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Abstract: This paper presents the problem of rolling bearing fault diagnosis based on vibration
velocity signal. For this purpose, recurrence plots and quantification methods are used for nonlinear
signals. First, faults in the form of a small scratch are intentionally introduced by the electron-
discharge machining method in the outer and inner rings of a bearing and a rolling ball. Then, the
rolling bearings are tested on the special laboratory system, and acceleration signals are measured.
Detailed time-dependent recurrence methodology shows some interesting results, and several of the
recurrence indicators such as determinism, entropy, laminarity, trapping time and averaged diagonal
line can be utilized for fault detection.
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1. Introduction
1.1. Fault Bearing Diagnosis

Bearing components are essential parts of various rotating machines. In many cases,
the condition of a rotary machine depends on the state of the bearing. It is estimated that
30% of total machine failures are caused by faulty bearings [1]. The detection of bearing
failure at an early stage is essential to prevent damage to other machine components.
Therefore, in practice, monitoring the condition of bearing is very important.

Generally, bearing defects can be classified as localized and distributed faults. Lo-
calized defects include spalls and pits caused by fatigue wear or cracks resulting from
improper manufacture (or assembly process). Distributed faults include waviness, rough-
ness, misalignment of races, and off-size rolling elements. These faults may be due to
manufacturing imperfections and operating conditions [2–4]. In some studies [5,6] a third
category of bearing faults is proposed—an extended fault. Extended faults occur when
successive rolling elements pass over the localized fault.

In practice, we can find various methods dedicated to a fault bearing diagnosis [7–9].
Methods can be classified as vibration measurements, acoustic measurements, temperature
measurements, and wear debris analysis. The most popular and widely used industrial
techniques for fault detection are vibration signals analysis and acoustic measurements.
Tandon and Choudhury [10] presented a review of vibration and acoustic methods for the
detection of bearing faults. Methods based on vibration measurement, acoustic emission
and sound pressure were discussed. The vibration signal from a faulty bearing is acquired
with the help of such techniques as the measurement of vibration response in time and
frequency domain and shock pulse method (SPM). For acoustic response, the acoustic
emission method (AE), sound pressure and sound intensity techniques are applied. The
envelope analysis method for bearing defect detection based on the combination of the
wavelet packet, the Hilbert transform, and the autocorrelation function is proposed by [11].
This method showed promising results with a high level of noise.
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Many interesting studies on faulty bearing detection methods, bearing condition
monitoring techniques, and bearing modeling with faults can be found in the literature.
Singh et al. [12] presented a detailed review of modeling techniques for the prediction of
the vibration response of a bearing with localized and extended faults. Four models were
introduced: periodic impulse-train, quasi-periodic impulse-train, nonlinear multibody
dynamic, and finite elements. McFadden and Smith [13] proposed a mathematical model
bearing for a single point on the inner raceway under radial load. The model included
constant inner ring velocity, load distribution and the effect of the internal geometry of
the bearing. It was assumed that excitation would be represented as a series of repeated
impulses when the rolling element hits the fault point. Such impulses can lead to bearing
and machine resonances.

Liu and Gua [1] developed a deep groove ball-bearing model with a localized fault
on the outer raceway. The combination of time-varying displacement excitation and time-
varying contact force was presented to better understand the rolling bearing fault mechanism.

Eftekharnejed et al. [14] presented a comparison between the effectiveness of acoustic
emission and vibration measurement methods for monitoring and detecting faulty rolling
element bearings. The study was conducted on a test rig with a single thrust ball bearing.
The data acquired from both methods were studied with the help of spectral kurtosis and a
kurtogram. It was found that the acoustic emission was more sensitive to the detection of
incipient faults.

Bastami and Vahid [15] investigated statistical characteristics such as RMS, peak, crest
factor, kurtosis and level crossing rate in relation to the size of the bearing fault. A relation
between different fault defect sizes and statistical features was established. Moreover, it
was shown that the crossing rate was the most effective in monitoring rolling bearings. The
results were validated with empirical data obtained from a bearing with real faults.

Wang and Laing [16] improved kurtosis by introducing a new method called “spectral
kurtosis”. The proposed method determines the center frequency and bandwidth and
applies the frequency domain window length for signal processing.

Junsheng et al. [17] presented an approach for detecting bearing faults based on the
empirical mode decomposition method and autoregressive model for roller bearings. Em-
pirical mode decomposition is used for the decomposition of nonstationary signals from
bearings into a number of stationary mode components. For each of these components,
an autoregressive model is established. A combination of the empirical mode decomposi-
tion method and the autoregressive model with the Mahalanobis distance (as a criterion
function) proved to be an effective technique for detecting roller bearing failure.

Jiang et al. [18] proposed the improved variational mode decomposition based on
the traditional variational mode decomposition and the empirical mode decomposition to
detect the bearing fault in its early stage. This method is able to reveal the weak transient
impulses from complex vibration signals.

Abbasion et al. [19] proposed a method based on wavelet analysis and Support Vector
Machine (SVM) for multipoint fault detection. The authors developed an SVM network,
trained it and conducted an empirical analysis of the electric motor with a combination of
healthy and faulty bearings. Wavelet analysis and the proposed SVM algorithm showed
satisfactory correctness for bearing fault classification. A similar method was presented by
Nikolaou [20], where criteria for critical parameter selection were proposed.

Another interesting method used in the industry is the Shock Pulse Method [21]. This
method gives a single value indicating the bearing condition. The disadvantage of this
method is a lack of details in data interpretation. Zhen et al. [22] improved the Shock Pulse
Method for more sensitive detection of faults in rolling element bearing.

In the literature, we found various methods for fault detection. The recent diagnosis
methods such as Multiscale Convolutional Capsule and Self-Adaptation Graph Attention
Network are described in [23,24]. A novel diagnostic approach for the possible incipient
stator/rotor winding faults is proposed by [25].
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Classical methods for damage detection (Fourier analyses, wavelet transformations)
are nonetheless best-suited to stationary signals with high sampling rates and low noise.
However, real signals are usually nonlinear and nonstationary and contain a lot of noise
and interference; therefore, they are very difficult to use directly as input data for fault
detection and need to be transformed by certain signal processing.

The recurrence method can also be used for bearing analysis. For example, Bo et al. [26]
presented an intelligent bearing diagnosis method based on the extraction of nonlinear
features from vibration signals. The combination of recurrence quantification analysis and
the Kalman filter for bearing degradation evaluation is proposed by [27]. The autoregression
model was built using entropy extracted from the recurrence plot.

Based on our experience, the recurrence method seems very promising for damage
detection [28,29] and can produce reliable results and allow noise reduction. In this paper,
the recurrence methods and particular time-dependent recurrence approach allow one to
select recurrence indicators for fault indicators.

1.2. Motivation and Aim

A co-author of the paper is employed with a company that produces bearings. He is
responsible for the detection of defective bearings. His experience and literature review
show that there are no universal methods that can unambiguously diagnose damaged
bearings (especially with minor faults). The classical methods applied in practice are usually
useful when the signal is stationary with high sampling and low noise or when the bearing
has a serious fault, which is reflected in the amplitude signal. The most sensitive methods
are quite complicated and labor-intensive. In this paper, we focus on fault detection from
short-measured vibration signals by simple calculation.

2. Materials and Methods
2.1. Experimental Setup

The experimental laboratory rig for measuring bearing vibration is shown in Figure 1.
It consists of a main board (1), which is mounted on an anti-vibration body (2). Moreover,
the system is separated from the ground by anti-vibration feet. A hydrodynamic spindle
(3) is fixed to the main board. A pin (4) is clamped in the spindle.

The tested bearing (5) is placed in an adjustable positioning pocket (6) and is mounted
on the pin. The positioning pocket is moved by a servo drive (7). The proper axial thrust
is provided by an electric actuator (8). The axial pressure force is transferred to the tested
bearing through a three-arm head (9) suspended on a ball joint. The three-arm head ensures
even pressure around the entire circumference through a three-point contact with the face
of the outer ring and compensates for the spindle and clamp alignment error. The spindle
rotational speed is realized by the servo drive, with the controller and belt transmission
located outside the main board.

A PSV3 electrodynamic vibration sensor (10) is placed in an AAF-10A measurement
head (11). The sensor used in the experiment was specially designed for the laboratory
rig and measures vibrations in the frequency range of 50 Hz to 10 kHz. The measuring
head is located in a group of feeders positioning a head (12) in two axes. The vibration
measurement with the sensor is performed by the sensor deflection unit (13) after sliding the
tested bearing onto the spindle. The analog signal is amplified by the measuring amplifier
and converted into a digital form by the PCIE-1802L measurement ADVANTECH card.

The measurement card was placed on an industrial PC with MS Windows 10. The
software for data acquisition, control and visualization of results was written in the DEL-
PHI environment using the Advantech DAQNavi Device Drivers libraries and the SDL
Component Suite from Epina GmbH.
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Figure 1. Laboratory rig for dynamic tests of bearings. The laboratory system is located at the Polish
Bearings Factory in Krasnik.

The method of mounting the bearing is shown schematically in Figure 2. The outer
ring is stationary and loaded with a contact force. A vibration sensor is fixed above the
outer ring surface. The inner ring rotates with a spindle speed.

Figure 2. Schematic of the mounting of the bearing in the laboratory system.

This system allows for testing various types of bearings for various operating condi-
tions. In our analysis, the rotational speed was maintained constant at 1800rpm.

2.2. Recurrence Method

Recurrence is a fundamental property of various dynamical systems, which character-
ize the system’s behavior. In general, recurrence is defined as all times when a dynamical
system’s phase space trajectory passes over the same place in a phase space. Recurrence
analysis is performed in a phase space, which is reconstructed by delayed vectors using
Takens’ theorem. A measured experimental signal consisting of a sequence of scalar data
x1, x2, . . .,xn can be transformed into a state vector by calculating an embedding dimension
m and a time delay (lag) d according to the following equation

Xi = (xi, xi+d, . . . , xi+(m−1)d) i = 1, 2, . . . , n− (m− 1)d. (1)
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The embedding dimension demonstrates the number of lagged coordinate vectors,
while the time delay characterizes the length of the lag. The embedding parameters can be
estimated in several ways, such as correlation dimension or neural networks. However,
the most popular way to calculate them is to use the false nearest neighbors (FNN) and
average mutual information (AMI) methods.

A recurrence plot (RP) is a tool used for graphical interpretation of the recurrence state,
which is theoretically specified as the matrix

RPi,j = θ(ε− ||Xi − Xj||), (2)

where θ stands for the Heaviside function, ‖ • ‖ is the norm (typically Euclidean or maxi-
mal), ε is the tolerance parameter (threshold), and Xi, Xj are the delayed vectors of some
embedding dimension. RP is a graphical representation of Equation (2), where columns
and rows correspond to a certain pair of recurrence times. The final result of RP is unique,
with dotted-line structures (single dots, vertical and horizontal lines) that represent the sys-
tem’s dynamics and are important elements because they reveal typical dynamical features.
Short line segments parallel to the main diagonal are essential features of a RP, suggesting
that states are similar at different times and that the process is deterministic. If there are
diagonal line structures beside single isolated points, the process is close to chaotic.

For a statistical description of the recurrence diagram structure, Recurrence Quanti-
tative Analysis (RQA) was used. In the literature, some statistical parameters based on
diagonal and vertical lines have been presented. One of the most common parameters
used for diagonal line measures is determinism (DET), which characterizes the system’s
predictability. The structure distribution of the vertical line is characterized by laminarity
(LAM). Other recurrence quantifications are shown in Table 1.

Table 1. Definition of the most useful recurrence quantifications [28,30–33]. P(l) and P(v) denote the
distribution of the length of diagonal and vertical lines. Nl and Nv are the numbers of diagonal and
vertical lines. Ri is the recurrence point that belongs to the state xi, and Hv(v) is the distribution.

Quantification Equation Description

Recurrence Rate RR 1
N2 ∑N

i,j=1 RPi,j Recurrence point density.

Determinism DET ∑N
l=lmin

lP(l)

∑N
i,j=1 RPi,j

Portion of recurrence points forming diagonal lines.

Entropy ENT −∑N
l=lmin

P(l)ln(P(l)) Entropy of the frequency distribution of the diagonal lines.

Laminarity LAM ∑N
v=vmin

vP(v)

∑N
v=1 vP(v)

Amount of recurrence points that form vertical lines.

Trapping Time TT ∑N
v=vmin

vP(v)

∑N
v=vmin

P(v)
Average length of vertical lines.

Longest diagonal line Lmax max({li; i = 1, ..., Nl} Maximal line length in the diagonal direction.
Longest vertical line Vmax max({vi; i = 1, ..., Nv} Maximal length of the vertical structures.
Averaged diagonal line L ∑N

l=lmin
lP(l)

∑N
l=lmin

lP(l)
Average diagonal line length.

Recurrences time T1 |{i, j : xi, xj} ∈ Ri}| Recurrence time of the 1st Poincare recurrence.
Recurrences time T2 |{i, j : xi, xj} ∈ Ri, xj 6∈ Ri}| Recurrence time of the 2nd Poincare recurrence.
Recurrence time entropy RTE − 1

lnVmax
∑Vmax

v=1 Hv(v)lnHv(v) Shannon entropy of the recurrence times.

Transitivity Trans ∑N
i,j,k=1 RPi,j RPj,k RPk,i

∑N
i,j,k=1 RPi,j RPk,i

Local recurrence rate.

Clustering coefficient Clust ∑N
i=1

∑N
j,k=1 RPi,j RPj,k RPk,i

RRi
The probability that two recurrence states are neighbors.

Both recurrence methods are useful for nonlinear time series and are appropriate
for analyzing minor changes in the dynamics of a complex system. The main important
advantage of the recurrence method is that it can be applied to short and nonstationary
data. Additionally, it does not make any assumptions about the data distribution and
data size. The RP and RQA methods are based on relatively simple calculations and can
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be applied to a wide range of systems. Several additional indicators can be extracted to
describe the characteristic of the signal.

2.3. Fault Modeling

Outer and inner rings, balls and a cage are the components of a rolling bearing. The
rolling elements are positioned between the inner and outer rings in the cage, which keeps
them in place and prevents them from colliding. Usually, the outer ring is held stationary
where the inner ring and the balls rotate.

A great majority of defects are in the form of cracks, distributed defects, such as
roughness or misaligned races, and deep scratches or pits that occur on the inner or outer
rings during normal usage. Moreover, defects are often located in the load zone. Defects on
the inner ring can occur anywhere due to rotation. These defects can cause the vibration
level to increase [10]. When the rolling element is in contact with the defect, a vibration
impulse is generated.

In the experiment, we used four new commercial single-row deep groove ball bearings
(no. 6208C3) from the Polish Bearing Factory (PBF). The bearing has an 80 mm outer
diameter, 40 mm bore diameter, and 18mm height. Bearing defects were assumed to be a
local phenomenon, and thus, the real fault was stimulated (single-point defect). First, all
new bearings were tested.

After that, three bearings were dismantled, and faults in the form of scratches were
artificially introduced on the surface of the ball, outer ring, and inner ring. The defects
were made on the bearing components by the electron-discharge machining method on the
electro-erosion machine with the copper electrode. The outer and inner ring scrapes were
5 mm long and 0.5 mm deep, while the ball’s scrape was 2 mm, and the depth was 5 mm.
Images of the defects (scrapes) are shown in Figure 3.

(a) (b)

(c) (d)

Figure 3. Images of rolling bearing no. 6208C3 (a), artificial fault on the ball (b), fault on the inner
ring (c) and fault in the outer ring (d).
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The total procedure of the bearing fault detection is shown in Figure 4. Firstly, the
faults on the bearing components were introduced, and then the vibration tests were
carried out.

Figure 4. The framework of bearing fault detection. The shaded blocks show recurrence stages.

Each measured time series was subjected to the process of normalization. Finally, RP
and RQA methods were applied, and recurrence indicators for fault detection were selected.

3. Results and Discussion
3.1. Measured Time Series

Figure 5a–d shows the time velocity responses obtained in the bearing tests. The
velocity vibration signals were measured in the laboratory system presented in Figure 1. In
all tests, the axial force load was set to 310 N (see Figure 2), and the rotating velocity was
set to 1800 rpm (reference speed). The sample rate was set to 25.6 kHz. The total measuring
time for each test was 2.6 s.
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Figure 5. Measured time series for the tested rolling bearings: bearing without fault (a), bearing with
ball fault (b), bearing with inner ring fault (c), and bearing with outer ring fault (d).

It can be observed that the bearing without a fault (Figure 5a) and the bearing with
a fault on the inner ring (Figure 5c) have the smallest vibrations. The amplitude in both
cases is not greater than 500 µm/s. However, oscillations are substantially larger for the
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faults on the ball (Figure 5b) and outer ring (Figure 5d). This means that when faults occur
on the ball or outer ring, the bearing’s dynamical behavior changes. It can be seen that
the characteristics of the vibration impulses resulting from the defect on the inner or outer
ring differ.

In panel (d), the velocity time history shows that periodic impulse signals (peaks) with
a certain frequency caused a vibration pattern produced by the defect on the inner ring.
The strong impulses repeat every 0.01 s (magnified in Figure 5d). However, this effect is
not observed for the defects on other bearing components.

For the recurrence analysis, a normalizing process was used due to varying levels of
vibration amplitudes. This procedure allows for a comparison of different signals. The
measured vibration velocity signals (v) were normalized to zero-mean (<>) and standard
deviation (σ) according to the following equation

v =
v− < v >

σ
. (3)

The normalization of vibration signals leads to the scaling of signals to the same
vibration level, thus removing any potential disadvantages caused by the varying vibration
amplitudes. The results of normalization are shown together with the recurrence diagrams
in the next section.

3.2. Recurrence Plot Analysis

An extensive recurrence analysis is proposed to find the dynamic changes in the stud-
ied signals. The main idea is to construct RP diagrams and calculate the RQA parameters
for defective and healthy bearings and, finally, compare the RQA results for the two states.

The first step in the construction of the recurrence diagram is the determination of the
lag d and the embedding of dimension m parameters. Selecting the embedding parameters
is a very important step in RP reconstruction and can be compared to a focusing camera.
The AMI function is commonly used for calculating parameter d (Figure 6b). It is usually
considered the first minimum of a mutual information function [34]. The embedding
dimension m was prepared by FNN (Figure 6a). This method is based on measuring the
percentage of near neighboring points in a given dimension. Both methods are accurately
described in [28,31]. The embedding dimension d, the lag m and the threshold ε are given
in Table 2.
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Figure 6. Results of FNN (a) and AMI (b) methods for estimating embedding parameters m and d.
The points represent the estimated optimal lag values.

For each case, the embedding dimension has the same value of m = 6. However, the
lag d changes. For the bearing with defects (except for the inner ring defect case), the time
lag value is reduced. For the recurrence diagram, the optimum recurrence rate is 2%; hence,
the threshold parameter ε was calibrated to nearly 1σ (Table 2). Naturally, the threshold
parameter meets the topological criterion quotes given in [35].



Materials 2022, 15, 5940 9 of 14

Table 2. Embedding parameters estimated by FNN and AMI methods.

Location of
Defect

Embedding
Dimension, m Lag, d Recurrence

Rate, RR Threshold, ε

No defect 6 8 0.02 0.88
Ball 6 4 0.02 0.80

Outer ring 6 5 0.02 0.61
Inner ring 6 8 0.02 0.88

For various fault locations, we obtained RP diagrams that already exhibit specific
features. Figure 7a–d presents the normalized time series along with the corresponding
recurrence diagrams obtained for the bearing tests without defect (Figure 7a), with ball
defect (Figure 7b), with inner ring defect (Figure 7c), and outer ring defect (Figure 7d).

(a) (b)

(c) (d)

Figure 7. Recurrence plots calculated for the bearing: without defect (a), with ball defect (b), with
inner ring defect (c) and outer ring defect (d).

For all cases, the recurrence diagrams were generated for 5000 data points (approx-
imately 0.2 s), in which the first 10,000 points were rejected (data points from 10,000 to
15,000 were taken for analysis). As we can see, the recurrence topologies differ from the
periodic behavior (long diagonal lines) because of multiple incommensurate frequencies.
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The recurrence typologies for the healthy bearing and the bearing with an inner ring defect
are similar (Figure 7a,c). The RP structure of the bearing signal with a ball fault consists
of darkened and white squares (Figure 7b). Small black squares with rounded corners are
caused by local extremes with low amplitude vibrations. The recurrence plot in Figure 7d
contains many horizontally and vertically marked spreads and white crossing lines. This
means that intermittent states occur very frequently in the RP diagram and are visible
in the oscillation signal. The oscillations occurring rapidly during the intermittent state
disturb the bearing stabilization, causing repeated rises and drops in the amplitude of the
vibration caused by the fault.

In conclusion, the recurrence diagrams exhibit different structures and provide infor-
mation about the system dynamics. However, it is difficult to draw unambiguous and clear
conclusions only based on the visual observation of the recurrence structures. It can be
seen that the recurrence diagrams obtained for the bearing with a defect have more dark
square regions. Therefore, the recurrence diagrams require a detailed statistical analysis.

An effective interpretation of RP diagrams is a recurrence quantification analysis,
which reveals minor changes in the dynamics of a complex system. For this purpose, a
time-dependent RQA methodology (sliding windowing technique) is useful [28]. The
RP diagram is divided into overlapping small segments (windows), and RQA statistical
indicators are calculated separately. Typically, this method has two variants [36]:

• The recurrence plot is covered by a small overlap window of size w that slides with
steps s,

• The time signal is divided into overlapping segments, from which the RP diagrams
and RQA indicators are calculated.

In this study, the first method was applied, and the analysis was made by the CRQA
subroutine in the CRP toolbox [37]. The moving windows size w = 500 was moved
along the diagonal with a step of s = 1. This means that 5000 data samples were used to
calculate recurrence indicators. The vertical coordinate indicates the value of the computed
recurrence quantification calculated over a time window. The blue line denotes the results
for the bearing without fault, the red line is the results for the bearing with an inner ring
fault, the green line marks the results for the bearing with an outer ring fault, and the black
line represents the bearing with the ball defect.

An analysis of the results in Figure 8 demonstrates that five of twelve recurrence
quantifications, i.e., DET (Figure 8a), ENT (Figure 8b), LAM (Figure 8c), TT (Figure 8d)
and L (Figure 8g), differ in terms of their values. Their recurrence values are significantly
greater, and these indicators can be used for bearing defect detection.

However, the defects in the outer ring and the ball have the smallest values of recur-
rence indicators. These comparable recurrence measures reveal similar results because the
black areas contain diagonal and vertical lines. The number of lines depends on the defects.
Other recurrence quantifications (Figure 8e,f,h–l) cannot be used for defect detection. Their
values are very close in most cases. The recurrence indicators for the bearing with the ball
defect exhibit the smallest values, and the recurrence diagram (Figure 7b) contains the
largest amount of white regions.

Note that in our previous study on defect detection in composite machining [29], it
was found that DET and LAM were the most distinctive recurrence parameters. However,
a recurrence analysis was used in other dynamical processes. RP and RQA were used to
determine the size and location of local defects in milling and drilling [28,29].
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Figure 8. Recurrence quantifications versus shifting time window: DET(a), ENT (b), LAM (c), TT (d),
LMAX (e), VMAX (f), L (g), T1 (h), T2 (i), RTE (j), Trans (k) and Clust (l).

4. Conclusions

In this study, the recurrence plot and recurrence quantification methods were proposed
for defect detection in bearing components.

The defect was modeled as a scratch on different bearing components, namely, the
outer and inner rings and the ball. The results showed that the defect led to increases in
velocity signal amplitudes and could generate characteristic periodic impulses. That was
especially visible for the bearing with a defect on the outer ring. The defect in the inner
ring was the hardest to diagnose, probably due to the rotation of the inner ring. Some of
the recurrence quantifications achieved lower values for damaged bearing; therefore, they
can be used as fault dynamic indicators. It was shown that the most promising recurrence
quantifications were DET, LAM, TT, ENT and L. These selected recurrence quantifications
showed high agreement with the results in [29].

The results are of practical significance and can be applied in real defect detection.
However, the main problem is how to estimate the appropriate value of recurrence quan-
tifications for clear defect determination. This requires further research and analysis.
Therefore, in the next study, we will investigate the effect of the size of the damage on the
recurrence detectability and develop appropriate algorithms.
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28. Ciecieląg, K.; Skoczylas, A.; Matuszak, J.; Zaleski, K.; Kecik, K. Defect detection and localization in polymer composites based on

drilling force signal by recurrence analysis. Measurement 2021, 186, 110126. [CrossRef]
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