGF network at iteration n; Ln(θn−1) is the
loss function in terms of θn−1, calculated by the mean square error (MSE) equation shown
in Equation (8); β1 and β2 are the decay rates; η is the learning rate; and ε is a constant term.
The values of β1, β2, η, ε are set to 0.9, 0.999, 1 × 10−3, 1 × 10−7, respectively, according
to the literature [41].

Ln(θn−1) =
1
M

M

∑
j=1

(
SOCm,j − SOCe,j

)2 (8)

in which M is the number of samples in the training dataset, and SOCe,j, SOCm,j are the
experimental and estimated SOC, respectively.

2.2.3. SOC Estimation

After the DIGF network is well trained, the online SOC estimation of a new battery
can be achieved based on its measurements of the voltage, current, and SOH. Before being
imported to the DIGF network, the measured voltage and current data also need to be
preprocessed by interpolation and normalization. Then, the root mean square error (RMSE)
criteria [42] shown in Equation (9) are used to evaluate the standard deviation of the error
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between the experimental and the estimated SOC values at every cycle, in order to qualify
the accuracy of the proposed DIGF network:

RMSE =

√√√√ 1
L

L

∑
j=1

(
SOCm,j − SOCe,j

)2 (9)

where L is the total number of the estimated SOCs in each cycle.

3. Experimental Data

A batch of test data of LiCoO2 batteries, provided by the Center of Advanced Life
Cycle Engineering at the University of Maryland, were employed to verify the performance
of the proposed DIGF network for SOC estimation throughout the battery’s lifetime [43,44].
These data consist of the test results under room temperature from five batteries (named
CS2-33, CS2-34, CS2-35, CS2-36, CS2-37, respectively) with rated capacity of 1.1 Ah. During
the experiment, all the batteries were charged under a constant current–constant voltage
(CC–CV) charging mode and discharged with a constant current. In a CC–CV charging
cycle, the battery is first charged with a constant current until its voltage reaches the
maximum charge voltage; then, it is charged under a constant voltage. Then, the constant
voltage charging stage is terminated when the charge current tapers down to the end-of-
charge current. In the discharging cycle, the battery is discharged with a constant current
until its voltage drops to the discharge cut-off voltage. The detailed information on the
batteries and the test conditions is listed in Table 2.

Table 2. Specifications of tested batteries and testing profiles.

Specification CS2-33 CS2-34 CS2-35 CS2-36 CS2-37

Cell Chemistry LiCoO2 cathode

Weight (w/o safety circuit) 21.1 g

Dimensions 5.4 × 33.6 × 50.6 mm

Rated capacity (Ah) 1.1 1.1 1.1 1.1 1.1

Constant charge current (A) 0.55 0.55 0.55 0.55 0.55

Maximum charge voltage (V) 4.2 4.2 4.2 4.2 4.2

End-of-charge current (A) 0.05 0.05 0.05 0.05 0.05

Discharge cut-off voltage (V) 2.7 2.7 2.7 2.7 2.7

Discharge current (A) 0.55 0.55 1.1 1.1 1.1

The experimental data of batteries CS2-33, CS2-34, CS2-35, CS2-36 are used for training
the proposed DIGF network, whereas the experimental data of CS2-37 are utilized for
validation. According to the definition, the benchmark SOC and SOH are calculated by the
Equations (10) and (11), respectively.

SOCk
t =

(
1−

∫ t
0 Ik

t dt∫ tend
0 Ik

t dt

)
× 100%. (10)

{
Ck =

∫ tend
0 Ik

t dt
SOHk = Ck

C0

(11)

where Ik
t is the discharge current at cycle k; tend is the duration of the whole cycle k; Ck is

the battery capacity at cycle k; C0 is the rated capacity of the battery; and SOCk
t is the SOC

of the battery at time t of cycle k. As the failure threshold of the lithium-ion batteries used
in EVs is generally defined as 0.8 of its SOH [45], the lifetime of the battery is determined
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by the period when its SOH decreases down to 0.8 in this work. As a result, the SOH fading
curves before 0.8 of all five of the batteries are shown in Figure 5.
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4. Results and Discussion

For comparison purposes, another two RNN networks (i.e., the LSTM neural net-
work [29] and the GRU neural network [30]) that only take time-series voltage, current,
and temperature as inputs are also employed for the SOC estimations. Considering that the
batteries in practice are most likely to start discharging with initial SOCs between 70% and
100% [46], the additional dataset consists of discharge cycles with initial SOCs of 90%, 80%,
and 70%, which are created by truncating the experimental data of each cycle of the training
batteries. Thus, the LSTM, GRU, and DIGF networks are trained with a training dataset
that consists of discharge cycle with initial SOCs of 100%, 90%, 80%, and 70%, as shown in
Figure 6. Each network is independently trained 10 times, with the consideration of the
effects of the random initialization of the network parameters on the SOC estimations.
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For a comprehensive comparison between the performances of the three networks for
the SOC estimation throughout the battery’s lifetime, the boxplot of RMSEs of the SOC
estimations for battery CS2-37 over a lifetime in terms of different initial SOCs are shown in
Figure 7. According to Figure 7, the DIGF network achieves the best performance in SOC
estimations in both the median and the maximum RMSEs in most scenarios, compared
to the LSTM and GRU networks. In addition, it also shows a much more stable median
RMSE of SOC estimations compared to the LSTM and GRU networks, indicating a stronger
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robustness against the initial SOCs. The above two observations prove the superiority of
the DIGF network in the SOC estimations of a battery over its lifetime.
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To further explore the performance of the three networks against different initial SOCs,
the curves of the SOC estimations for battery CS2-37 under the initial SOCs of 95%, 90%,
85%, 80%, 75%, and 70% at cycle 200 are shown in Figure 8. It can be seen that the large
error of the estimated SOCs by the LSTM and GRU networks is majorly concentrated at
the first few steps, with all of the initial SOCs from 95% to 70%. As mentioned before,
these two networks only take the measurements of the discharge voltages and currents
as inputs. However, at the early stage of each discharge cycle, the imported voltage
and current data are not sufficient for the LSTM and GRU networks to provide accurate
SOC estimations, whereas, owing to the additional input of the SOH, the DIGF network
is capable of significantly reducing the SOC estimation error in the early stage of each
discharge cycle, and therefore shows stronger robustness against different initial SOCs.
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5. Conclusions

A DIGF network combining three GRU layers and two FC layers is proposed in this
paper for the SOC estimation of lithium batteries over their lifetime. Compared to other
RNNs which only take time-series measurements as inputs, the DIGF network employs the
battery’s SOH as well as improving the accuracy of the SOC estimations. The experimental
results of a batch of LiCoO2 batteries show that the proposed DIGF network is feasible
for providing satisfying SOC estimations with stronger robustness against different initial
SOCs for batteries throughout their lifetimes. Owing to these advantages given above, it
is speculated that this proposed DIGF network has great potential for use in online SOC
estimation for lithium-ion batteries in practice with a large range of SOHs and initial SOCs.
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Abbreviations

SOC state-of-charge
RNN recurrent neural network
GRU gated recurring unit
FC fully connected
DIGF dual-input neural network combining GRU layers and FC layers
SOH state of health
EV electric vehicles
AHI ampere-hour integral
OCV open-circuit voltage
ECM equivalent circuit model
LSTM long short-term memory
RMSE root mean square error
CC–CV constant current–constant voltage
T Timestep
Xt input of RNN
ht−1, ht output of RNN
µ number of features in the RNN input
ν number of features in the RNN output
zt output of update gate
rt output of reset gate
h′t candidate state
wiz, whz, bz parameters of update gate in GRU
wir , whr , br parameters of reset gate in GRU
win, whn, bn parameters of candidate state in GRU
σ() sigmoid function
tan h() hyperbolic tangent function
x f c input of FC layer
w f c parameters of FC layer
α number of features in the input of FC layer
β number of features in the output of FC layer
out f c output of FC layer
k index of cycle
Vk

t voltage measurement of battery
Ik
t current measurements of battery

In1
t input 1 of DIGF network

In2
t input 2 of DIGF network

fGRU() function of GRU layer in the DIGF network
fFC() function of FC layer in the DIGF network
O1

t , O2
t , O3

t , O4
t output of layer 1, layer 2, layer 3, layer 4 in DIGF network

C0 battery’s rated capacity
dq interpolation interval
N number of interpolation samples
xi

train unnormalized current/voltage in the training dataset
xi unnormalized voltage/current in the training or testing datasets
xi

norm normalized voltage/current in the training or testing datasets
n index of iteration during training process
θn all parameters of DIGF network
Ln(θn−1) loss function
β1, β2 decay rates of Adam optimizer
η learning rate of Adam optimizer
ε constant term of Adam optimizer
M number of samples in the training dataset
SOCe,j experimental SOC
SOCm,j estimated SOC
L total number of the estimated SOCs in cycle
tend duration of the discharge cycle
Ck battery
SOCk

t battery
SOHk battery
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