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Abstract: CaTi1−yFey O3−δ perovskite oxide films are promising candidate materials for p-type inter-
layers of third generation solar cells or light-emitting devices. The impact of atomic Ti substitutions
by Fe on electrical and optical properties of CaTi0.5Fe0.5O3−δ perovskite films have been studied. The
best compromise between a high transmission coefficient and the suitable electrical conductivity is
obtained for a specific atomic composition of Ca (1) Ti (0.5) Fe (0.5) O (3−δ) perovskite films. This
paper shows that CaTi1−yFeyO3−δ perovskite oxides can be integrated as p-type interfacial layers of
optoelectronic devices through their work functions, electrical, and optical properties.

Keywords: perovskite; optoelectronics; KPFM; conductivity; absorption; solar cell

1. Introduction

Semi-conducting perovskite oxides show promise for optoelectronic applications due
to a broad spectrum of electrical and optical properties [1–4]. The electrical conductivity,
band gaps, transparency, and work function could be engineered with the nature of the
cation substitution of the perovskite structure [5]. Recent works have identified CaTi1−y
FeyO3−δ perovskite oxides as promising candidate materials for interlayer for electronic
applications [6].

Moreover, CaTi1−yFeyO3−δ perovskite oxides show a wide variety of electrical and
likely optical properties, such as a high transparency in the visible range in relation with
Ti substitution by Fe. This specific substitution leads to large structural and electrical
conductivity variations [7–9]. CaTi1−yFeyO3−δ perovskite oxides are usually studied for
the ionic and electronic conductivities at high temperatures for oxygen transport membrane
application [9–11]. Curiously, quite few data on both electrical and optical properties at
room temperature are reported in the literature, and this perovskite oxide series has never
been investigated in detail for photonic applications as an interlayer.

This paper is focused on the development of oxides based on CaTi1−yFeyO3−δ per-
ovskite materials. For this work, a particular attention is given to the impact of the Ti
substitution ratio by Fe on the optical and electrical properties of perovskite oxide thin
films developed by pulsed laser deposition (PLD) for three configurations.

2. Materials and Methods
2.1. Synthesis of CaTi1−yFeyO3−δ Perovskite Targets

CaTi1−yFeyO3−δ perovskite powders were synthesized using a solid-solid route. High-
purity oxide and carbonate precursors, including CaCO3 (99.99%, Sigma-Aldrich, Saint-
Louis, MO, USA), Fe2O3 (99.50%, Alfa Aesar, Haverhill, MA, USA), and TiO2 (99.90%, Alfa
Aesar, Haverhill, MA, USA), were mixed by attrition milling using 0.9–1.2 mm zirconia
balls in an ethanol media (Sigma Aldrich, Saint-Louis, MO, USA), (800 rpm for 1 h) and
the powders were calcined for 8 h at 1000 ◦C, and then the phase purity was confirmed
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with X-ray diffraction (Siemens D5000, Cu-Kα, Munich, Germany). After the synthesis, the
chemical stoichiometry of CTF powders had less than 5% variation from the chemical com-
position expected, confirmed by Inductively coupled plasma atomic emission spectroscopy
(ICP-AES). An attrition milling of the calcined powders (1000 rpm) reached a distribution
of monomodal grain size centered at about D50 = 1–2 µm. Water of polyvinyl alcohol and
polyethylene glycol (Sigma Aldrich, Saint-Louis, MI, USA), 200 were added then mixed
into the powder respecting the following ratio (50, 1.5, 1.5%wt.), and the powder was dried
at 90 ◦C for 10 h at the next phase.

Afterwards, the powders were pressed under 200 MPa at 25 ◦C and sintered to
obtain green pellets of 24–25 mm in diameter and 1 mm in thickness. The pellets were
sintered at 1400 ◦C for 6 h under air, as reported in Table 1. The density of the sintered
pellets was measured using the Archimedes’ method. Three oxides corresponding to
different Ca substitution ratios by Fe were studied in this work: CaTi0.7Fe0.3O3−δ (CTF73),
CaTi0.5Fe0.5O3−δ (CTF55), and CaTi0.3Fe0.7O3−δ (CTF37), as reported in Figure 1.

Table 1. Dense CaTi1−yFeyO3−δ Perovskite Pellets Sintering Conditions.

Materials Acronym Sintering Conditions Density of Starting Powders
(Pycnometer, g· cm−3)

Relative Density of
Sintered Pellets

CaTi0.7Fe0.3O3−δ CTF73 1400 ◦C, 6 h, air 3.92 >98%
CaTi0.5Fe0.5O3−δ CTF55 1400 ◦C, 6 h, air 3.85 >98%
CaTi0.3Fe0.7O3−δ CTF37 1400 ◦C, 6 h, air 3.83 >98%
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Figure 1. Phase diagram of the CaTiO3—CaFeO2.5 system with the three oxides explored in this
study: CaTi0.7Fe0.3O3−δ (CTF73), CaTi0.5Fe0.5O3−δ (CTF55), and CaTi0.3Fe0.7O3−δ (CTF37). The
symbols TO, TOO, and TOOO correspond to the sequence of layers of tetrahedra and octahedra in
the ordered structures. Reproduced with permission from [12].

Figure 1 shows the phase diagram of the CaTiO3–CaFeO2.5 system. It shows that the
structure of CaTi1−yFeyO3−δ oxides depended on the Ti substitution ratio by Fe (y) in
the perovskite structure. Then, we distinguished different structures of the oxide at room
temperature in relation with the ratio of Fe in perovskite structure as shown below:

(i) ‘Disordered region’ (x = 0–0.1) where there was no long-range ordering of oxygen
vacancies in the perovskite structure.
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(ii) ‘Partially ordered region’ (x = 0.1–0.5) where the oxygen vacancies were partially
ordered in the perovskite structure, which corresponds to CTF73 material.

(iii) ‘TOO + TOOO region’ (x = 0.5–0.65) where there was regular sequence of one
tetrahedral (T) and two or three octahedral layers (O), which corresponds to CTF55 material.

(iv) ‘TO + TOO region’ (x > 0.65) where regular sequence of one tetrahedral (T) and
one or two octahedral layers (O), which coincided to CTF37 material.

Figure 2 confirms the evolution of perovskite structure in relation with the Ti sub-
stitution ratio by Fe. As disclosed on the phase diagram of the CaTiO3–CaFeO2.5 system
in Figure 1, the X-ray diffraction pattern of CaTi0.7Fe0.3O3−δ (CTF73) corresponded to
the cubic phase, CaTi0.5Fe0.5O3−δ (CTF55) corresponded to the cubic phase with the TO
sequence, and CaTi0.3Fe0.7O3−δ (CTF37) corresponded to the TO and TOO sequence layers.
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Figure 2. X-ray diffraction pattern of CaTi0.7Fe0.3O3−δ (CTF73), CaTi0.5Fe0.5O3−δ (CTF55), and
CaTi0.3Fe0.7O3−δ (CTF37) of pellets.

2.2. Elaboration of CaTi1−yFeyO3−δ Perovskite Films

Pulsed Laser Deposition (KrF—248 nm, 10 Hz) in an ultra-high vacuum chamber
(VINCI Technologies, France, 10−8 mbar) had been used to prepare the perovskite films.
At this UV-wavelength regime, photons are highly energetic (5 eV). Consequently, the
deposition process was well known to be very congruent. Targets of the desired com-
position were sprayed at a fluency of around 3 J·cm−2 under dynamic oxygen pressure
(pO2 = 0.3 mbar). During deposition, fluorine-doped tin oxide- (FTO) coated glass slide
substrates were heated at 400 ◦C and used as substrates. Deposition rates measured at
around 0.20 nm·s−1, for a target–substrate distance of 5 cm, a standard value observed for
oxide materials. To improve perovskite crystallization, samples received post-annealing at
550 ◦C under N2 pressure for 1 h.

The crystallographic phase of thin films was determined by (θ, 2θ) X-ray diffraction
(XRD) (Siemens D5000, Cu-Kα, Munich, Germany). Notably, the X-ray diffraction patterns
confirmed the presence of a perovskite phase, as identified by the sign of star marks above
the peak in Figure 3 [13,14]. The CaTi1−xFexO3−δ coating obtained by PLD showed a less
intensive peak with a lower crystallinity degree related to thin films thickness (100 nm).
However, it can be clearly stated that a significant increase in peak intensity was observed
following the post-annealing process at 550 ◦C. In addition, the crystals of the CTF55 thin
film emerged on the pattern after annealing.
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Figure 3. X-ray diffraction patterns of the FTO (200 nm in thickness on top of glass substrate), CTF55
perovskite films before and after annealing at 550 ◦C under N2 pressure.

The cross-section SEM (Scanning Electron Microscope) image (Figure 4a) (Jeol, Tokyo,
Japan) shows a dense homogenous columnar microstructure of 100 nm thin CTF55 film
deposited on FTO substrate (200 nm thick). The anisotropic (directional) PLD process is
well known to lead to columnar growth, especially for oxide materials. The columnar
microstructure of the CTF55 film is a consequence of an out-of-plane homogenous grain
growth along an axis perpendicular to the substrate surface. Then, the relative intensity
of the peaks on the XRD patterns of CFT55 film (Figure 3) was largely affected by the
anisotropic microstructure of film in comparison with one of pellet (Figure 2). As usual,
microstructure and crystal intrinsic properties manage the macroscopic layer properties.
Microstructure quality appears to be essential for the development of the materials of
interest. Several SEM cross-section images (not shown here) confirm the CTF55 film
homogeneity. The top view SEM image confirms the high density of the deposited film as
seen in Figure 4b and the small grain size dimensions in the x–y substrate plane (10–20 nm).
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Figure 4. SEM images of (a) cross-section and (b) top view thin CTF55 film by pulsed laser deposition
close to 100 nm in thickness on a FTO layer of 200 nm.

The homogeneous and dense micro-structure material directly influences the path that
conductors take in the oxide materials. Therefore, these properties have a positive impact
in terms of the electrical and optical performance of the thin films.
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2.3. Electrical Characterizations

The dense perovskite pellets (24–25 mm in diameter and 1 mm of thickness) used as a
target for PLD were electrically characterize using an impedance spectroscope. The two
faces of the target were coated with platinum electrodes via platinum paste (Pt paste, Ferro,
CDS electronique, Saint-Dizier Cedex, France). The samples were heated up to 1000 ◦C in
air to obtain cohesive and porous platinum electrodes. The impedance measurements were
performed between 20 ◦C and 150–350 ◦C using frequencies ranging from 1 Hz to 1 GHz
with a signal amplitude of 300 mV (Solatron 1260). The purpose of this measurement is to
obtain results about the physical properties and internal structure of CTF thin films.

The electrical conductivity characterization of CTF thin films deposited by PLD was
performed using a gold microelectrode (0.4 × 0.4 mm2) obtained via photolithography
method on the top of thin film and the metallic tip in contact with the FTO surface, as
reported on Figure 5. A Keithley 2400 is used for the electrical measurement based to the
two-point probe method. For these electrical characterizations, the thicknesses of CTF films
were thicker, close to 200 nm in thickness, to improve the measurement accuracy.
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2.4. Optical Characterizations

Optical reflection and transmission of thin perovskite films of 150–200 nm in thickness
on C-type sapphire substrate (Neyco/BT Electronics) were carried out using an Cary
300 reflectometer (AGILENT Santa Clara, CA, USA). Absorbance α was deduced from
transmission T (Equation (1)) using a thickness d. The Tauc plot method [15] (Equation (2))
links the incident photon energy hυ, the optical gap Eg, the absorbance, and the constants r
(1/2 or 2 for the direct and indirect transition band gaps, respectively) and B (corresponding
to the band tailing parameter). The x-axis intersection point of its linear fit gives an estimate
of the optical band gap Eg.

α = −(1/d) log(T) (1)

αhυ = B2(hυ− Eg
)r (2)

2.5. Surface Potential Measurements

The Nano-Observer AFM (Atomic Force Microscope) from CSI© (Les ULIS, France)
including HD Kelvin Probe Force Microscopy (HD-KPFM) was used to measure the local
contact potential difference Vmeasured between a conducting atomic force microscopy tip
and the selected sample. Oxide layers on the glass confirmed the presence of flat surfaces
with root mean squared (RMS) roughness measured at about 10± 3 nm for all CTF samples.
Roughness was increased to 12 nm (±1 nm) for all CTF layers 100 nm thick on FTO, and a
columnar growth was observed on AFM images (see supporting information), as discussed
previously. The size of the microstructure depends on the deposited thickness and will be
the subject of another investigation.

The values of tip work function Φtip were evaluated using a gold layer and an FTO
layer. Good agreement with the literature was obtained (5.10 eV ± 0.10 eV for gold,
4.85 eV ± 0.10 eV for FTO). Perovskites work functions Φperovskite were deduced from:
Φperovskite = Φtip − qVmeasured.
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3. Results and Disssion
3.1. Electrical Characterization of CaTi1−yFeyO3−δ Perovskite Pellets

In a previous study, CaTi1−yFeyO3−δ perovskite oxide was sintered under high oxygen
partial pressure (10−6 to 0.21 atm) showing p-type electronic conductivity [9,11]. From
the Kröger–Vink formalism, the creation of an electronic hole (h•) can be linked to the
following reaction at a high temperature under high oxygen partial pressure. It also
noted that high oxygen partial pressure (or O2) leads to reduced concentrations of oxygen
vacancies (V••O ) in the perovskite structure and increased concentration of electronic holes
(h•), as described in (3).

O×2 (g)+V••O ↔ O×O +2 h• (3)

Figure 6 shows that the Ti substitution by Fe significantly increases the electrical
conductivity of the CaTi1−yFeyO3−δ perovskite. Indeed, the Ti substitution by Fe leads to
the formation of oxygen vacancies (V••O ) following the reaction (4), which also leads to the
creation of electronic holes (as reported in reaction (3)) and consequently, the increase of
the electronic conductivity of the material.

2 CaO + Fe2O3
CaTiO3→ 2 Ca×Ca + 2 Fe′Ti+V••O + 5 O×O (4)
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In addition, the activation energy decreases versus increasing Fe from 0.40 eV (for
CTF73) to 0.26 eV (for CTF37). The activation energy value is strongly linked to the
structural modification of the CaTi1−yFeyO3−δ perovskite, with the atomic Fe/Ti ratio
linked to the ordered oxygen vacancies in the perovskite structure [9,11].

3.2. Characterization of CaTi1−yFeyO3−δ Perovskite Films Deposited by PLD
3.2.1. Electrical Characterizations of CaTi1−yFeyO3−δ Perovskite Films

The nature of cation substitution in perovskite structures makes it possible to manage
a large range of properties. Therefore, the Fe/Ti ratio modifies the concentration of elec-
tronic holes and the mobility of electronic holes, which ultimately governs the electrical
conductivity (Table 2).
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Table 2. Electrical Conductivity Measurement of CTF Perovskite Materials on the Pellets and on the
PLD Thin Films.

Compositions CTF73
Perovskite

CTF55
Perovskite

CTF37
Perovskite

Electrical
conductivity

(S·cm−1)

Pellets 8.7· 10−7 1.8·10−5 8·10−4

PLD coating
before annealing

Close to 200 nm
(in thickness) 2·10−10 5·10−10 8·10−10

PLD coating
after annealing

under air at 500 ◦C
during 4 h

Close to 200 nm
(in thickness) 7·10−9 4·10−7 1.3·10−8

In general, the electrical conductivity of thin films decreased significantly after an-
nealing at 500 ◦C under air, leading to the creation of electronic holes in CTF materials, as
reported previously in the reaction (3). However, the electrical conductivity of the films
were still two and three orders of magnitude lower that the pellets (Table 2). This large
discrepancy of electrical conductivity between pellets and the films can be linked to the
specific microstructure of PLD coating: in particular, to the reduction of the associated grain
boundaries and the low crystallinity of the films (see Figure 3 X-ray diffraction patterns of
PLD films). In addition, there was lower variation of electrical resistivity between the three
compositions because the electrical conductivity is mainly governed by the resistivity of
grain boundaries. These boundaries create proper conductive paths due to the existence of
defects and impurities. Moreover, the CTF55 films showed a higher electrical conductivity
due to the enhancement of the associated grain boundaries in the film. Indeed, it is assumed
here that the annealing treatment under air leads to increases in the crystallinity as well as
the electrical conductivity of materials.

3.2.2. Optical Characterization

Figure 7 presents the transmission of the three 100 nm-thick layers of oxide of deposited
on ITO. After the wavelength of 500 nm, their transmission matches that of the FTO layer,
showing a weak influence of oxides. Before this wavelength, the transmission drops
according to the Ti/Fe ratio. Otherwise, oscillations along the spectrum due to internal
optical interferences can be used to approximate the optical index (ñ = 2.7 here) [16]. High
reflection was monitored when the layer was deposited on sapphire (Figure S3). Due to the
high differences between optical indices of air, a proportion of the light was lost in reflection.
At each interface, the intensity of the reflection coefficient is related to the equation 5 where
R ≈ 0 only if n1 ≈ n2. Nevertheless, a CTF/active layer interface should present a lower
reflection due to a diminution of the index difference between the perovskite oxide (n1)
and its juxtaposed layer (n2). Indeed, ñ of 2.7 was closer to the real optical index of the
active layer, such as CH3NH3PbI3 (between 2 and 2.5) [17], than the optical index of air (=1)
on the visible range. The difference between the reflection and the transmission was equal
to the absorption of the multilayer.

R = [(n1 − n2)/(n1 + n2)]
2 (5)

In particular, the CTF73 transmission followed the FTO transmission fairly well,
highlighting a weak influence of the oxide layer despite its large thickness, which would be
reduced in a hybrid perovskite optoelectronic device. Typical thickness for the interfacial
layer is between 15 and 50 nm. This reduction is particularly important to compensate for
the rather high electrical resistivity and a compromise needs to be found with the energy
band bending. The interfacial layer thickness needs to be sufficiently thick to twist the
energy bands and block the correct carrier, but sufficiently thin to be transparent and not
too resistive. This compromise will be further investigated.
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Figure 7. Optical properties of CaTi0.7Fe0.3O3−δ (CTF73), CaTi0.5Fe0.5O3−δ (CTF55), and
CaTi0.3Fe0.7O3−δ (CTF37), perovskite films developed by pulsed laser deposition on FTO.

The optical band gap approximated using Tauc plots (Figure S1) led to band gaps for
r = 0.5 at approximately 3.2 eV, 3.4 eV, and 3.5 eV and band gaps for r = 2 at approximately
3.8 eV, 3.9 eV, and 4.0 eV for CTF37/CTF55/CTF73, respectively. The variation of stoichiom-
etry in favor of titanium led to a modification of the distribution of carriers and defects.
The resulting band tail was higher with a larger amount of titanium. The screening of
the electron Coulomb potential by surrounding carriers can reduce the repulsion between
valence and conduction band electrons and, among other factors, leads to a band gap
reduction. Values of gap observed here can be expected to make an electron-blocking layer
and a hole conductive layer together. These layers may be able to protect the active layer
from UV-light due to its low optical transmission before a wavelength of 400 nm, while
allowing visible light to pass through it [18].

These work functions were compared to the literature work function of ITO, FTO,
PEDOT: PSS and conduction/valence bands of CH3NH3PbI1−xClx, CH3NH3PbBr3, PCBM,
BCP, Ca, Al (Figure 8) [19–21] (AFM topography available in Figure S2b). These materials
are very common for perovskite solar cells or LED [22]. The CTF material work function is
well located between the ITO/FTO work function and lead perovskite valence band, which
make possible its use as a hole-transporting layer.
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The work functions and the optical gaps of perovskite materials are listed in Table 3.
Therefore, the optical properties and the work functions present close values for all the
stoichiometries. The important difference lies in the electrical conductivity, in which the
CTF55 configuration has a clear advantage.

Table 3. Work Functions Measured on CaTi1−yFeyO3−δ Perovskite Films.

Materials Acronym Work function
(eV) Gap (eV)

CaTi0.7Fe0.3O3−δ CTF73 5 3.2 (indirect)
CaTi0.5Fe0.5O3−δ CTF55 5 3.4 (indirect)
CaTi0.3Fe0.7O3−δ CTF37 5 3.5 (indirect)

4. Conclusions

The optoelectronic properties of CaTi0.7Fe0.3O3−δ, CaTi0.5Fe0.5O3−δ and CaTi0.3Fe0.7O3−δ
perovskite oxide films deposited by the PLD technique have been investigated. The post-
annealing process in air was applied on the CTF55 film, and its effect on crystal structure
and microstructure properties has been realized.

It was observed that the perovskite films deposited in three different Ti and Fe stoi-
chiometry have particular properties in terms of optical, electrical, and work function. The
optimum specifications of the perovskite oxides to be used as an interlayer can be adjusted
by the change in oxygen stoichiometry and the annealing. CaTi0.5Fe0.5O3−δ perovskite film
can be proposed as a candidate for the p-type interlayer of optoelectronic devices (solar
cells, light-emitting diodes). Although the optical properties of the three compositions
are not very different from each other, the CTF55 film has the excellent advantage of high
electrical conductivity from the electrical properties side.

This work will pave the way for the field of p-type interlayers and provide perspective
on low-cost and low-temperature processes. The next step is to investigate the interface of
such oxide with hybrid perovskite [23] and finally, to integrate these perovskite oxides as
an interlayer in the fully solar cell [24,25].

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/ma15196533/s1, Figure S1: Tauc plots (a) with r = 0.5,
(b) with r = 2, and associated fits for CTF73, CTF55, and CTF37.; Figure S2: AFM topography of
(a) CTF37, (b) CTF55, and (c) CTF37 on FTO.; Figure S3: Reflection of CTF layers deposit on sapphire.
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