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Abstract: This paper proposes the framework for reliability-based design optimization (RBDO) of
structural elements with an example based on the corrugated web I-girder. It tackles the problem of
topological optimization of corroding structures with uncertainties. Engineering restrictions follow
a concept of the limit states (LS) and extend it for stability and eigenfrequency assessment. The re-
liability constraints include all the LS; they are computed according to first- and second-order reli-
ability methods. The RBDO example minimizes the bridge girder cross-section while satisfying the
structural reliability level for the ultimate and the serviceability limit states, stability, and eigenfre-
quency. It takes into consideration two uncorrelated random effects, i.e., manufacturing imperfec-
tion and corrosion. They are both Gaussian; the first of them is applied at assembly time, while the
second is applied according to the time series. The example confronts three independent FEM mod-
els with an increasing level of detailing, and compares RBDO results for three concurrent probabil-
istic methods, i.e., the iterative stochastic perturbation technique (ISPT), the semi-analytical method,
and the Monte Carlo simulation. This study proves that the RBDO analysis is feasible even for com-
putationally demanding structures, can support automation of structural design, and that the level
of detailing in the FEM models influences its results. Finally, it exemplifies that reliability re-
strictions for LS are much more rigorous than for their deterministic counterparts, and that the fast-
est ISPT method is sufficiently accurate for probabilistic calculations in this RBDO.

Keywords: reliability-based design optimization; stochastic perturbation technique;
Monte Carlo simulation; semi-analytical method; topological optimization; corrugated web;
corrosion

1. Introduction

Contemporary structural designs require powerful tools for optimization purposes,
which must be effective, fast, and easy to use. Together with an exponential increase in
computational power, the traditional analytical approach to the optimization of Civil En-
gineering structures has become significantly outdated. In the majority of designs, this
approach has already been replaced by more accurate deterministic methods, among
which the finite element method plays a crucial role, and they are largely implemented in
commercial software. Such an optimization strategy is applied for example in [1]; its goal
is commonly focused on structural topology [2,3]. The traditional deterministic design
appears to be suboptimal when significant uncertainties must be taken into account, such
as climatic loads, material uncertainties, assembly errors, and corrosion or soil conditions,
just to name a few. They cannot be avoided in structural and especially civil engineering
designs. This is why a new concept called reliability-based design optimization (RBDO)
arose, where the uncertainties are directly included in the design. An acceptable contrast
between the efficiency of deterministic and reliability optimization is given in [4] and an
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exhaustive review of the concepts of RBDO is available [5] or in [6]. RBDO is well re-
searched, especially for steel truss structures e.g., [7,8], and frames e.g., [9,10], where the
computation effort of each optimization loop is acceptable. They are not so common in
more complex problems involving the plate, shell, or composite structures, where the
computation is much more demanding and the amount of strength and serviceability
checks much higher; such construction is considered in this study. This extreme compu-
tational intensiveness is well depicted in [11] and still constitutes a major issue. Compu-
tational intensiveness is caused not only by the number of limit states but also by the high
number of deterministic and random design variables, whose impact on these states is not
always known a priori to RBDO. This aspect is commonly tackled by an initial sensitivity
analysis, which determines the susceptibility of structural response to a variation of de-
sign parameters. It has been used with success for many years e.g., in [12], and eliminates
unnecessary variables from further computation. Application of the RBDO could also in-
clude corrosion effects [13], which constitute a major topic of this paper.

Although some new concepts are still being put forward [14,15], the RBDO methods
are quite mature now and allow a very efficient (but computationally demanding) design.
What they still lack is the ability to define a reliable life of structures, so that the optimi-
zation is not aimed purely at modifications of the pristine materials, but also takes into
consideration the degradation of its work throughout the service life. This is what we pro-
pose in our concept of RBDO, which allows a service life optimization with a reliability-
based design approach for the determination of the reliable service life of steel structures
that are subject to corrosion. Corrosion affects the strength and serviceability of steel struc-
tures, including their capacity, stability, and durability. Its effects are depicted for exam-
plein [16,17]. It is also a major reason for the careful and costly maintenance of steel struc-
tures [18] and together with fire softening it constitutes the main weakness of this mate-
rial. Corrosion affects steel already at erection time, which is quite different from rein-
forced concrete where the onset of corrosion is shifted from this initial time [19] and cal-
culated for example according to Fick’s second law. This is because steel structures are
directly affected by chloride attack and are not covered by other materials. Of course, there
exist a variety of covers such as special paints or chrome plating and various additives
(see for instance weathering steel), but even such techniques do not prevent this phenom-
enon completely; they require repetitive application during the service life of steel con-
structions. Corrosion especially affects thin-walled structures, where small pitting corro-
sion placed in a susceptible place, or a small reduction in thickness may cause serious loss
of capacity. A fine example of such structures are those with sinusoidally corrugated webs
currently applied in girders (also arched ones [20]) and also composite structures, where
the deck is made of concrete and the web of constructional steel [21].

The corrugated web considerably increases rigidity and shear capacity [22], and de-
creases sensitivity to a local stability loss in the web [23], thus reducing the occurrence of
local buckling. It also allows for reduced self-weight [24], as compared to conventional
flat web I-girders, and does not increase the complexity of execution, as trusses do. The
usage of these assets has increased, especially in structural applications such as bridges,
pedestrian walkways, hangars, and industrial buildings. Interestingly, corrugated webs
also outperform flat webs in energy dissipation and could be used in anti-seismic struc-
tures [25]. The first studies of the SIN web girders were conducted in the late 1990s [26],
yet they are still new in civil engineering applications and have several disadvantages for
such applications. They offer a weaker contribution to bending [27] and cause an addi-
tional normal stress distribution in flanges coming from transverse bending [28] com-
pared to the regular I-beams; they also have complex bending—shear interaction [29]. To
make matters worse, there still is a lack of design standards or specifications dealing with
the behavior of such webs and SIN web girders.

This is why in recent years there has been intensive research on their basic behavior
connected with stress [30], elastic critical moment, buckling [31,32], and shear [33,34]; they
are computed in this study within the concept of limit states. A very interesting problem
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is the capacity and serviceability of such constructions in fire conditions [35], which con-
siderably reduce the bearing capacity of steel structures and also their reliability.

Reliability-based computations of structural elements with a corrugated web are also
available [36,37] and even a weight optimization could be found [38], but RBDO has not
yet been proposed for such structures; this is especially true when corrosion is the leading
random effect. Consequently, there is a need to develop recommendations that properly
address the reliability issues of such girders, which is also the reason for their choice as an
example for the proposed framework.

The principal objective of this paper is to propose an RBDO framework with a special
focus on structural elements and constructions that must satisfy complex restrictions of
engineering standards. The secondary goal is to successfully apply this framework to a
computationally challenging example of the sinusoidally corrugated web I-girder. The
study assumes the possibility of optimizing the topology of civil engineering structures
subjected to uncertain corrosion evolution and engineering restrictions for a specified re-
liable service life. Further, it assumes that FEM modeling accuracy and probabilistic solver
play a crucial role in the accuracy and timing of RBDO results. Next, it assumes the im-
portance of the steel and environment type as well as the choice of the WLSM weighing
function for the solution.

Therefore, a design optimization framework and additional theoretical background
for time-dependent reliability civil engineering analysis have been presented and applied
for the case study of the steel plate girder with a sinusoidally corrugated I web. The results
obtained in this paper would allow for more optimal designing of such structures and
may be applied to other steel and concrete structures.

2. Theoretical Background

According to the current design codes, the structural elements’ durability period
adopted is 50 years, and this is usually ensured by repeated design trials with the goal of
minimizing weight or cost, alternatively optimization of its capacity for different limit
states. In such terms, a designer solves an optimization problem with a clearly defined set
of restrictions, which are first of all (1) the minimum capacity of the element, secondly (2)
geometrical constraints, (3) material restrictions, (4) maximum deformations, and (5) other
physical constraints. The most tedious work is usually required in the first of these, i.e., in
ensuring a minimum capacity of the element. This is because the element (and an entire
structure) is subjected to multiple loads of different morphology and with different place-
ment (wind, snow, traffic load, vibrations, self-weight, machinery, etc.), which may or
may not occur at the same time. That is why an engineer must check the structural capac-
ity for multiple combinations, which almost always require a different computational ap-
proach. This work proposes a framework, according to which such optimization could be
utilized with a specified goal of optimization. It takes into consideration a classical ap-
proach of limit states proposed by the Eurocode 0 [39] and also a more refined, higher-
order probabilistic design method directly using the reliability theory, where the judg-
ment of service life is done based on the reliability indices ‘Bq of the designed elements.

Such refinement is advised in Appendices B and C of this design norm [39]. Within this
framework, multiple structural elements may be assessed, and the entire structure could
be optimized. The objective function may be purely topological, as in the below example,
but it may also be cost-oriented, when the total cost of an element is optimized, or may
minimize the difference of all the indices ﬁg. The method selected for optimization pur-

poses is deterministic non-gradient regular search, in which the main loop encompasses
the subsequent steps of (1) deterministic verification of restrictions, (2) verification of the
given limit states, and finally, (3) checks of the reliability indices. This is shown in Figure
1, where the optimization problem depends on the design time ¢ and input uncertainty
w; at each step, a new topology W(@;t)is proposed. A non-gradient approach is selected
because in most civil engineering designs gradient cannot be explicitly computed. This is
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because each of the combinations defined in multiple limit states would be different and
movement in any direction of the design domain may give converse results for multiple
combinations. The main objective of this algorithm is structural optimization and the main
loop depicted in Figure 1 starts with an arbitrary point in the optimization domain (start-
ing geometry of the element) that should be selected according to the engineering practice.
At first, the most straightforward conditions are checked, i.e., geometrical, material, and
physical constraints. Then, a cross-sectional class is determined, because its change de-
mands different checks of the limit states and the reliability indices. Upon this, the finite
element method is utilized to solve the mechanical problem and its results are used in the
determination of both, the limit states and reliability indices. Verification of the physical
restrictions and cross-sectional class is straightforward and depends strictly on the se-
lected material, geometry, and static scheme of the specific element. The FEM must be
carefully formulated for each part so that the parameters existent in the objective function
could be easily (or preferably automatically) ameliorated and the subsequent model
solved; this will be explained in detail for the specific context of the example.

Set initial
Wo(w,t)

Principal algorithm

Success

Apply physical restrictions Set new top criteria
' < - b
P hyy, 7 AV, fu W(w,r) met?

Optimum
found?

T l

Perform calculations T Validate stop criteria Failure

Perform calculations

Calculate analytical criteria Calculate reliability indices

Yes

Perform FEM simulation Yes

eliability restrictions
passed?

Step successful

Calculate Limit States

Limit states passed? Step unsuccessful

Figure 1. Principal algorithm of the method and calculation process.

Designing processes requiring a detailed explanation include the ‘Calculate Limit
States’, “‘Calculate Reliability indices’ ﬁg, and ‘Validate stop criteria’. According to a com-

mon definition, a limit state is a state in which the construction element or an entire



Materials 2022, 15, 7170

5 of 31

structure will fail due to a specified external action. The design codes in their basic form
define the ultimate limit state (ULS) and serviceability limit state (SLS), which describe
either the conditions in which the construction will fail (ULS) or will stop working in an
acceptable way (SLS); the hierarchy of LS is shown on Figure 2. If the design is made based
on the FEM, not the analytical approach, each element must meet five fundamental con-
ditions for the linear regime of the structural materials. First, (1) the general stresses o;;
and (2) the reduced (commonly Huber-Mises) stresses o,,; must be lower than the plastic
limit. In the case of the linear civil engineering structures, these are limited to the longitu-
dinal normal stresses 01; and the shear stresses oy, (or 7). Additionally, (3) the struc-
ture must be stable and buckle neither locally nor globally (but local buckling is sometimes
permitted when additional structural elements are added to the designed part); this con-
straint is depicted in Figure 2 by & (W,t). The last condition in the ULS encompasses (4)
the first eigenfrequencies, which must be high enough not to be triggered by the wind or
traffic; usually, the minimum is set to 5 Hz. In the SLS, (5) deformations of this element
must be limited, which include the deflections u (W,t) and also displacements at its ends
(or borders) and connections to other parts 6; (W, 1).

Calculate Limit States

Calculate ULS

Ored(W1), 0yi(W,1) H T (W.1) H &, H o(W.1) J

J

Calculate SLS
Success
e )

Figure 2. Procedure for the determination of the limit states.

One may also include requirements for exceptional states, such as collision, fire loads,
or checks for fatigue, but they are out of the scope of this work; this is important because
of their rare inclusion in design purposes in civil engineering practice. All the mentioned
states could be checked implicitly using the results of the subsequent FEM analyses, which
are static, eigenfrequency, and critical load tasks available in the most common programs
such as ABAQUS, ANSYS, Catia, or DIANA. Please note, that some of the limit states may
be checked globally for each part or an entire structure, such as & (W,t) or @ (W,t), while
the others must be met for all the points of the structure (in FEM, for all the elements).
These include the stresses, strains, deflections, deformations, and displacements, all of
them depending strictly on the objective function—the topology of the element. If all re-
strictions in both limit states are met, the optimization could proceed to the next process—
a check of the reliability indices ,Bg.

A process of the determination of reliability indices Bg serves for a final check of the

restrictions and could be started only if all the previous ones are met. This is because the
limit functions g are almost directly taken from the limit states and used in the numerator
of the reliability indices ﬁg. This process is depicted in Figure 3, which defines the flow of

computations at this stage of optimization. It starts with optimization of the response
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function, then it determines the probabilistic coefficients, and finally calculates the relia-
bility indices serving as the final restrictions. These indices are computed first at time =0
with an initial uncertainty w, and only then for t € (0;t;) and w, where t; is designed
service life. This is because the design may be already unacceptable when no aging (or
corrosion) of the material is included. The checks of reliability are performed for all the
restrictions from the limit states separately and each of them must be met so that the cur-
rent topology can be accepted. In this process, neither the amount nor the probability den-
sity function (PDF) is strictly limited, and the total number of uncertainty sources depends
upon the probabilistic methods applied, as does the PDF for each of these.

Reliability indices f

Optimize response function

Calculate probabilistic
moments and coefficients

{ min(Var(r))/\max(Corr(mFEM, Aj, hi)) ’

Y

EgH“gHﬂgH"g’
|
v

Calculate initial reliability index ,Bg( Wowp,w,t=0)

‘ ﬁcred - ﬁ(_s

Hﬁccr-'gcﬁH 'Br-'B? H 'Bw'ﬁcﬂ H Bumax - Pu ’

\

Calculate reliability index during service life So(W,wo,w,1)

‘ ﬁcred - ﬁ&

Hﬂcscr'ﬁWH 'Br'/B? H ﬂa)'ﬂa H Bumax = B ’

Figure 3. Procedure for the determination of reliability indices.

Checks for t=0 are performed for both the first-order reliability method (FORM)
and the second-order reliability method (SORM) in sequential order; this order of analysis
is defined by O in Figure 3. The last computation of reliable service life is computed
solely by the FORM (for O =1) and plotted in the service time domain. Unlike the major-
ity of papers that propose only one method of probabilistic calculus (see for example [40]),
we propose three concurrent methods, the iterative stochastic perturbation technique, the
semi-analytical method (AM), and the crude Monte Carlo simulation (MCS). Please note
that the computation of reliability restrictions is not limited to the above methods.

Determination of the response function, the first task in reliability-focused computa-
tions, serves as an inner optimization problem. It is solved at each optimization step just
before the determination of probabilistic characteristics. It is devoted to the determination
of a continuous response function of the capacity of the girder f (W) from its discrete
representation solved via the FEM. This is required in computations of subsequent limit
functions g defined as the difference of this capacity and the reaction to external action
or an engineering limit f (W).
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gy =1.0W)=f. (7). @™

Please note that the analytical formula relating the objective function and the func-
tions of girder capacity cannot be explicitly derived analytically, which is why the FEM is
used for its retrieval. The inner optimization problem is solved by deterministic non-gra-
dient search in the discrete domain of the order of the response polynomial and the num-
ber of terms in this polynomial. Restrictions include several terms 1,,>0 €N and the or-
der of polynomial Py>0e€N. The optimization aim is twofold —minimization of the
weighted least squares method (WLSM) variance and maximization of correlation of the
polynomial and the FEM results.

min (Var (7)) /\max(Corr(mﬁEM ,A,.hi)) )

where higher precedence is set to the correlation. The stop function is generally not re-
quired in this problem because of a finite number of allowable points in the discrete opti-
mization domain. Pg is limited to 10 + 30, firstly because of no real correlation gain for
higher order polynomials, and secondly because of difficulties with its behavior outside
or neighboring to the probing range of the FEM. Such optimization is performed for each
of the limit functions. In the exemplary problem, only u,,, was taken into consideration,
whose an explicit mathematical formulation is proposed as

u(w;t)=N-q(w;t)=N-A40)-I' (w5t); r* :<mFEM —Al.hi)z : min[irf]—) A
e

®)
min(Var(r)) A max(Corr(mFEM AR ))

where u(w;t) is the maximum deflection, N stands for shape function, A; are defined as
the coefficients of approximating polynomial, /' define the subsequent powers of the de-
sign variable, and r is a residuum coming from a difference of the FEM result g, and
the result coming from the polynomial response function Al

The weighted least squares method (WLSM) solved at each optimization step uses
the following polynomial approximation:

u(b) = DPIpPo = f(D,b) P,=1,..,5;5s <n. @)

where the polynomial basis of the sth order Py is used and solved around the web thick-
ness of the current optimization step. This web thickness also serves as a mean value of
the main random parameter included in the probabilistic calculus, indexed here by b. As

a result n different pairs (b(a),u(“)) for a =1,..., n are returned, whose arguments belong

to the neighborhood of expectation of b itself. The residuals in each trial point are intro-
duced to get an algebraic condition for these expansion coefficients. They are next mini-
mized. After relevant modifications, the following regular matrix equations are obtained

(3 wa)D=(3) wu ®)

Such a system of equations (with the dimensions 7 x s) is solved symbolically in MA-
PLE [41].

The last process in the design loop is a stop condition and it is depicted in Figure 4.
It evaluates if the optimized solution is found or not. Success occurs when at least one step
finds a more optimal solution than W,. Failure is identified when (1) one of the indices
from restrictions is within the margin of .. at design service time f; and (2) n; subse-
quent steps do not decrease the objective function (fail to optimize the W). An additional
stop is defined for ir.;4, = 1000 steps to ensure a cutoff of the optimization with weak
correlation; its fulfillment may lead either to optimization success when at least one of the
previous W fulfilled all restrictions or optimization failure. A more elaborate stop
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condition may also be applied, but its inclusion would increase the computation time,
which proves critical for engineering purposes. Please note that the solution and optimi-
zation convergence will depend on the starting structural configuration W, and it is rec-
ommended to repeat optimization with different W,, using a different kind of initial
cross-section for example.

Failure )

Stop criteria

Yes Yes Yes Yes
| s — Get next W
0 W 4>| yet nex

iyt

Yes |

Success

Figure 4. Definition of stop criteria.

The reliability calculus at the initial time is only according to initial imperfections. A
formulation of such a problem could be found in [42]. The final reliable life check is per-
formed according to two random variables, namely the corrosion penetration depth and
fabrication imperfection. This is possible in the stochastic context with the introduction of
the relevant resulting functions of corrosion penetration depth into both, the web thick-
ness mean value and its initial variation. Expected value of random web thickness b can
be computed as

E[b]= [ b p,(x)dx = ﬁgbm ©6)

while its variance as

Var(b)= +j:)(b - E[b])2 p,(x)dx+Var(d)—2Corr(b,d) =
- @)

]V[l_1 f(b(f) —E[b])2 + Var(d)—2C0rr (b,d)

where E[d] is the expected value of corrosion penetration depth directly affecting the
mean value of web thickness b; the correlation between these two stochastic variables

Corr (b’d) is set to 0.

The reliability indices frorm and Bsorm may serve for initial reliability as well as struc-
tural health monitoring. The first of these could be computed in the following way:
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E
By rorm = o_[[g 8)
where g, stands for the reliability index of a specific limit function, E[g] is the expecta-
tion of this function g, and ofg] is its standard deviation. A reliability index S, o, as-
sumes a normal probability distribution of a given random (response) function; /B, s,
is defined as [37]

B sor=— @7 (Pr) ©)

where Pp denotes the probability of failure for the chosen probability distribution of the
function relative to ﬁg rory 1 the following manner:

3 @ (ﬁg, FORM)
Pp= ——r= (10)
1 +ﬁg, FORM-©

where x is the curvature approximating the primary surface defined by the following

formula:

dutm
dbg?

= 3 (11)

2\2
dbo

Let us consider a corrugated web I-beam girder that is suspected of corrosion, as in
Figure 5.

3. Numerical Illustration

. 40000

A A

S
o

wn

i = =
o -

Al =] =

Figure 5. The layout of the girder in [mm].

In such girders, the web is predominantly affected by this phenomenon, which leads
to loss of bearing capacity during its service life. This girder is subjected to topological
optimization, whose goal is to optimize the cross-section that ensures reliability for 50
years of service according to Eurocode 0, Appendix B [39]. Optimization is performed
within the framework proposed in Figure 1, where the limit states are checked based on
three FEM models; the indices ,Bg are verified for stresses, deflections, eigenfrequencies,

and stabilities, while the final constraints of reliability are based on displacement; the fol-
lowing objective function W (@; t) is proposed:

W (w;,;t) :(Aw(a);a)o;t)+2A,.)-L :(tw(a);a)o;t)-hw +24, )-L
=((t, (@) =2-(4(@)+1"))-h, +24, )2

As a function of @j,—the coefficient of variation of the web thickness at time ¢ =0,
@ — coefficient of variation of corrosion as well as of time t; =0 stands for an assembly

(12)
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time, in which exposure to the external environment begins. In this function, A,, and As
are the cross-sectional areas of the web and the flange, h, stands for the height of the
web, and £, denotes the thickness of the web. Let us note that in common civil engineer-
ing designs the flanges are much thicker than the web and are placed horizontally so that
they are not so susceptible to corrosion. This is why the time dependence of this topology
is generally based on the web, whose thickness decreases with corrosion. This thickness
is uncertain already after its fabrication process, which is imposed by an initial coefficient
of variation @, and is then subjected to stochastic corrosion of the form A (@) + 8@ In
this term t,, = t,0(wg) — 2:(A(w) + (‘D)), where the quotient 2 depicts the susceptibility of
t,, to corrosion from both sides. The corrosion function strictly depends on the environ-
ment and steel type, to which it is subjected, and is taken from Melchers 2002. Its coeffi-
cients are shown in Table 1, which summarizes the corrosion parameters for rural, urban,
and marine environments separately for the carbon and weathering steels. This table
shows that the marine environment is specified by the highest CoV, and has expectations
a little smaller than the urban environment, while the rural environment is the least inva-
sive. The weathering steel is much less affected by corrosion, as both parameters, A and
B, have smaller mean values and CVS than the carbon steel in a corresponding environ-
ment type. Nonetheless, the downside of this type of steel is its cost.

Table 1. Statistical parameters of corrosion for various steel types [43].

Parameters Carbon Steel Weathering Steel
A (102 mm) B A (102 mm) B

Rural environment

Expectation 34.0 (model 1) 0.65 33.3 (model 2) 0.498

CoV 0.009 0.10 0.34 0.09
Urban environment

Expectation 80.2 (model 3) 0.539 50.7 (model 4) 0.567

CoV 0.42 0.40 0.30 0.37
Marine environment

Expectation 70.6 (model 5) 0.789 40.2 (model 6) 0.557

CoV 0.66 0.49 0.22 0.10

A corrosion model applied in this work comes from the additional experiments re-
ported in the literature and is applied with the parameters adjacent to the carbon steel in
an urban environment. Its expected value reads

2
—24 12 11
E[D(1)] = 3.52:10- %511 (1.05»10 +1.0010 ln(t)) 13)

The variance is introduced as
Var(D(H) = 7571073 4119112107 n()? _ 5 65.1074f119,5.6310 in(e)*+ 3.13

+1.2410754119 e6.24+5.63<10_21n(t)2. (14)

They are both truncated by the third vital number for the reader’s convenience.

The principal restrictions for this objective function come solely from the require-
ments of the bearing capacity, stability, eigenfrequency, and allowable deformation of the
girder, which are a cross-section within its design service life. This, in turn, is defined in
the current civil engineering design code, Eurocode 0 [39], which in its annexes proposes
the limits of reliability index S, for each of the limit states (LS). They are divided into the
ultimate limit state (ULS), in which the girder must withstand the normal, reduced, and
shear stresses, have high enough first eigenfrequency, as well as not be susceptible to
buckling. The second LS is the serviceability limit state (SLS), in which the deflection of
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this girder must be limited by the value of 1/250. In such terms, there exist six restrictions
for its reliability:

B.(1)=B.(1)20; B, (1)=B,(£)20; By (£) - B, (1) 2 0;
B, (t)=B; ()20 8, (1)=pB,(t)20; B (1)~ B (1) 2 0;

or ‘max

(15)

Further restrictions are connected to the geometry of the girder, its volume V, and
cross-sectional area A, which must be all positive.

Q s b by 1y A,V >0 16)

The geometry of this girder includes the height of the web h,,, its width ¢, as well
asthe height iy and width # of the flange. Let us note that the resulting checks of bearing
capacity required by the Eurocode changes together with an increase of cross-sectional
class and therefore its slenderness must be limited to keep the checks unified in terms of

both, the flange and the web 0<h,, /t,,<72,0< (hTf —ty — a) /tr < 9. Otherwise, the pro-

cedure of determination of the limit states and the reliability indices would have to be
changed substantially each time the section class changes.

The material selected for the design purposes is constructional steel. This choice de-
termines all the material restrictions, including the density o€&(7.75-8.05) [¢/cm®] and the
plastic limit of this steel f , which is here narrowed to the most common steels available
on the international market, i.e., fu €{195, 235, 275, 355, 420, 460} MPa with correspond-
ing Young modulus E =210 GPa and Poisson ratio of y=0.3. The material model ap-
plied in all the computations for constructional steel is linear with plastic limit f .

Additional restrictions proceed directly from the external requirements or the inves-
tor and include static schemes and loads. These are the designed length of the girder
L=40m, external load in form of a uniform pressure applied on the upper flange
g =150 kN/m, and degrees of freedom restricted at the ends of the girder as simple sup-
ports—although they are not directly included in the objective function but in the FEM
model.

The inner optimization problem is solved here with the order of response polynomial
in the range of 16 > Py >0 € N. A maximum polynomial order is set, because previous
optimization problems show that the solution starts to degrade already at P, > 10.

A shortened version of the results for one of these optimizations devoted to maxi-
mum deflection is given in Table 2. It shows that the accuracy of the WLSM approximation
measured by its total error Eyy sy, variance ayrsy, and correlation coefficient of the re-
sponse function and the discrete FEM results Cysy does not necessarily increase with
an increase of the polynomial order or number of terms included. Moreover, the optimum
order is not possible to determine a priori to solving the optimization problem. Interest-
ingly, the limitation of the terms with a constant Py has a minor influence on Cyysy but
increases both Epsy and apypsy. It must be noted that together with an increase of the
Py and n, the computation complexity and length are also increased. Generally, the op-
timum order is in the range of Pp€{5; 10} and full polynomials are preferred. An addi-
tional problem in this inner optimization is the type of weights in the WLSM W;. The
considered weighting schemes are equal Wg, triangular Wsr, and Dirac Wsp; the last
weighting scheme places greater importance on the realizations around the mean (or mid-
dle) of the uncertain parameter, and the equal weighting scheme puts the same weight on
all the discrete data points but has problems when they are not the smooth and triangular
type of weights, which decreases the importance of the data points with an increase of
their distance from the mean. It is quite efficient for the low Py but for this weighting
scheme Ey;sy and appsy increase very fast together with an increase in Pg. Dirac-type
of weight puts the same importance on the mean as for all the other data points. It ensures
the best Cysy at the highest order, keeps a very small error and low variance for a high
span of Py, and returns the smoothest approximation. This is why it was selected for
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further optimizations and the other weighting schemes were removed from the checks of
a reliable life prediction. From Table 2, it could be also concluded that the optimum ap-
proximation was reached for a full polynomial of the ninth order and WLSM with a Dirac-
type of weighting.

Table 2. Selected WLSM polynomial approximations of the extreme displacement versus random
input.

Displacement WLSM Polynomial Choice for Different Weights
No. p Cwrsm Ewrsm [1072] awrsy [107]

’ Wsp Wsr Weg  Wsp Wer Wy Wegp Wer Wg
1 Ist, f 0.994 09941 0.9941 2105 2166 2124 6.216 6414 6.554
2 3rd, f 09959 0.9959 0.9958 1.722 1.720 1.770 4.282 4293 4.333
3 5th, f 0.9962 0.4008 0.0016 1.65 50.82 1236 3.902 3063 18.530
4 6th, f 0.9966 0.0954 0.1556 1.401 202.1 58.01 3.492 66.200 446.5
5 9th, f 0.9969 0.3295 0.3789 1.427 6729 5793 3.207 6014 4213
6
7
8
9

10th, f 0.9954 0.1112 0.3769 1.752 587.1 53.35 4.762 42935 336.6

6th, p5 0.996 0.9958 0.9952 1754 1.82 1.794 4184 4311 4.521

11th, p5 0996 0.996 09958 1.748 1739 1.758 4.111 4.113 4.388

15th, p5 0.9958 0.9958 0.9957 1.747 1.751 1.764 4.324 4.337 4414

10 9th, p4 0.9958 0.9958 0.9958 1.739 1.743 1.758 4.319 4.333 4.389

Such an optimized third-order maximum deflection function valid for the SLS is
given below:

E[Rg 5] =8.09 — 3.13-107%(E[t,]) +2.91-10 *(E[t,])* — 9.71-10 7 (E[t,,D%.  (17)

In this expression, the expectation of web thickness includes an influence of fabrica-
tion error E[t,,] existent at t=0 and corrosion E[D(#)] so that E[t,]=E[t,] —
2:E[D(#)]. Let us note that together with the total allowed deflection this maximum deflec-
tion function serves as a numerator in an expression of ﬁg, rorm 38 E[g. ] =L/350 —

E[Rss]-

A variance of each limit state is available simply as diff(E[g] t,)?-Var(t,), where
E[g] represents the expected value of each limit state; for SLS it is E[gSLS]. The variance
of web thickness could be obtained as Var(t,,) = Var(t,y) + 2-Var(D(t)) ; fabrication error
and corrosion phenomenon are considered here as uncorrelated. An initial coefficient of
variation of fabrication error is assumed as a(t,q) = 0.05.

The indices B, ﬁ@, B, B., and B define the threshold for each of the reliability re-

strictions, while B y B, B, B.,and B, denote theindices of reliability computed ac-

cording to the first-order reliability method (FORM, see Equation (8)) or second-order re-
liability method (SORM, see Equation (9)). They strictly follow the types of checks made
in the limit states of the framework but include the uncertainty disregarded in LS; a de-
tailed formulation for a FORM and SORM is given in the theoretical background. Re-
strictions of ﬁg are always in the form of a difference between the threshold indices ﬁg

SLS]

and the resulting indices defining the girder ﬁg. The threshold indices are piecewise con-
stant functions with required service time f,, which by default is 50 years [39]. The mini-
mum values corresponding to £=50 for §, ﬁo?/ B.=3.8 and B, Bg, p:=15. This is ba-
sically because the former defines the ULS and the latter the SLS. In its first-order formu-
lation, ﬁg is a simple quotient of the expected value of the limit function g — E/g/ and

the standard deviation of g — o[g]. In turn, the limit function is a difference between the
capacity of the girder and its response to an external action or an engineering limit; there
may exist multiple limit functions for a single engineering structure (such as for this
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girder). Owing to this, there exist also multiple formulations of the limiting indices, whose
definition is very close to the limit states existent in the approach of Eurocode; for the
context of this example, the following indices must be defined:

e B, —areliability index for the maximum normal stress;

e B, . —for the maximum stress according to the Huber-Mises criterion;
e B, —for the ultimate shear stress;
e [ —for the ultimate deflection of this girder;

Umax

e B, —for the eigenfrequency;
s B —for the stability defined by the critical load (CL).

In this example ,.=0.3, ; =1, i, =5, and ir=100. Additionally, the process of de-
termination of ﬁg was postponed until the limit states were optimized, which allowed

substantial optimization time savings.

3.1. Numerical Model Description

The FEM simulations are provided by the use of an FEM system ABAQUS [44] with
the use of three 3D full-scale models reported below:

e  Volumetric (model 1)—having the highest level of detailing including the ribs and
welds, made with hexa—end tetrahedral elements;

¢ Shell model with ribs (model 2) —with a moderate level of detailing including inner
and support ribs, based on the quad-dominated shell elements;

e  Shell model without ribs (model 3)—with only the basic level of detailing including
solely the web and flanges, based on the quad-dominated shell elements.

Their discretization has been shown in Figure 6. This is done to show the importance
of the FEM models for optimization purposes and to contrast the results coming from
different levels of detailing in the numerical model. The details available in these models
are summarized in Table 3. This table firstly shows the type of elements used in the three
models, their total number, and the total number of nodes. The highest number of nodes
and elements are given in the first model, which is because of the FEM formulation based
on the 3D elements. The third model has more than five times fewer elements and the
second is a little less than the third. This is very close for the number of nodes, which are
also the highest for the first model and the lowest for the second model; the highest level
of detail is provided in the first model. They include the web flanges, ribs, and welds, the
second model does not include welds, and the third postpones welds and ribs. This is
strictly related to the number of parts and instances (provided in brackets of Table 3) cre-
ated in these models—only 5 were required in the simplest third model and 563 in the
first, mostly because of the very sophisticated welding required for the SIN web I-beams.
This is also why the quantity of tied connections in the different models differs dramati-
cally—only 6 for the third model and almost 1400 for the first. The latter part of Table 3.
summarizes the constitutive models, analysis types, and the type and number of interac-
tions between the modeled parts. The constitutive model applied, and the types of anal-
yses performed for these models are the same, because of the optimization requirements.
Static and static general analyses return stresses o, Huber-Mises stress 0,4, and ultimate
deflection .
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Table 3. Details of the full-scale FEM models.

Elements Number of
Model Total Total Parts i; the Details Constitutive  Types of Interaction
No. Type Number Number Modeled Model Analysis Type, Quantity
Model
of FEs  of Nodes
C3D8R 573,043 - Web 3 .
Flanges E Tie,
1. 925,741 93 (563) . = 1392 -
C3D10 152,460 (69 Ribs B comnee
) 1ds < ) tions
we = - Static
S4R 77,422 - Web T = - Static, general
2 85777  10(55) - Flanges 2E - Buckling Le,
S3 1768 ’ _ Ribs Z - Frequency 178 connections
<
i = Tie,
3. S4R 100,800 221,200 5 (5) Web g 6
- Flanges a3 .
connections

111 TR
TN

LTI
TN

Figure 6. ABAQUS discretization of the girder, (a) with ribs and welds (volumetric, model 1), (b)
with ribs (shell, model 2), (c) without ribs (shell, model 3).

The buckling analysis outputs the critical load £ and the frequency analysis returns
the eigenfrequency (2. All of them are used in the checks of LS and ﬁg. The constitutive
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relation is set to linear with a plastic limit to conform to the standard approach of the
Eurocode [39].

The topics that require further attention are the details of discretization and features
included in different models. The details of discretization are shown in Figure 6, which
brings us closer to the mesh used in all three studies. The first two shell models (models 2
and 3) have a quad-dominated mesh with a free meshing technique, allowing the best
adaptivity of the elements to the geometry, while the volumetric model—a mixture of
hexahedral and tetrahedral finite elements of both structured and unstructured meshes
with different sizes. This variability is provided to optimize the time effort and computa-
tional accuracy. A structured hexahedral mesh is applied to the web and flanges, while
the unstructured meshing technique is preserved in the welds; this is because of their
complex geometry. The mesh of ribs and webs in the shell models is structured and com-
posed of quad elements, while one of the flanges is a mixture of quadratic and triangular
elements that adapt to the sinusoidal pattern of the web; this is visualized in Figure 6.
Elements used in all computations are conventional stress-displacement-based FEs. The
C3D8 is a linear brick, with eight nodes, reduced integration, and a single integration
point. The C3D10 is a second-order 10-node tetrahedral element with four integration
points at each tetrahedral vertex. S4R is a shell with four nodes, reduced integration, and
a single central integration point. It has implemented hourglass control and finite mem-
brane strains. S3 is a three-node triangular general-purpose shell with finite membrane
strains. The simple support was modeled with linear constraints. They were placed di-
rectly below the middle of the support rib (models 1 and 2) or at the outer edge of the
bottom flange (model 3) along the bottom flange width. On the left side only rotational
DOF (UR1) was allowed; on the right, UR1 and displacement along the length of the girder
were allowed (U2). The load was applied as the equal surface load on the entire upper
flange of the girder. Its magnitude was equal to 107.14 kN/m? (equivalent to 150 kN/m)
including the dead load. The geometry of this girder was adopted exactly as given in Fig-
ure 5.

The latter detail —features modeled —illustrates a development of numerical re-
search. Each consecutive model made in ABAQUS brings new additional details, namely
the ribs and welds depicted in Figure 7 for the first model. It is also quite important that
this first model consists of three-dimensional elements. This enables not only a more ac-
curate stress analysis through the thickness of the modeled parts but also makes possible
a check of interaction between the different elements of the girder and its utilization in
terms of internal stress. They both are not available in the simplified models.

Figure 7. Additional views on the discretization for a volumetric model of the girder (model 1). (a)
the details of the weld discretization; (b) welded connection of the ribs with the sinusoidal web.
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3.2. Deterministic Limit States Analysis

Computation of the limit states is performed based on the results taken from the FEM
simulations, which are summarized in Table 4, where o, T, U,y @, and & are shown
for the vicinity of the optimal web thickness t,=56 mm. This table firstly shows that the
stresses and displacements increase together with an increase of #, (an increase of
W (t,)), while the @ and & increase. All these effects are desirable, because the smaller
the stresses and strains, the lower the usage of the material, and, secondly, the higher the
critical loads and eigenfrequencies, the higher the margin between stability loss and the
current state. Moreover, an addition of the welds has rather a marginal stiffening effect,
because the displacements from the second and the third model are very close, at least in
the considered loading scheme. A slightly higher u,,,, for the first model comes princi-
pally from the addition of the welds and the difference between volumetric and shell FEM
formulation. This is not true for the ultimate stresses and stability, both of which are sig-
nificantly affected by the ribs. They decrease the ultimate stresses in the FEM for o, and
T that are returned for the models without ribs. Interestingly, the addition of ribs directly
connected to the web does not essentially change the stress flow of shear in the web, yet
causes its strong reduction. This happens especially in the first model, which additionally
detects quite a high shear in the entire web-flange weld, even in the middle of the girder
span.

Table 4. Comparison of the results from the three FEM models.

0. [MPa] T [MPa] Upa, [cml] @ [Hz] §(CL)
tw Model No. Model No. Model No. Model No. Model No.
3 2 1 3 2 1 3 2 1 3 2 1 3 2 1

51 484.8 212.0 2256 127.6 6745 87.12 7.126 7206 7710 139 137 173 4398 7304 1.708
52 4845 211.7 229. 1272 67.0 8995 7117 7198 7702 139 137 173 4409 7317 1716
53 4842 2114 2327 1269 66.69 9292 7108 7191 7698 14 136 172 4420 7.329 1.725
54 4839 211.1 2342 1265 6635 81.78 7.100 7183 7686 14 136 172 4431 7342 1.737
55 483.7 210.8 2360 1261 66.02 8200 7.091 7175 7681 14 136 172 4442 7356 1.753
56 4833 2106 2345 1257 6570 8351 7,084 7168 7673 14 136 171 4453 7369 1.778
57 4824 2103 2316 1252 6539 84.06 7.076 7161 7669 14 135 171 4464 7383 1.776
58 481.7 210.0 2354 124,8 65.10 84.05 7.069 7153 7656 139 135 171 4475 7399 1.784
59 481.0 209.7 227.6 1244 64.78 8571 7.061 7.145 7653 139 135 171 4487 7.414 1.802
60 480.3 209.5 2389 1239 6451 8522 7054 7.138 7.651 1.39 134 170 4498 7.430 1.810
61 479.6 209.2 229.0 1235 6424 8457 7.048 7.131 7.642 139 134 170 4510 7.445 1.812

The stresses induced in the middle of the span on the outer surface of flanges are
comparable in all the models, but their placement is at the flange in the shell models and
in the weld of the volumetric model. This placement is also the cause for a little oscillatory
effect of the maximum stresses in the first model, where small changes in the thickness
must also result in a change of the mesh; this effect is not observed in the shell models. A
stress state is determined in the FEM at the post-processing stage, which is the major cause
of its susceptibility to all discretization changes. Such problems are not observed in dis-
placements, being the direct results of the FEM, nor in the global characteristics of @ and
¢; the character of stresses and their pattern is considered in a separate study.

Further, it is seen that the critical loads (CL) returned from the three models differ
significantly for the three models. This is first because of the stiffening effect of the ribs for
different global modes of buckling, and secondly because of the volumetric FEM formu-
lation of the first model. This is evidenced in Table 4, which defines the ratio of the load
at stability loss @4, to thelevel of loading coming from external actions according to the
Eurocode q;niriq; With a subtracted initial load:
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I _ CL+1. (18)

Dinitial
CL is much lower for the first model than for the others. It is because it was the only one
that returned a local buckling of the support rib. Other models returned only the global
losses of stability, the first of which was always rotation-torsional. They occur for quite a
high magnitude of the CL (critical load ratio of over 4.45 or 7.37) for a girder, which is
initially loaded to 88.4% of its ultimate bending capacity according to the assumptions of
the Eurocode. The critical load in the volumetric model is much lower, but all the critical
modes of behavior until the 25th one can be easily avoided by an increase in the thickness
of the support or, preferably, a change in its geometry from plate to corrugated (insensi-
tive to local buckling). Quite interestingly, the addition of the ribs increased the CL by
about 50% for the shell model. No buckling is detected in the web itself, either by stiffened
or unstiffened models. This proves the high contribution of the wavy web to the overall
stability of the girder and the reasonable significance of its thickness, whose increase en-
larges the critical load. This increase is consistent with an engineering intuition, but it does
not stop the underneath mechanism leading to the buckling of the girder. Contrary to the
results of the critical load, these for eigenfrequency show almost perfect agreement for
models 1-2 and give a slightly lower quantity for the third one. This difference is increas-
ing for the higher eigenfrequency modes (see Table 4), which is caused by the change in
the linear dead load of a girder due to the stiffening ribs and welds, yet does not signifi-
cantly hinder the character of these modes.

It must be additionally mentioned that a choice of the proper ultimate stress or dis-
placement for purposes of LS and reliability restrictions is not a trivial task, especially
when a complex 3D structure is considered and modeled with the use of shell or volumet-
ric FEM elements. The global ultimate stress does not necessarily give a proper condition
for the ULS and may turn out to be inappropriate for restrictions. Even for such concep-
tually uncomplicated structural elements as a simply supported beam, the ultimate stress
may lie in other places than those distinguished by the beam theory (as happens in this
study). In such conditions, reliability shall be checked not only for the location of the ulti-
mate stress but also for these other locations detected in the beam theory, because the
material in these places may be susceptible to local instability (as in all plate structures).
Because of this, the ultimate stress allowed in such locations may be highly reduced and
conversely, the material can be locally stronger in a location of ultimate stress predicted
by the FEM (e.g., when some confinement exists). Therefore, in all complex structures, one
should always first determine its possible weak points and check the reliability for all of
these, not only the one for the ultimate stress or displacement revealed by the FEM results.

3.3. Probabilistic Aspects
The determination of the reliability indices ﬁg and related optimization procedures

have been both programmed and completed in the computer algebra system MAPLE. The
WLSM is based on the discrete results of three FEM models (see Table 3) and for three
types of weights, Dirac, equal, and triangular (see Table 2). The input random parameter
is web thickness with a mean value taken from the objective function W and updated in
each loop of the optimization. The probabilistic density function (PDF) of this thickness is
Gaussian and we treat here two separate random problems. The first is at t=0 and is
connected with a fabrication error (manufacturing imperfection) of this thickness with co-
efficient of variation (COV) in the range of a(wy) € {0;0.15}, and a second, where in addi-
tion to wy, a second random variable is corrosion penetration depth, where time ¢ is a
design variable in a range of t€ (0;50) years. This second check is also a final and most
severe restriction in the optimization loop because it takes into consideration the degra-
dation of the girder with time. The formulation of the probabilistic moments and coeffi-
cients is here threefold:
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e  First of all, the coefficients are computed by direct differentiation of the random var-
iable computed from the response function together with its PDF; this is called the
semi-analytical approach (AM);

e  Secondly, the generalized iterative stochastic perturbation technique is applied with
up to 10th order approximation of the response function by the Taylor expansion—
including the first 10 terms of this expansion; this is called the SPT [42];

e  Finally, the crude Monte Carlo simulation (MCS) is used to return these coefficients;
this is called the MCS.

Such an approach is selected for purposes of comparison between these three meth-
ods and also for redundancy so that even if one method fails in a specific optimization
step or for the specific g, the indices could still be calculated and compared. A crude MCS
with 5-10° trials is chosen to dissolve all the doubts about the accuracy of a more refined
Monte Carlo method. The spectrum of the web thickness used in each step is t,,; £ 5 mm
with a difference of 1 mm for each computation, so that the response function is opti-
mized based on 11 FEM results around the mean value defined at each optimization loop.
The algorithm developed in MAPLE fully encompasses the process of reliability indices
B (see Figures 1 and 3) and ﬁ%, and for t€ (0;50) only 'Bumux is restricted, which is done

for the computation efficiency and simplicity of this example.

3.4. Reliability Restrictions f,

The final reliability calculations are shown for the optimized W, for which
t, =56 mm. The structure of the reliability assessment for this W is divided into three
main sections:

o  The first of these determines the influence of different types of weighting schemes
and FORM vs. SORM formulations. It takes the manufacturing imperfection as an
input variable, is based on the volumetric FEM model, and is calculated for t=0.

e  The second analysis uses a Dirac-type of weighting scheme and compares the results
of stochastic equations with manufacturing imperfection as a random parameter for
all three FEM models and deterministic results. This is done to highlight the impact
of the FEM and model accuracy on the girder’s output reliability. It is also performed
at t=0.

e  The last study incorporates two random variables, including the fabrication imper-
fection w, and corrosion penetration depth w, and serves as the last restriction for
the optimization purposes of this girder.

This is done firstly to show the results for the optimized W and secondly to empha-
size the most important factors in the optimization, i.e., the FEM model, order of reliability
assessment, and type of the weighting scheme in the optimization of the WLSM. Three
independent methods of computation, AM, MCS, and SPT are used for simultaneous ver-
ification of the results. The probabilistic moments and coefficients are shown only for one,
most restrictive limit function and solely relative to the weighting scheme, which is done
to show their general outlook and present relation with an input uncertainty. The other
ones return analogous results.

3.4.1. Initial Restriction of ;—WLSM Weighting Scheme

Computations of reliability-induced restrictions for the girder at t=0 include the de-
termination of the first four probabilistic moments and coefficients of all the limit func-
tions considered, i.e., Eg(a(a)o)), ag(a(a)o)), ﬁg(a(a)o)), and Kg(a(a)o)), and its reliabil-
ity index ﬁg(a(a)o)). They are depicted in Figures 8-17 and are computed relative to the
coefficient of variation of web thickness inflicted by an uncertain fabrication error a (wy).
This ensures an easy way of check of these restrictions for the chosen level of uncertainty

and avoids the need for repetition of the entire optimization process in the case when its
level is slightly increased. The full results are shown only for the most restrictive
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condition, which is a critical load (CL). The results of all other ones are limited solely to
the index of reliability according to SORM,; this is done for the brevity of the results.
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Figure 8. Expectations of the critical load for different types of weights.
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Figure 10. The skewness of the critical load for different types of weights.
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Figure 11. Kurtosis of the critical load for different types of weights.



Materials 2022, 15, 7170 21 of 31

200
150 E
D g
2100 -
]
= s}
50 & &
B © _
® 9 4
i} H
® & & 36 g
0 f
0.05 0.10 0.1 0.20 0.25
al-]
O SPT Equal weight [J MCS Equal weight + AM Equal weight
() SPT Dirac weight [[] MCS Dirac weight -+ AM Dirac weight
(O SPT Triangular weight [] MCS Triangular weight

+ AM Triangular weight

Figure 12. Reliability index of the corrugated I-beam for different types of weights according to the
second-order reliability method (SORM)—displacement.
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Figure 13. Reliability index of the corrugated I-beam for different types of weights according to the
second-order reliability method (SORM)—normal stress.
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Figure 14. Reliability index of the corrugated I-beam for different types of weights according to the
second-order reliability method (SORM)—shear.

!

40 ﬁ
= B
&
20 @ 7
8 % .
8o g
@

2ol 8@eg
0 T T T
0.05 0.10 O.E._] 0.20 0.25

O SPT Equal weight
_) SPT Dirac weight
(O SPT Triangular weight

[J MCS Equal weight
[[] MCS Dirac weight
[0 MCS Triangular weight

+ AM Equal weight
-+ AM Dirac weight
+ AM Triangular weight
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Figure 16. Reliability index of the corrugated I-beam for different types of weights according to the
first-order reliability method (FORM)—critical load.
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Figure 17. Reliability index of the corrugated I-beam for different types of weights according to the
second-order reliability method (SORM)—critical load.

The lower probabilistic coefficients for the limit state based on stability criterion
Es(a(wp)) and ag(alwy)) firstly show that they both are highly affected by the uncer-
tainty caused by the manufacturing error. The expected values (Figure 8) decrease, and
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the coefficient of variation (Figure 9) increases together with an increase in this uncer-
tainty and the rate of this change always increases. Interestingly, the changes in the E;
are up to 50% and the coefficient of variation is multiple times higher than for the input.
The three methods of computation show a perfect agreement.

The skewness B é(oz(wo)) and kurtosis Kg(oz(wo)) for the critical load depicted in

Figures 10 and 11 represent a converse character. The skewness is predominantly nega-
tive, while the kurtosis is positive. They both have quite a strong relationship with the
input uncertainty, and they reach very high magnitudes of up to 120 for . and 13,000

for x;. A scatter of the three stochastic methods is quite high, but still, the AM and MCS
demonstrate a quite comparable trend. The SPT is effective here only up to a = 0.1, but it
is the fastest.

The indices of reliability f , ﬁ%d, B B

states and are all shown in Figures 12-17. They principally show a high converse depend-
ence on the input uncertainty of manufacturing error and are also affected by the WLSM
weighting scheme. The lowest initial reliability is reported for the critical load (see Figures
16 and 17). This is a direct effect of two main factors. The first of these is the fact that even
the deterministic safety is quite small here (function close to one, which constitutes its
lower limit, see Table 4). The second is connected with a magnitude of the CoV, which is
very high for this state function (Figure 9) and has a strong exponential character relative
to the input CoV. With an increasing input uncertainty, this smallest index rapidly de-
creases, but still from approx. a (wg) =0.07 the lower bound of reliability is governed by
the normal stress shown in Figure 13. The indexes also depend upon the type of weight
of WLSM. This difference is the strongest for the two indices constituting the lower bound
of the reliability, namely the normal stress and the critical load, and additionally for the
shear (see Figures 13, 14 and 16). This is because their first two probabilistic moments
show the highest dependence on the type of weight applied.

The character of a relationship between the reliability index and an input uncertainty
is not always smooth and without local inflection points. The indices for the ultimate dis-
placement, as well as critical load, show small fluctuations through their course, especially
around a (wg) =0.10. Such fluctuations are intriguing, but for now, their cause has not
been determined.

The last comparison is the FORM vs. SORM index of reliability, which is given based
on critical load, the most difficult reliability restriction at t=0. It is based on Figures 16
and 17.

The graphs according to both orders have a very similar character. This is expected,
because the applied SORM is based on the Gaussian input probability density and, there-
fore, these indices should be comparable. An important observation is that ﬁg according

, B, and B include all the relevant limit

Umax

to SORM is less dependent on the type of weight and has a little higher magnitude for an
extensive input uncertainty. Finally, the SORM approach corrects the errors coming from
the FORM,, i.e, the diverging or scattered character of ,88 for some limit functions. An

additional observation is concerned with the interchangeability of these three probabilis-
tic methods applied in restrictions of the reliability index; all the methods show an almost
perfect agreement for all the state functions. Due to this, when only one stochastic variable
is taken into consideration, all the methods can be used alternatively. In such conditions,
the most preferable one seems to be the stochastic perturbation method (SPT), which is
not dependent on a direct derivation, does not require a considerable number of trials (as
the MCS), and is also the swiftest.

The last, yet most important, observation is a total limit of input uncertainty coming
from the fabrication imperfection that allows for fulfilling the restriction of reliability ﬁg.

This limit differs for all the state parameters and ranges from a (wy)=0.09 to around
a(wp) =0.21. The lowest one constitutes a total limit, and therefore the objective function
with optimum t,,=56 mm is a (w) =0.09. This limit corresponds to the limit function of
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critical load (). This is a reasonable result because for most of the constructional elements
the fabrication error causes uncertainty in f,, lower than (wg) =0.05. Nonetheless, relia-
bility restrictions at t=0 are not the most rigorous, which undoubtedly are the ones con-
nected with a joint effect of corrosion and the considered fabrication error. Improving the
resistance of the girder to stability loss would be enough to increase the overall reliability
of this girder at ¢=0, but it may not be sufficient to improve reliability in the corrosive
environment.

3.4.2. Initial Restriction of S,

The differences in initial reliability restriction fulfillment for the three models are
shown in Figures 18-21. They depict the FORM indices for the four most important limit
states, i.e., ,BU, ﬁu , B o and ﬁg in the function of the a(wy) and for ¢t=0. These plots

are principally presented to highlight the importance of the choice of the FEM model type
and its accuracy in fulfillment of the reliability restrictions for the objective function. They
are all computed with the use of the Dirac weighting scheme and with three alternative
probabilistic methods, MCS, AM, and SPT. These indices perfectly justify the purpose,
being vastly dependent on the model type and almost uniform for all the probabilistic
methods. Therefore, it is highly recommended to put more effort during the modeling
process of the FEM and into the collection of data coming from these simulations than into
the choice and scrutiny of the probabilistic method. The probabilistic coefficients bring no
more information for optimization purposes and therefore they are not included. One may
refer to Figures 8-11 for the required information.
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Figure 18. Reliability index of the corrugated I-beam for three ABAQUS models according to FORM
and based on the deflection.
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Figure 19. Reliability index of the corrugated I-beam for three ABAQUS models according to FORM
and based on the ultimate normal stress.
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Figure 21. Reliability index of the corrugated I-beam for three ABAQUS models according to FORM
and based on the critical load.

From Figures 18-21 it is first seen that the reliability margin decreases together with
an increase of a (wy). It is in the range of 50+ 150 for a small & (w,) <0.01, but it rapidly
decreases and reaches zero for a (w,) € (0.10;0.14); this is still much higher than typical
uncertainty caused by the fabrication imperfection. The second observation concerns the
inexistence of a limit state setting the reliability restriction for the entire @ (w). For each
level of uncertainty, this limit is set in different LS, and therefore the topological optimi-
zation is not trivial —each limit state depends on multiple parameters of the model. The
highest restriction is decisive, which is not unique for the different models. On the other
hand, the first model is also the most restrictive for a majority of the cases and because it
is also the most detailed one, it should be the one taken for the final optimization. This is
because it had the smallest margin in the LS. An alternative approach is the inclusion of
results from all the models for optimization purposes, but this would cause almost three-
fold longer computations because the FEM solution is very computationally-intensive.
The correspondence between the three methods is almost perfect for all the four consid-
ered reliability indices and for all the FEM models, with only one exception of Figure 20
for the third, most simplified model (shell without ribs), for which neither of the methods
converges.

One of the observations which should undoubtedly be highlighted is the fact that for
all the limit states the reliability indices according to different models diverge not only in
their initial value but also in the strength of their relation to a (wp). A very good example
is an index based on the deflection (Figure 18), which starts very high for the deterministic
model and just over a (wy) = 0.07 crosses all the other indices to become the lowest (to
constitute a lower limit) for all higher a (w,). One more interesting relation is unveiled by
the reliability index based on the ultimate normal stress (Figure 19) and computed accord-
ing to the shell model (third model) which shows a negative value of the index. This is a
direct outcome of an existence of the unacceptably high stress exceeding the plastic limit
of the construction steel already in the FEM results. The existence of the negative index is
incorrect and should by all means be excluded from further analysis. Nevertheless, unlike
in a (wp), its negative value gives a piece of important information for optimization
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purposes—that the element is not fulfilling restrictions already in the process of the limit
states, and before reliability checks, a new optimization loop with a new value of W
should have been already started.

3.4.3. Durability Analysis with f,

The last and final restriction of the optimization problem is the reliable service life of
the constructional element, which is setas =50 years. This restriction is formulated with
the use of the FROM index of ,Bg and presented for the limit state of u,,,,. Itis computed

for the joint impact of the corrosion penetration depth and the manufacturing imperfec-
tion, both being random and uncorrelated. Reliability is calculated with three probabilistic
methods, i.e,, AM, MCS, and SPT. Corrosion is modeled according to the third model from
Table 1 with two random parameters A and B, while the uncertainty of initial imperfec-
tion is set within the following bounds of @ (w,) €[0.05;0.25] with a Gaussian PDF. This
imperfection is introduced during the production of the beam and is considered time-
independent, while the corrosion process is described by a time series. The response func-
tion utilized for probabilistic calculations is calculated with an inner optimization prob-
lem and WLSM is based on the Dirac weighting scheme. The result is presented for the
optimized objective function W(t, =56 mm) and based on the most refined first FEM
model. This final reliability restriction is depicted in Figure 22 as a function of service time
t € (0;50) years. It firstly shows that the limit of 1.8 is reached at around 60 years, and the
margin of the restriction is within the stop criterion defined for this example as f.=0.3.
Secondly, the uncertainty of an initial manufacturing imperfection only marginally affects
the final result, and this is why its sole impact was checked in the preceding step of the
optimization loop. This index starts at ,88= 60, sharply decreases in a convex manner with
a decreasing slope and has an apparent limit of ﬁgEO. This index shows a very good co-
incidence of the two probabilistic methods, the SPT and MCS. The third, semi-analytical
method (AM) diverges from the others, and this is why it is not reported in Figure 22. This
exemplifies the usability of this triple redundant method, which allows a successful check

of restriction even when one of the probabilistic methods turns out to be unavailable or
divergent for a specific step.
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Figure 22. Reliability index of the corrugated I-beam for different types of weights according to
FORM —deflection (SLS), the second-order polynomial.
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4. Concluding Remarks

This paper presents an optimization framework for topological problems in the do-
main of civil engineering. It is exemplified by a successfully optimized simply supported
SIN web I-girder. The main novelty in this paper is the concept of reliable service life pre-
diction and its application to a computationally demanding structure. It allows automa-
tion of the reliability-based design of custom structural elements. The principal objective
of the proposed RBDO algorithm is a determination of the best topology that satisfies all
the design restrictions applicable to civil engineering structures during their service life.
Restrictions include the limit states, i.e., the ultimate limit state and serviceability limit
state, stability, and vibrations in the deterministic and reliability context. The limit func-
tions are applied directly after the FEM results. The optimization loop consists of subse-
quent verification of physical and geometrical restrictions, FEM problem solution, verifi-
cation of all deterministic design restrictions, and finally verification of reliability-based
restrictions. This is done for a specified service life of construction. It could be applied to
a wide variety of structural elements and entire structures; the limit functions could be
obtained analytically, by BEM, FEM, neural networks, or with the use of any other algo-
rithm that outputs the required state parameters.

The most critical points of this algorithm include the calculation of the representative
limit functions for local state parameters, such as stresses and strains, FEM detailing, and
interpretation of FEM results. For this reason, three concurrent models were proposed and
shortly contrasted in the optimized solution; in current maturity, the algorithm uses a de-
terministic non-gradient search. It is intended for replacement in future works by a more
effective method, such as neural networks.

The proposed algorithm is applied to a practical example of the SIN web I-girder.
This provides additional insight into the reliability of such elements, as well as their sus-
ceptibility to loss of stability, vibrations, and deformability. It also adds some valuable
remarks to the FEM modeling in RBDO problems. The results obtained in this work con-
firm that numerical modeling precision significantly affects the optimization outcome.
This is because its choice has a direct effect on the stress state of the girder and its buckling.
Different FEM models applied in this study return important dissimilarities in stress dis-
tribution, its maximum values, and placement of peaks. This is also true for buckling loads
and their patterns. It is also exemplified here that the choice of the FEM formulation (vol-
umetric vs. shell), as well as the finite element type and order, significantly affects the
optimization. Furthermore, it is difficult to set the required level of detail in the FEM
model and the minimum amount of FEs before the RBDO. This is because the buckling
load together with ultimate stresses and deflections have no clear correlation to the model
accuracy. Therefore, a decrease in the level of geometric and computational precision may
hide significant design problems. They include low buckling mode or high-stress peaks
in the welds that are omitted by simplified models and lead to an overestimation of the
overall reliability of this structure. Importantly, only the most detailed model revealed
additional instabilities in the girder occurring at much smaller loads than the others and
having a local, rather than global character.

The corrosion process affected the considered example in terms of both reliability
and structural capacity. Its evolution increased the internal stresses and decreased critical
loads. The influence of the initial fabrication error on the service life of the exemplary
structure was marginal and may be omitted in future research. On the contrary, steel and
environment type had a much more substantial effect on the service life of an exemplary
structure. This is because of its direct effect on the evolution of corrosion depth and its
uncertainty. Please note that maintenance, such as painting or plating, is not taken into
consideration in the current algorithm. Performed regularly, it will increase the reliable
life of the structure. Its inclusion is planned in future research.

The triple probabilistic calculations applied in this study provided a piece of im-
portant information on the convergence of probabilistic calculations that would be other-
wise unavailable. On the other hand, their mutual application slowed down the
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optimization process. Computational time reduction could be achieved by limiting the
RBDO to a single probabilistic method. The ISFEM is the most recommended in this case.
It is the fastest and significantly accelerates the optimization process. Its accuracy is a little
lower than that of the MCS, but the difference proved to be marginal for the considered
example.
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