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Abstract: This paper proposes and validates using experimental data a dynamic model to determine
the current–temperature relationship of insulated and jacketed cables in air. The model includes
the conductor core, the inner insulation layer, the outer insulating and protective jacket and the air
surrounding the cable. To increase its accuracy, the model takes into account the different materials of
the cable (conductor, polymeric insulation and jacket) and also considers the temperature dependence
of the physical properties, such as electrical resistivity, heat capacity and thermal conductivity. The
model discretizes the cable in the radial direction and applies the finite difference method (FDM) to
determine the evolution over time of the temperatures of all nodal elements from the temperatures
of the two contiguous nodes on the left and right sides. This formulation results in a tri-diagonal
matrix, which is solved using the tri-diagonal matrix algorithm (TDMA). Experimental temperature
rise tests at different current levels are carried out to validate the proposed model. This model
can be used to simulate the temperature rise of the cable when the applied current and ambient
temperature are known, even under short-circuit conditions or under changing applied currents or
ambient temperatures.

Keywords: insulated cable; polymeric insulation; cable model; temperature rise; simulation; finite
difference method

1. Introduction

The demand for electrical energy is currently growing worldwide [1–3], so power
systems load levels are increasing. It is of paramount importance to ensure that power
cables operate within their thermal limits to not compromise their safe operation. The
ampacity of insulated cables can be calculated by applying the method detailed in the IEC
60287 standard [4]. However, this standard only provides formulas to determine the current
rating or maximum permissible current under steady-state conditions and a maximum
temperature increase, but it does not develop the heat transfer equation. The same applies
for the IEC 60853 [5], which develops methods for determining the cyclic and emergency
current ratings of power cables, but does not provide a method for determining their
temperature evolution. The IEC 60986 [6] standard, which is related to the short-circuit
temperature limits of insulated cables, provides tables with the maximum permissible
short-circuit temperatures to limit the I2t heating based on the consideration of the range
of limits used by various authorities, but it does not allow the temperature evolution of
the cable to be determined. The IEC 60986 recognizes that the values in the tables are
safe, but they are not necessarily ideal because there are very little available experimental
data on actual cables. Given the limitations of the aforementioned standards, this work
contributes to this field, since it develops and validates with experimental tests a dynamic
model to determine the current–temperature relationship between insulated and jacketed
cables in air. The proposed model includes the core, the inner insulation layer, the outer
protective jacket and the air surrounding the cable. The model considers the different cable
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materials (conductor, insulation and jacket) and the temperature dependencies of their
physical properties.

Current rating calculations on power cables require determining the temperature of
the different cable layers for a specified current or determining permissible current for
a specified cable temperature [7]. Therefore, in order to perform these calculations, it is
necessary to determine the heat generated due to the Joule effect within the conductor and
the rate of its dissipation away from the cable, which depends on the current level, cable
size, composition and laying method. To this end, the heat conduction equation must be
solved by applying numerical approaches [7].

Two- and three-dimensional finite element analysis (FEA) approaches have been
widely used to address this problem [8–11], because FEA simulations are widely accepted
as a powerful and realistic approach to determine the electromagnetic and thermal perfor-
mance of power cables and other devices intended for power systems [12]. For example, the
IEC TR 62095 standard [7] suggests applying FEA methods, when the methods discussed in
the IEC 60287 (steady-state conditions) and IEC 60853 (cyclic conditions) cannot be applied.
However, FEA approaches involve preparing the geometry and mesh of the problem. They
are often memory-intensive and time-consuming due to the number of discretized elements
they require, especially when solving coupled multiphysics problems. FEA approaches
also require the purchase of specific software and the periodic maintenance of expensive
licenses, as well as the involvement of qualified technicians [13].

In [14], a method to calculate the temperature rise of cable systems under steady-state
conditions is presented, which the authors recognize as a simple procedure compared
to the transient case. In [15], an empirical transient cable model is presented, which
neglects radiation losses and changes in conductor resistance, among others. In [16], a
thermal model of bare and insulated conductors is presented, but it does not include the
jacket. In [17], a lumped parameter thermal network for direct current medium voltage
cables is presented. Although this model allows the temperature rise of the cable to be
determined, its accuracy is limited, in part because of the poor level of discretization, and
in part, because it neglects the temperature dependency of the main parameters of the cable
(thermal conductivity, specific heat capacity and electric resistivity). Similar approaches
based on lumped parameter thermal networks are presented in [18–21], with similar
limitations. In [22], an approach to calculate the transient temperature of a single-core
insulated cable using an analytic approach is presented, but the model does not include
the jacket and different simplifications are performed in order to solve the differential
equations arising from the model.

Due to the limitations of FEM-based methods (geometry preparation, meshing, compu-
tational burden or software licenses among others) or the limitations of lumped parameter
methods (poor discretization or not considering the temperature dependency of the cable
parameters), to overcome these drawbacks, it is highly appealing to develop fast and
accurate transient models [23], if possible based on model reduction methods [24].

This paper describes a numerical method developed to determine the radial temper-
ature distribution (from the center of the core to the outer surface) of stranded insulated
and jacketed cables, which is affected by the steady or time-varying electrical current
flowing through the cable and the ambient temperature. The proposed model considers
the temperature dependency of the main cable parameters, such as the electric resistivity
of the conductor and the volumetric densities, thermal conductivities and specific heat
capacities of the different cable materials. The method proposed in this paper may be used
to determine the radial temperature distribution when the current is known or to determine
the temperature of the cable yielding a maximum allowable temperature. Therefore, it
allows the current corresponding to pre-established temperature limits of the cable to be
determined, since it solves the non-stationary heat transfer equation. The proposed model
also allows steady-state, transient and dynamic problems to be solved. The steady-state
problem is applied when the electric current and the ambient and cable temperatures are a
constant value and independent of time. The transient problem occurs when the ambient



Materials 2022, 15, 6814 3 of 16

temperature remains constant but the current undergoes a step change, thus affecting the
radial temperatures, following an exponential change. Finally, the dynamic problem can
be applied when the ambient temperature and/or current change over time follows any
pattern. Due to the increase in load levels, cables are often pushed to their limits. The model
developed in this paper can also be a useful tool for cable maintenance tasks, which can
also disclose the relationship between the current, thickness and material of the insulation
and jacket layers, ambient temperature and cable temperature. Finally, the comprehensive
method here proposed, which fully develops the physical equations that govern the heat
transfer problem, can be easily adapted to other cable configurations.

2. Transient Thermal Model of the Insulated and Jacketed Cable

Figure 1 shows a cross section of the cable, which includes the conductor core (orange
color), the inner insulation layer (blue color) and the outer insulating and protecting jacket
(gray color). It is noted that both the inner insulation and the outer jacket are layers of the
cable that protect the conductor. Whereas the insulation layer isolates the current flow, the
jacket is the outermost layer, which protects the conductor core and the insulation from
chemical deterioration and external elements.
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Figure 1. Cable layout including the copper core, the inner XLPE insulation layer and the outer
PVC jacket.

The temperature of the cable mainly depends on two factors, that is, the self-generated
heating due to the Joule effect and the ambient temperature. The electric current is confined
within the metallic conductor core, which is usually made of copper or aluminum strands,
so the heat flows from the conductor to the air passing through the inner insulation layer
and the outer jacket to the surrounding air.

The transient thermal behavior of bare conductors, that is, without insulation and
jacket layers, can be modeled by applying the methods found in the CIGRE [25] and IEEE
Std. 738 [26] standards, which state that for bare conductors, the heat balance equation
results from the balance between the heat gain and the heat loss terms as,

I2
RMSr(T) = Pc + Pr − Ps + mcp(T)

dT
dt

[W/m] (1)

where IRMS (A) is the root mean square value of the current flowing through the conductor,
r (Ω/m) is the per unit length electric resistance of the conductor, Pc (W/m) and Pr (W/m)
are, respectively, the per unit length convection and radiation heat loss terms, Ps (W/m) is
the term due to the per unit length solar heat gain, m (kg/m) the per unit length conductor
mass, cp(T) (J/(kgK)) the specific heat capacity of copper or aluminum (conductor material)
and T (K) the mean temperature of the conductor and t (s) the time. Since in this paper the
tests are performed indoors, the solar heat gain term Ps is not considered.

It is worth noting that the resistance per unit length depends on the temperature as,

r(T) = rT0 [1 + α(T − T0)] (2)
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where T0 (K) is the reference temperature (usually 20 ◦C or 293.15 K), T (K) is the mean
temperature of the analyzed conductor node and α (K−1) is the temperature coefficient of
the resistance. It is known that with ac supply the current density throughout the cross-
section of the conductor cannot be uniform due to the eddy current effects [27], but the
measured value of rT0 already includes such effects.

When dealing with insulated and jacketed cables, the analysis is more complex than
that shown in (1), so a more detailed study is required, which is detailed in the next
sections. In this case, three different materials are involved in the three layers of the cable,
for example, copper in the conductor core, XLPE in the inner insulation layer and PVC
in the outer jacket. For more accuracy, the temperature dependencies of the specific heat
capacities and the thermal conductivities of such materials are considered.

Figure 2 shows the temperature dependency of the specific heat of copper [28],
XLPE [29] and PVC [30], while Figure 3 shows the temperature dependency of the thermal
conductivity of copper [31], XLPE [32] and PVC [33]. It is worth noting that these properties
are needed to solve the heat transfer equations.
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Figure 2. Temperature evolution of the specific heat capacity cp of the different cable materials: (a) 
Copper [28]. (b) XLPE [29]. (c) PVC [30]. 

Figure 2. Temperature evolution of the specific heat capacity cp of the different cable materials:
(a) Copper [28]. (b) XLPE [29]. (c) PVC [30].
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(a) Copper [31]. (b) XLPE [32]. (c) PVC [33].

2.1. Domain Discretization and TDMA Formulation

As explained, the temperature of an insulated cable depends on two main factors,
which are the self-generated Joule (I2r) heating and the externally ambient temperature.
Thus, in general, heat flows radially from the central part of the conductor to the outer part
of the jacket. The whole domain of the cable is discretized into many discrete elements
along the radial dimension of the cable, as shown in Figure 4.
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The heat transfer problem is solved along the radial axis because the heat is conducted
through this axis. This approach assumes that the central point of any node has the mean
temperature of the discrete element where it is placed. This assumption is accurate since a
small spatial step ∆x is chosen. The finite difference method (FDM) determines the nodal
temperature from the temperatures of the two contiguous left-hand and right-hand side
nodes. A tri-diagonal matrix describing the nodal temperature arises, so the temperatures
can be determined by applying the tri-diagonal matrix algorithm (TDMA) [34], which has
the form [12],

aj
i T

j+1
,i−1 + bj

i T
j+1
,i + cj

i T
j+1
,i+1 − dj

i = 0 (3)

i and j being, respectively, the indices related to the spatial and temporal steps, so that
Ti

j = T(i∆x,j∆t) corresponds to the average temperature of the i-th node calculated at the
j-th time step. Finally, ai

j, bi
j, ci

j and di
j are constant coefficients. Equation (4) calculates the
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nodal temperatures from the temperatures of the neighboring right-hand side and left-hand
side nodes. 

bj
1 cj

1
aj

2 bj
2 cj

2 .
aj

3 bj
3 cj

3 .

cj
tot aj

tot

aj
1

cj
tot−1
bj

tot

·


T j+1
1

T j+1
2

T j+1
3
.

T j+1
tot

 =


dj

1
dj

2
dj

3
.

dj
tot


with aj

1 = cj
tot = 0

(4)

2.2. Conductor Discretization

The conductor part (orange color) designated with subscript A includes NA nodal
elements of thickness ∆xA (m) each, as shown in Figure 5, whereas the elements of the
insulation layer are shown in blue color. An additional node is placed at the boundary
between the conductor and the insulation layer.
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Figure 5. Conductor discretization.

To properly distribute the electric current and the electric resistance along each division,
the electric resistivity ρe (Ω·m) and the current density Ji = Ii/Si (A/m2) in each element are
required, Si and Ii being, respectively, the cross section and the current corresponding to
the i-th element, so the resistance per unit length of the i-th element is ri = ρe /Si (Ω/m).

First node (i = 1) analysis. At the first node, heat is generated by the Joule effect
and conducted to the adjacent outer node (right-hand side). The discretized heat transfer
equation can be expressed as,

ρAS1,Acp,A
T j+1

1 − T j
1

∆t
= I2

i ri(T
j
1)− kA

T j+1
1 − T j+1

2
∆xA

p1 (5)

with, {
S1,A = π[x1 + 0.5∆xA]

2

p1 = 2π[x1 + 0.5∆xA]
(6)

where ρA (kg/m3) is the mass density of the conductor material, cp,A (J/(kgK)) is the specific
heat capacity of the conductor material, ri (Ω/m) is the per unit length resistance of the
i-th element of the conductor, kA (W/(mK)) is the thermal conductivity of the conductor
material, and Ti

j (K) is the temperature of the i-th element calculated at time t = j∆t (s).
After reorganizing the terms in (5) to match with the TDMA formulation, the TDMA

coefficients of the first node result in,

a1 = 0

b1 =
ρAS1,Acp,A

∆t + kA
p1

∆xA

c1 = −kA
p1

∆xA

d1 =
ρAS1,Acp,AT j

1
∆t + I2

i ri(T
j
1)

(7)
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Generic node (i) analysis. A generic conductor node includes the heat generation
and the heat conduction from the inner (left) to the outer (right) element, thus resulting in,

ρASi,Acp,A
T j+1

i − T j
i

∆t
= I2

i ri(T
j
i ) + kA

T j+1
i−1 − T j+1

i
∆xA

pi−1 − kA
T j+1

i − T j+1
i+1

∆xA
pi+1 (8)

where  Si,A = π[xi + 0.5∆xA]
2 − π[xi − 0.5∆xA]

2

pi−1 = 2π[xi − 0.5∆xA]
pi+1 = 2π[xi + 0.5∆xA]

with 2 ≤ i ≤ NA

(9)

After reorganizing the terms above to match with the TDMA formulation, the TDMA
coefficients of the generic node result in,

ai = −kA
pi−1
∆xA

bi =
ρASi,Acp,A

∆t + kA
pi−1
∆xA

+ kA
pi+1
∆xA

ci = −kA
pi+1
∆xA

di =
ρASi,Acp,AT j

i
∆t + I2

i ri(T
j
i )

with 2 ≤ i ≤ NA

(10)

Boundary node (i = NA + 1). In the boundary node between the conductor and the
insulating layer (see Figure 5), the thermal conductivity is different on each side of the
node, and the Joule effect heat generation is only in the conductor, not in the insulation.

ρASi,Acp,A
T j+1

i − T j
i

∆t
+ ρBSi,Bcp,B

T j+1
i − T j

i
∆t

= I2
i ri(T

j
,i) + kA

T j+1
i−1 − T j+1

i
∆xA

pi−1 − kB
T j+1

i − T j+1
i+1

∆xB
pi+1 (11)

where 
Si,A = π[xi]

2 − π[xi − 0.5∆xA]
2

Si,B = π[xi + 0.5∆xB]
2 − π[xi]

2

pi−1 = 2π[xi − 0.5∆xA]
pi+1 = 2π[xi + 0.5∆xB]

with i = NA + 1

(12)

In the boundary node, the resistance per unit length and current only affect the region
of material A (conductor), so that the current density Ji = Ii/Si (A/m2) is required in each
element, Si and Ii being, respectively, the cross section and the current of the i-th element.
The resistance per unit length of the i-th element is ri = ρe/Si,A (Ω/m), where Ii = Si,AJi.

The TDMA coefficients of the boundary node result in,

ai = −kA
pi−1
∆xA

bi =
ρASi,Acp,A

∆t +
ρBSi,Bcp,B

∆t + kA
pi−1
∆xA

+ kB
pi+1
∆xB

ci = −kB
pi+1
∆xB

di =
ρASi,Acp,AT j

i
∆t +

ρBSi,Bcp,BT j
i

∆t + I2
i ri(T

j
,i)

with i = NA + 1

(13)

Although the conductor has already been discretized, as the thermal conductivity
of copper is approximately three orders of magnitude larger compared to that of the
surrounding insulating materials (see Figure 3), a single temperature value can be assigned
to the conductor, as the temperature drop over it is almost negligible.
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2.3. Inner Insulation Discretization

The elements in the inner insulation layer (blue color) are expressed with subscript B,
which includes NB nodal elements, as shown in Figure 6, whereas the elements of the outer
jacket are represented in gray color. An additional node is placed at the boundary between
the insulation layer and the outer jacket.
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Figure 6. Inner insulation layer discretization.

Regarding the insulation layer, no internal heat source exists, so the temperature only
varies along the radial axis [35].

Generic node (i). Since no heat is generated within the generic node of the insulation
layer, the heat transfer equation results in,

ρBSi,Bcp,B
T j+1

i − T j
i

∆t
= kB

T j+1
i−1 − T j+1

i
∆xB

pi−1 − kB
T j+1

i − T j+1
i+1

∆xB
pi+1 (14)

where  Si,A = π[xi + 0.5∆xB]
2 − π[xi − 0.5∆xB]

2

pi−1 = 2π[xi − 0.5∆xB]
pi+1 = 2π[xi + 0.5∆xB]

with NA + 2 ≤ i ≤ NA + NB

(15)

The TDMA coefficients of a generic node of the inner insulation layer result in,

ai = −kB
pi−1
∆xB

bi =
ρBSi,Bcp,B

∆t + kB
pi−1
∆xB

+ kB
pi+1
∆xB

ci = −kB
pi+1
∆xB

di =
ρBSi,Bcp,BT j

i
∆t

with NA + 2 ≤ i ≤ NA + NB

(16)

Boundary node (i = NA + NB + 1). The heat transfer equation of the boundary node
between the inner insulation layer and the outer jacket can be expressed as,

ρBSi,Bcp,B
T j+1

i − T j
i

∆t
+ ρCSi,Ccp,C

T j+1
i − T j

i
∆t

= kB
T j+1

i−1 − T j+1
i

∆xB
pi−1 − kC

T j+1
i − T j+1

i+1
∆xC

pi+1 (17)

where 
Si,B = π[xi]

2 − π[xi − 0.5∆xB]
2

Si,C = π[xi + 0.5∆xC]
2 − π[xi]

2

pi−1 = 2π[xi − 0.5∆xB]

pi+1 = 2π[xi + 0.5∆xC]

with i = NA + NB + 1

(18)
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The TDMA coefficients of the boundary node between the inner insulation layer and
the outer jacket result in,

ai = −kB
pi−1
∆xB

bi =
ρBSi,Bcp,B

∆t +
ρCSi,Ccp,C

∆t + kB
pi−1
∆xB

+ kC
pi+1
∆xC

ci = −kC
pi+1
∆xC

di =
ρBSi,Bcp,BT j

i
∆t +

ρCSi,Ccp,CT j
i

∆t

with i = NA + NB + 1

(19)

2.4. Outer Jacket Discretization

The elements in the outer jacket (gray color) are expressed with subscript C. As shown
in Figure 7, it includes NC nodal elements. It can be observed that an additional node has
been added to the boundary between the outer jacket and the air.
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Generic node (i). Since no heat is generated in the generic node of the outer jacket,
the heat transfer equation results in,

ρCSi,Ccp,C
T j+1

i − T j
i

∆t
= kC

T j+1
i−1 − T j+1

i
∆xC

pi−1 − kC
T j+1

i − T j+1
i+1

∆xC
pi+1 (20)

where  Si,C = π[xi + 0.5∆xC]
2 − π[xi − 0.5∆xC]

2

pi−1 = 2π[xi − 0.5∆xC]
pi+1 = 2π[xi + 0.5∆xC]

with NA + NB + 2 ≤ i ≤ NA + NB + NC

(21)

The TDMA coefficients of a generic node of the outer jacket are as follows,

ai = −kC
pi−1
∆xC

bi =
ρCSi,Ccp,C

∆t + kC
pi−1
∆xC

+ kC
pi+1
∆xC

ci = −kC
pi+1
∆xC

di =
ρCSi,Ccp,CT j

i
∆t

with NA + NB + 2 ≤ i ≤ NA + NB + NC

(22)

Last node (i = NA + NB + NC + 1). The last node is placed in the boundary between
the outer jacket and air, so indoors, only convection and radiation must be considered,

ρCSi,Ccp,C
T j+1

i − T j
i

∆t
= kC

T j+1
i−1 − T j+1

i
∆xC

pi−1 − hpi+1(T
j+1
i − Tair)− εσpi+1[(T

j
i )

4
− (Tair)

4] (23)

where  Si,C = π[xi]
2 − π[xi − 0.5∆xC]

2

pi−1 = 2π[xi − 0.5∆xC]
pi+1 = 2πRC

with i = NA + NB + NC + 1

(24)
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where RC (m) is the outer radius of the cable, σ (W/(m2K4)) is the Stefan–Boltzmann
constant, and ε = 0.85 (-) is the emissivity coefficient [36,37], whereas h (W/(m2K)) is the
heat transfer coefficient. Assuming that there is no wind, i.e., the worst condition, the heat
transfer coefficient due to natural convection can be calculated as [26]:

h =
3.645

π
ρ0.25

air D−0.25(T − Tair)
0.25 (25)

Air density ρair (kg/m3) changes with the cable elevation H (m), air temperature
Tair (K) and cable temperature T (K) as [26],

ρair =
1.293 − 1.525 · 10−4H + 6.379 · 10−9H2

1 + 0.00367(Tair + T)/2
(26)

Finally, the TDMA coefficients of the boundary node between the outer jacket and air
result in, 

ai = −kC
pi−1
∆xC

bi =
ρCSi,Ccp,C

∆t + hpi+1 + kC
pi−1
∆xC

ci = 0

di =
ρCSi,Ccp,CT j

i
∆t + hpi+1Tair − εσpi+1[(T

j
i )

4
− (Tair)

4]

with i = NA + NB + NC + 1

(27)

It is worth noting that (1)–(27) have been programmed and solved in the MATLAB®

environment by the authors of this work.

3. Experimental
3.1. Experimental Setup

A high-current transformer (variable output voltage 0–3 V, variable output current 0–1 kA,
and 50 Hz alternating current) was used to conduct the experimental tests carried out at
AMBER high-current laboratory of the Universitat Politècnica de Catalunya. To regulate
the output current, the transformer has an input stage that includes an autotransformer. A
loop formed by the analyzed insulated cable was directly connected to the output terminals
of the transformer, as shown in Figure 8.

Figure 8b also shows the insertions made in the cable to place the thermocouples.
Table 1 details the main characteristics of the insulated cable used in the experiments.

Table 1. Conductor dimensions and characteristics.

Characteristic Value

Designation Barrinax U-1000 R2V
Rated voltage [kVRMS] 0.6/1.0
Max voltage [kVRMS] 1.2

Max continuous service temperature [◦C] 90
Short circuit temperature [◦C] 250

Inner insulation material XLPE
Inner insulation wall thickness [mm] 1.1

Outer jacket material PVC
Outer jacket wall thickness [mm] 1.5

Effective copper cross section [mm2] 70
Outer conductor diameter [mm] 9.5

Copper resistivity 20 ◦C [Ohm·m] 1.85 × 10−8

Temperature coefficient of resistivity [K−1] 0.0043
Number of strands [-] 14

Per unit length mass of the conductor [kg/m] 0.584
Ambient temperature [◦C] 19
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insertions (conductor-insulation and insulation-jacket) made in the cable to place the thermocouples.

To eliminate any hot spot or heat sink, the length of the cable was 4 m, which is in
agreement with the recommendations found in different international standards [38–40].

The current circulating through the cable loop was measured using a Rogowski coil
(ACP1000 GMC-I, 1 mV/A, ±1%, DC to 10 kHz, PROsyS, Skelmersdale, UK), which
provides a voltage that is linear with the electric current in the loop. The temperature in
the different parts of the insulated cable (conductor-insulation boundary, insulation-jacket
boundary and jacket-air boundary) was measured using low-thermal inertia welded-tip
T-type thermocouples with a diameter of 0.2 mm. T-type thermocouples were selected
because they are among the most accurate thermocouples, with an accuracy up to 0.5 ◦C. An
OMEGA USB-2400 acquisition card was used to acquire the temperatures with a sampling
frequency of 10 Hz. The ambient temperature was maintained at a constant value during
the tests. Before the tests, it was ensured that the cable was at room temperature.

Experimental errors mainly depend on the accuracy of the Rogowski coil used to
measure the current and the T-type thermocouples used to measure the temperature.
Special care must be taken when performing the insertions made in the cable (conductor-
insulation and insulation-jacket) to place the thermocouples, which are shown in Figure 8b.
Finally, the values of different geometric conductor parameters (diameter and wall thickness
of the insulation and jacket layers) as well as the physical properties of the materials
(volumetric mass density, resistivity, specific heat capacity or thermal conductivity) also
influence the accuracy of the simulation results.

3.2. Experimental Results

Experimental temperature rise tests were conducted to validate the thermal model of
the conductor. These tests consist of applying current steps up to close the rated current to
the cable loop during a certain time interval, during which the cable heats up in different
stages. The applied current levels and durations of each current level are summarized in
Table 2.

Figure 9 shows the experimental and simulated temperature profiles in the three
measured points of the cable (conductor-insulation boundary, insulation-jacket boundary
and jacket-air boundary) corresponding to the five current levels.



Materials 2022, 15, 6814 12 of 16

Table 2. Conductor of 70 mm2. Realized temperature rise tests.

Step Current (ARMS) Duration (s)

#1 120 1950
#2 145 1950
#3 170 1500
#4 185 1850
#5 212 1350
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Figure 9. Conductor of 70 mm2. Experimental versus simulated temperature rise profiles in the three
measured points of the cable (conductor-insulation boundary, insulation-jacket boundary and jacket-
air boundary) and the relative difference between the experimental and simulated temperatures.

Results presented in Figure 9 show great agreement between experimental and simu-
lated data, since the mean error is less than 1%, thus proving the suitability of the proposed
cable model.

The proposed model also allows other parameters of the cable to be determined, such
as the radial temperature distribution or the components of the heat balance equation, as
shown in Figure 10.

It is worth noting that using an Intel®CoreTM i7-1185G7 CPU@ 3.0 GHz with 32 GB
RAM (Intel, Santa Clara, CA, USA) with a time step of 10 s and nine nodes for each material,
the software requires 0.7 s to run a simulation consisting of five current steps (see Figure 9)
between t = 0 s and t = 8600 s.
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Figure 10. Conductor of 70 mm2: (a) Temporal evolution of the temperature along the radial axis
considering 28 nodal elements. (b) Temporal evolution of the components of the heat balance equation.

3.3. Additional Experimental Results

To further validate the accuracy of the cable model, a second cable of 4 m length was
tested, its characteristics are summarized in Table 3.

Table 3. Dimensions and characteristics of the second conductor.

Characteristic Value

Designation H07RN-F TITANEX 1 × 150
Rated voltage [kVRMS] 0.6/1.0
Max voltage [kVRMS] 1.2

Max continuous service temperature [◦C] 90
Short circuit temperature [◦C] 250

Inner insulation wall thickness [mm] 2.0
Outer jacket wall thickness [mm] 2.5

Effective copper cross section [mm2] 150
Outer conductor diameter [mm] 15

Copper resistivity 20 ◦C [Ohm·m] 1.85 × 10−8

Flexibility class 5
Per unit length mass of the conductor [kg/m] 1.74

Ambient temperature [◦C] 23.5

As with the first cable, experimental temperature rise tests were conducted to validate
the proposed model of the conductor. They consist of applying five current steps to the
cable loop during a certain time interval. The applied current levels and their durations are
summarized in Table 4.
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Table 4. Conductor of 150 mm2. Realized temperature rise tests.

Step Current (ARMS) Duration (s)

#1 130 766
#2 163 554
#3 220 850
#4 305 530
#5 405 400

Figure 11 shows the experimental and simulated temperature profiles in the three
measured points of the cable (conductor-insulation boundary, insulation-jacket boundary,
and jacket-air boundary) for the five current levels.
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Figure 11. Conductor of 150 mm2. Experimental versus simulated temperature rise profiles in the three
measured points of the cable (conductor-insulation boundary, insulation-jacket boundary and jacket-air
boundary) and the relative difference between the experimental and simulated temperatures.

Results presented in Figure 11 show great agreement between experimental and
simulated data, since the mean error is also less than 1%, thus proving the accuracy of the
proposed cable model.

4. Conclusions

This paper has presented a model for determining the current–temperature rela-
tionship between insulated and jacketed cables in air, which fully develops the physical
equations governing the heat transfer problem. The model solves the transient heat transfer
equations through the different layers of the cable, namely, the conductor core, the inner
insulation layer, the outer insulating and protective jacket and the air surrounding the
cable. To this end, the model discretizes the cable in the radial axis and applies a finite
difference method approach to calculate the temperatures in all nodes of the discretized
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domain by considering the contiguous left-hand and right-hand side nodes. Since this
approach leads to a tri-diagonal matrix, it is solved by applying the tri-diagonal matrix
algorithm (TDMA). Experimental temperature rise tests performed by applying current
steps of different magnitudes show the accuracy of the proposed method. The approach
presented in this paper can be applied to determine the temperature rise of the cable once
the applied current and ambient temperature are known, even under short-circuit condi-
tions or under changing applied currents or ambient temperatures. The method proposed
here can be easily adapted to other cable configurations.
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