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Abstract: It is well known that the safety and reliability of pipeline transportation are crucial. We are
aiming at the problem that the residual life and residual strength of the defective elbow pipes are
difficult to predict and usually need to be obtained through experiments. Consequently, a combined
method of numerical simulation technology combined with a genetic algorithm to optimize neural
network extreme learning machine (GA-ELM) is proposed. Firstly, the erosion characteristics of
elbow pipes with different defects under the conditions of different impurity particle flow rates,
particle sizes, and mass flow rates are analyzed by numerical simulation. At the same time, the
effects of erosion defects of different sizes on the equivalent stress and residual strength of elbow
pipes are also studied. Based on numerical simulation data, the extreme learning machine prediction
model optimized by a genetic algorithm is used to predict the erosion rate, residual life, and residual
strength and compared with the traditional ELM network model. The results show that residual
strength of the elbow pipes with the increase of the depth and length of the defect, and increases with
the increase of the width of the defect; the GA-ELM model can not only effectively predict the erosion
rate, residual life and residual strength of defective elbow pipes, moreover its prediction accuracy is
better than the traditional ELM model.

Keywords: elbow pipes; analytical prediction; residual strength; failure pressure; erosion defects

1. Introduction

With the development of the economy and technology, our country’s demand for oil
and gas resources is increasing. In the long-distance transportation of oil and gas products,
pipeline transportation has a larger transportation volume, less land occupation, shorter
construction period, lower cost, less energy consumption, and higher efficiency. Therefore,
pipeline transportation is favored by people [1]. When oil and gas are transported at high
speed and high pressure, centrifugal force will cause uneven erosion on the inner wall of the
pipelines [2]. Consequently, with the increase in the service life of oil and gas pipelines, the
reliability of pipelines will gradually decrease. In order to ensure the safety and reliability
of oil and gas pipelines, it is necessary to study the residual life and residual strength of the
pipelines and take reasonable measures to prevent the pipelines from being damaged.

In recent years, pipeline erosion fatigue has become a hot topic in domestic and foreign
research [3–9]. Carlos used the finite element simulation method to study the influence of
magazine particle concentration on elbow erosion and verified the accuracy of the model
through experimental data [10]. In the study of Hong Bingyuan et al., a novel experimental
device was designed to investigate the erosion characteristics of 304 stainless and L245
carbon steel in the gas-solid two-phase flow. Test results showed that the erosion can
easily lead to wall thinning, perforation leakage, and other problems and cause significant
safety risks to the safe operation of pipelines [11]. Zhang Yun developed the least-squares
boosting model to predict the solid particle erosion rate in elbows from material properties,
the geometry of the pipe wall and sand particles, as well carrier fluid velocities [12]. Ou

Materials 2022, 15, 7479. https://doi.org/10.3390/ma15217479 https://www.mdpi.com/journal/materials

https://doi.org/10.3390/ma15217479
https://doi.org/10.3390/ma15217479
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0003-4183-7168
https://doi.org/10.3390/ma15217479
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma15217479?type=check_update&version=2


Materials 2022, 15, 7479 2 of 21

Guofu used ANSYS software to establish a finite element model to study the vulnerable
parts of the pipelines that are prone to damage under erosion [13]. Yang Yanhua used
ABAQUS software to study the residual strength of oil and gas pipelines and wrote related
programs to predict the failure probability of pipelines [14]. Zaidi et al. studied the
structural integrity of welded pipes for oil drilling rigs and estimated the residual life of
the pipes on this basis [15]. Hashim Abbas et al. established a neural network model to
predict CO2 corrosion at high partial pressure [16]. Khalaj et al. presented some results
of the research connected with the development of a new approach based on the artificial
neural network (ANN) of predicting the ultimate tensile strength of the API X70 steels after
thermomechanical treatment [17]. In the study of Khalaj et al., bainite fraction results of
continuous cooling of high-strength low alloy steels had been modeled by artificial neural
networks [18].

Most of the existing studies have carried out numerical simulation analysis or experi-
mental research on defect-free pipelines to analyze their reliability and safety. The erosion
effect of the particles mixed in the oil and gas on the pipe wall causes the residual life
and residual strength of the pipelines to decrease rapidly, which affects the reliability of
the entire pipeline transportation system. It is, however, important that few studies have
proposed to study the remaining life and residual strength of oil and gas pipelines with
defects. In order to predict and study the residual strength and residual life of defective oil
and gas pipelines from the perspective of economy and safety, it is necessary to establish a
scientific evaluation method. In this paper, the pipelines with erosion defects are taken as
the research object. Combined with the engineering practice, the elbows with different ero-
sion defects are simulated and compared. Erosion characteristics under different boundary
conditions and the influence of different defect lengths, widths, and depths on the residual
strength of erosion defect elbow pipes were analyzed. The prediction model of residual life
and residual strength is verified by the numerical calculation results of the software and
the experimental data in the literature, which provides an engineering reference for the
prediction of the safety life of oil and gas pipelines with defects in practical applications.

2. Erosion Rate Analysis of 90◦ Elbow
2.1. Predictive Model for Erosion Wear

Oka of Hiroshima University proposed a new particle erosion model [19]. Compared
with other existing erosion models, the Oka model takes more factors into accounts, such
as relative velocity, particle diameter, and Vickers number of pipe materials, which will
affect erosion wear.

E(θ) = g(θ)E90 (1)

g(θ) = (sin θ)n1 [1 + Hv(1− sin θ)]n2 (2)

E90 = K(Hv)
k1(

up

upre f
)

k2
(

dp

dpre f
)

k3

(3)

In Equations (1)–(3): E(θ) is the erosion rate, kg/m2·s); g(θ) is the function of impact
angle; E90 is the reference erosion rate, kg/m2·s); Hv is the Vickers hardness of the eroded
material, GPa; up is the relative velocity between particle and wall, m/s; upre f = 104 m/s
is the particle reference velocity constant; dp is the particle size of erosion particles, µm;
dpre f = 326 µm is the reference particle size; n1 = 0.8, n2 = 1.3 are exponents determined by
the material hardness and other impact conditions such as particle properties; k1 = −0.12,
k2 = 2.3(Hv)

0.038, k3 = 0.19 are exponent factors, which are affected by other parameters,
respectively; K = 65 denotes a particle property factor such as particle shape (angularity)
and particle hardness, which has no correlation among different types of particles and other
factors. Oka investigated the influence of impact parameters on the correlation equations of
several aluminum, copper, carbon steel, and stainless steel specimens in detail and proved
that the model could be used to estimate the experimental erosion damage data of various
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types of materials under various impact conditions [20]. This paper conducts calculations
and analysis based on this model.

2.2. Model Parameters and Boundary Conditions

Taking the experimental model in the literature [21] as an example, the elbow model,
as shown in Figure 1, is established. The diameter of the pipe is 25.4 mm, the wall thickness
is 12 mm, and the bend-diameter ratio is 1.5. Inside the pipeline is oil and gas with a gas
density of 1.225 kg/m3 and a gas viscosity of 1.79 × 10−5 Pa·s, which flows in at the inlet
at a speed of 34.1 m/s and flows out freely at the outlet. X100 pipeline steel is used as the
material for the pipes. The particle size is 182 µm, and the particle-to-gas phase mass flow
rate ratio is 0.013.
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2.3. Mesh Division and Mesh Independence Verification

In CFD simulation, the calculation speed and accuracy are affected by the quality
and quantity of the mesh. In this paper, considering both the calculation memory and the
calculation accuracy, the free hexahedral mesh with the maximum element of 2.41 mm, the
minimum element of 0.157 mm, and the maximum element growth rate of 1.08 is used for
division. The total number of meshes divided is 134,928, as shown in Figure 1.

In order to verify the rationality of the mesh division mentioned above, the mesh
independence is verified before the numerical simulation. When the mesh density reaches a
certain degree, the calculation results tend to be stable. Increasing the number of mesh cells
has little impact on the calculation results and increases the calculation amount and time.
In this event, it can be considered that mesh independence has been achieved. In this paper,
according to the mesh size gradient, models with mesh numbers of 11,598, 19,904, 36,715,
134,928, and 264,668 are selected for numerical simulation. The curve of the maximum
erosion rate changing with the number of meshes is shown in Figure 2. It can be seen
from Figure 2 that when the number of meshes reaches 134,928, the mesh independence
requirement is met. Considering the amount of calculation and calculation accuracy at the
same time, the number of meshes for subsequent simulations is at least 130,000.

2.4. Validation of Numerical Methods

The comparison between the simulation results of this paper and the experimental
data of Mazumder et al. [22] is shown in Figure 3. It can be seen from the figure that the
distribution curve of erosion rate at the elbow obtained by simulation calculation in this
paper can be well fitted with the test data, indicating that the mathematical model and
simulation method adopted in this paper are reasonable and feasible.
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The schematic diagram of the pipeline erosion rate is shown in Figure 4. It can be
seen from the figure that V-shaped erosion wear occurs at the outermost side of the elbow,
with the highest erosion rate. There is a drag force in the fluid flow process. When flowing
through the elbow, the solid particles doped in the fluid will impact the pipe wall under
the action of inertia, resulting in the above phenomenon.
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3. Erosion Rate Analysis of Defective Elbow Pipes
3.1. Model Parameters

On the basis of the model in Figure 4, combined with the defect shape and wall
thickness loss in literature [21], the point defect, groove defect, and double groove defect
with a depth of 200 µm were drawn at the elbow with the most severe erosion wear. As
shown in Figure 5.
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3.2. Analysis of Simulation Results

The effects of particle size, flow velocity, and mass flow rate on the erosion rate of the
defective elbows were studied, respectively. When the particle size is a variable, the flow
velocity is 34.1 m/s, and the particle-to-gas mass flow rate ratio is 0.013; When the flow
velocity is a variable, the particle size is 182 µm, and the particle and gas phase mass flow
rate is 0.013; When the ratio of particle to gas phase mass flow rate is a variable, the flow
velocity is 34.1 m/s, and the particle size is 182 µm. The changing trend of erosion rate of
point defect, groove defect, and double groove defect under the boundary conditions of
different particle size, flow velocity, and mass flow rate is shown in Figures 6–8.

It can be seen from Figures 6 and 7 that under different defect conditions, the particle
size and flow velocity are nonlinear with the erosion rate.

It is known from Figure 8 that under three different defect conditions, the erosion
rate increases with the increase of mass flow rate. Erosion rate curves of groove defect
and double groove defect almost overlap, which is smaller than that of point defect in
numerical value.
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4. Analysis of Residual Strength of Defective Elbow Pipes
4.1. Model Parameters and Boundary Conditions

Using X100 pipeline steel as the material, a three-dimensional elbow model with a pipe
diameter of 1320 mm and a wall thickness of 22.9 mm was established. X100 pipeline steel
is widely used in the field of oil and gas resources transportation with good performance
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and low cost. The hardening effect of pipeline steel has a great influence on the residual
strength of high-strength pipelines. In the process of numerical simulation, it is necessary
to explore the problem of pipeline nonlinearity. In order to accurately describe the change
of pipe section area in the process of large deformation of pipes, when defining X100 pipe
material properties, not only Poisson’s ratio, elastic modulus, and other linear parameters
of pipes are set but also real stress and plastic strain are considered. The real stress-strain
data of X100 pipeline steel are input in the material properties as known conditions when
the model is established. The performance parameters of X100 pipeline steel to be set in
this paper are shown in Table 1, the chemical composition is shown in Table 2, and the true
stress-strain curve of X100 pipeline steel is shown in Figure 9.

Table 1. Performance parameters of X100 pipeline steel.

Minimum Yield
Strength (MPa)

Minimum Tensile
Strength (MPa)

Ultimate Tensile
Strength (MPa)

Young’s
Modulus (MPa)

Poisson’s
Ratio

690 760 886 210,000 0.3

Table 2. Chemical composition of X100 pipeline steel (%).

C Si Mn P S Cr Ni Mo Fe

0.065 0.95 1.69 0.015 0.002 0.04 0.03 0.27 allowance
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In order to simplify the actual erosion model, certain assumptions are made, and the
applied loads and boundary conditions are set as follows:

(1) The coupling effect of pipe gas and pipe soil (such as the friction between pipe gas
and pipe soil, the velocity of the medium in the pipe, etc.) during the operation of
the pipelines is not considered; the thermal expansion and cold contraction due to
changes in ambient temperature are not considered The thermal stress generated in
the pipelines when the phenomenon is limited by the internal and external constraints
of the pipelines; the force generated by the anti-erosion protection measures of the
pipelines are not considered.

(2) Only the effect of the internal pressure on the pipelines during the operation of the
pipelines is considered, and the direction of the force is perpendicular to the inner
surface of the pipelines; the forces generated by the pipelines’ own weight, bending
moment, and seismic load are not considered.

(3) Displacement constraints are imposed on the left and right ends of the model; that is,
the ends are completely fixed. The elbow model is shown in Figure 10.
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When analyzing volumetric defects, certain failure criteria need to be established. In
this paper, the plastic failure criterion is used to judge whether the pipelines fail. When
the Von Mises equivalent stress in the defect area exceeds the ultimate tensile strength, the
pipeline is considered to be invalid. The internal pressure that the pipelines can bear at this
time is the residual strength of the pipelines. The Von Mises equivalent stress calculation
formula is as follows.

σθ =

√
1
2

[
(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ3 − σ1)

2
]

(4)

Among them, σθ represents the Von Mises equivalent stress (MPa); σ1, σ2 and σ3
represent the stress (MPa) along the X-axis, the Y-axis, and the Z-axis direction, respec-
tively [23–25].

4.2. Meshing and Mesh Independence Verification

In this paper, the free tetrahedron mesh with a maximum element of 80.8 mm, a
minimum element of 3.46 mm, and a maximum element growth rate of 1.35 is used to
divide the elbow model. The total number of meshes divided is 85,258, as shown in
Figure 11.
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According to the mesh size gradient, models with mesh numbers of 30,521, 40,018,
85,258, 169,919 and 248,087 are selected for numerical simulation. The curve of residual
strength changing with the number of meshes is shown in Figure 12. It can be seen from
the figure that mesh independence is achieved when the number of meshes reaches 85,258.
Considering the amount of calculation and calculation accuracy at the same time, the
number of meshes for subsequent simulations is at least 80,000.
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Figure 12. Mesh-independent validation of strength model.

4.3. Numerical Method Validation

Collect the real data of seven groups of pipeline blasting tests with defects in the
literature [26–28] and calculate the residual strength of pipelines with defects with different
parameters according to the established finite element model. The specific parameters and
calculation results are shown in Table 3.

Table 3. Prediction and comparison of residual strength of pipeline steel under different notch conditions.

Number
Pipe

Diameter
(mm)

Wall
Thickness

(mm)

Defect
Length
(mm)

Defect
Depth
(mm)

Residual Strength
(MPa)

(Literature Test Value)

Residual Strength
(MPa)

(Simulation Results)

Error
(%)

1 1320 22.9 200 4.58 27.79 27.87 0.3
2 1320 22.9 1000 11.45 16.59 16.64 0.3
3 1320 22.9 514.98 11.45 17.9 17.72 1.0
4 1320 22.9 1109.93 11.45 15.4 16.01 4.0
5 1320 22.9 556.88 11.36 18.1 17.3 4.4
6 1320 22.9 1012.74 11.45 15 15.97 6.4
7 1320 22.9 800 41.2 18.76 16.97 9.5

By comparing the residual strength predicted by the finite element model with the
blasting data provided in the literature, all the predicted residual strength values are within
±10% of the deviation of the actual residual strength, the minimum relative error is 0.3%,
and the maximum relative error is 9.5%. It shows that the established nonlinear finite
element model can more accurately predict the residual strength of oil and gas pipelines
with defects, and at the same time, verifies that the established nonlinear finite element
model, mesh division, and selected failure criteria are reasonable and feasible.

4.4. Analysis of Simulation Results

Taking the pipelines with groove-shaped erosion defects as the research object, the
influence of different geometric parameters on the residual strength of the pipelines was
studied. Taking the defect length l = 200 mm, the defect width w = 26 mm, and the defect
depth d = 13 mm as an example, when the equivalent stress in the defect area reached the
ultimate tensile strength of 886 MPa, the schematic diagram of the equivalent stress was as
shown in Figure 13:

The pipelines with different depths, lengths, and widths of erosion defects were
simulated and analyzed, respectively. When the defect depth d is taken as a variable, the
length of the control defect is l = 200 mm, the width w = 26 mm is unchanged, and the
depth of the defect is d = 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 mm. When the defect length l
is taken as a variable, the control defect depth d = 13 mm, the width w = 26 mm remains
unchanged, and the defect length is l = 100, 120, 140, 160, 180, 200, 220, 240, 260, 280,
300 mm in turn. When the defect width w is taken as a variable, the control defect depth
l = 200 mm, the depth d = 13 mm remains unchanged, and the defect width is sequentially
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taken as w = 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36 mm. The variation curve of von Mises
equivalent stress with the increase of internal pressure load under different erosion defect
length, width and depth conditions is shown in Figure 14.
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It can be seen from Figure 14 that the equivalent stress of the pipelines obviously has
two stages with the change of the internal pressure, namely the elastic stage of the pipe
and the plastic expansion stage of the pipe. In the elastic deformation stage, the larger
the defect depth d and the larger the defect length l, the faster the equivalent stress of the
pipelines increases with the internal pressure; the larger the defect width w, the slower the
equivalent stress of the pipelines increases with the internal pressure. In the strengthening
stage after the pipelines have yielded, the curves in the figure are almost parallel, and the
equivalent stress under the condition of different geometric parameters of the defect tends
to be equal with the growth rate of the internal pressure load. So the plastic strengthening
effect of the pipeline steel will not decrease with the change of the geometric parameters,
delaying the effect of defects on residual strength.

The relationship between the residual strength of the pipelines and the length, width,
and depth of the erosion defect is shown in Figure 15.

Figure 15. Relationship between defect geometry parameters and residual strength. (a) Schematic
diagram of the relationship between residual strength and defect depth; (b) Schematic diagram of the
relationship between residual strength and defect length; (c) Schematic diagram of the relationship
between residual strength and defect width.
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It can be seen from Figure 15 that with the increase of the depth and length of the
erosion defect, the residual strength shows an obvious linear decreasing trend. As the width
of the erosion defect increases, the residual strength shows an obvious linear increasing
trend. In terms of numerical changes, the change in defect width has less effect on the
residual strength of the pipelines than the depth and length of the defect.

5. Prediction of Erosion Life and Residual Strength
5.1. Extreme Learning Machine

Extreme Learning Machine (ELM) is a new type of single-hidden layer feedforward
neural network algorithm. Its hidden layer node parameters are randomly selected, the
external network weight obtains its least squares solution by minimizing the squared loss
function, and the process of determining network parameters does not require any iterative
steps, which improves the calculation speed. ELM is simple and easy to implement, which
overcomes the shortcomings of the traditional neural network based on the gradient descent
method that the training speed is slow and easily falls into local optimum. The network
structure of ELM is shown in Figure 16, the number of input layers is n, and the number of
hidden layers is L. Its working principle is as follows:
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H is the hidden layer output matrix. Considering the prediction error, equation (6) can
be modified to:

Hβ = T + E (7)

Defining the squared loss function:

J = (Hβ− T)T(Hβ− T) (8)

Then the training problem of the ELM network parameters is transformed into a
minimized squared loss function problem; that is, it is necessary to find a set of optimal
parameters {(ai, bi, βi)}L

i=1 such that J is minimal. When the function g is activated infinitely
differentiable, the hidden layer node parameters can be randomly selected at the beginning
of training, fixed during training, and the external weight β can be obtained by solving the
system of Equation (8) by the least squares method:

∧
β = argmin‖Hβ− T‖ = H+T (9)

ELM only needs to select the number of hidden layer nodes under the condition of
determining the activation function, and the parameter determination process is relatively
simple. The specific solution steps are as follows:

(1) Set the hidden layer activation function g(x) and the number of hidden layer nodes L;
(2) Randomly generate hidden layer node parameters (a, bi), i = 1, 2, · · · L ;
(3) Calculate the hidden layer output matrix H;

(4) Calculate the output weight
∧
β = H+T, where H+ is the generalized inverse of Moore–

Penrose of the matrix H.

5.2. Genetic Algorithm

Genetic Algorithm (GA) is an adaptive probability search method formed by simu-
lating the genetic mechanism and biological evolution process in nature, with inherent
hidden parallelism and global optimization ability. It maps the solution problem to the bit
string space, represents a potential solution set of the problem as a population, and the
solution of the problem as a chromosome, that is, an individual in the population, and
performs survival of the fittest based on the fitness function. Genetic algorithms evolve
populations through a series of operators, producing new offspring. Standard genetic
operators include selection operators, cross operators, and mutation operators. The genetic
algorithm operation process consists of the following steps:

(1) Encoding.
The solution data of the solution space is represented as the genotype string structure

data of the genetic space, and different combinations of string data represent different
solutions to the problem. The commonly used coding methods are Binary coding, Gray
code coding, and One-hot coding.

(2) Population initialization.
Determine population size N, cross probability Pc, mutation probability Pm, and

termination evolution criterion, randomly generate N individuals as the initial population
X(0), set the current evolutionary algebra k = 0, and the maximum evolutionary algebra
is Y.

(3) Calculate the fitness value.
The fitness value indicates the merits of an individual or solution, and different fitness

functions are defined for different problems, and the fitness value of
{

xi
k
}N

i=1 is calculated
for each individual in the k-generation population.

(4) Genetic manipulation.
Select, cross, and mutant operators act on the current population in turn to achieve evolution.
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(5) Check the termination conditions.
If the genetic algebra satisfies the termination condition, the calculation is terminated,

and the best individual in the current population is taken as the final satisfactory solution
output; Otherwise, k = k + 1 and go to step (3).

The workflow chart of the extreme learning machine optimized by genetic algorithm
(GA-ELM) is shown in Figure 17.
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5.3. Prediction Results and Analysis of Test Data

In this paper, MATLAB software is used to program and simulate the GA-ELM model,
and 61 groups of blasting test data of defective pipelines in the literature [29] are selected
to verify the accuracy of the model. Among them, 50 groups were randomly selected as
training sets, and 11 groups were used as prediction sets. Some data are shown in Table 4.

The prediction results of the test set are shown in Table 5. It can be seen from the
table that the minimum relative error of GA-ELM model prediction results is 1.75%, the
maximum relative error is 13.78%, and the average relative error is 5.05%.

Figure 18 shows the comparison between the test values in the literature and the
predicted values of the GA-ELM model. It is known from the figure that after 1000 itera-
tions, the prediction accuracy of the GA-ELM model reaches 99.729%, which can better
fit the nonlinear relationship between the residual strength of the defective pipelines and
its influencing factors. It is proved that the prediction model adopted in this paper is
reasonable and feasible.

Figure 18. Comparison of forecast results.
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Table 4. Blasting test data of pipelines with defects.

Pipe
Diameter

(mm)

Wall
Thickness

(mm)

Defect
Length
(mm)

Defect
Depth
(mm)

Defect
Width
(mm)

Yield
Strength

(MPa)

Tensile
Strength

(MPa)

Residual
Strength

(MPa)

458.8 8.1 39.6 5.39 31.9 601 684 22.68
459.4 8 40.05 3.75 32 589 730.5 24.2
323.9 9.8 255.6 7.08 95.3 452 542 14.4
323.9 9.66 305.6 6.76 95.3 452 542 14.07
508 14.6 500 10.35 97 478 600 14.6
508 14.3 500 10.3 97 478 600 13.4
76.2 2 75 1.4 16 391 458 9.4
76.2 2.04 75 1.44 16 260 309 5.45
762 17.5 200 9 200 474.1 556.6 22.64
426 6.95 160 2.7 25 240 390 10.8
. . . . . . . . . . . . . . . . . . . . . . . .
426 7 150 3.8 21 240 390 9.81
529 9 350 4.7 25 285 415 8.83
529 9 160 4.7 25 285 415 15.7
720 8 320 4.4 26 425 535 8.83
720 8 180 6.2 26 425 535 7.55

304.8 6.35 26 4.95 20 351 543 15.36
304.8 6.35 33 4.25 21 382 570 16.29
323.9 9.74 527.8 7.06 95.3 422.5 589.6 11.3

1422.4 19.25 180 10.4 0.5 740 774 15.35
914.4 16.4 450 6 0.5 739 813 24.02

. . . . . . . . . . . . . . . . . . . . . . . .
304.8 6.35 37 4.64 30 351 463 14.29
324 6.01 19.35 3.6 19 382 570 16.22
324 10.3 243 5.15 154.5 380 514 23.2
324 10.3 243 5.15 30.9 380 514 22
508 6.6 381 2.62 35.4 443.4 598.9 11.25
508 6.35 900 3.43 25.4 429.6 572.5 8

323.9 9.79 500 6.99 95.3 452 542 11.99
323.9 9.74 527.8 7.14 95.3 452 542 11.3
762 17.5 200 8.4 100 474.1 556.6 23.42
762 17.5 200 9 200 474.1 556.6 22.64

Table 5. The test set prediction results.

Number Test Values in
Literature (MPa)

Predicted Value of
GA-ELM (MPa) Error (%)

1 15.36 15.7528 2.56
2 24.3 23.7243 2.37
3 11.91 12.5701 5.55
4 11.99 12.4956 4.22
5 22.64 23.2093 2.51
6 24.3 23.7668 2.19
7 11.3 12.0015 6.21
8 8 8.7686 9.61
9 11.25 11.4471 1.75
10 5.45 6.2013 13.78
11 14.4 15.0982 4.85
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5.4. Prediction Results and Analysis of Simulation Data

According to the erosion rate obtained by numerical simulation, the residual life of the
pipelines can be calculated by Equation (10) [30]. In the Equation: h is the safe allowable
wall thickness of the pipe wall, mm; ρ is the density of X100 pipeline steel, kg/m3; R is the
erosion rate, kg/(m 2 · s).

T =
hρ

R
(10)

In this paper, 300 sets of erosion rate and erosion life data of elbows without defects,
point defects, and groove defects are obtained through simulation calculation, and each
set of data contains 5 types. No defect is set as working condition 1, point defect is set as
working condition 2, and groove defect is set as working condition 3. With the working
condition, particle size, flow velocity, and mass flow rate as the input, and the erosion rate
or residual life as the output. By training the neural network, the prediction of the erosion
rate and the residual life of the defective elbow can be realized. In total, 250 sets of data
were randomly selected as the training set, and the remaining 50 sets of data were used as
the test set. Part of the sample data is shown in Table 6.

Table 6. Erosion rate and residual life sample data.

Defect
Velocity of

Flow
(m/s)

Mass Flow
Rate

(10−4 kg/s)

Grain Size
(µm)

Maximum
Erosion Rate

(10−5 kg·m−2·s−1)

Residual
Life Span

(105 s)

0 34.1 2.60 152 5.10 18.5
0 34.1 2.80 152 5.49 17.1
0 33.1 2.60 152 4.74 19.9
0 33.1 2.60 152 5.10 18.5
0 35.1 2.60 152 5.44 17.3

. . . . . . . . . . . . . . . . . .
0 37.1 2.20 202 5.56 17.0
0 37.1 2.40 202 6.06 15.5
0 38.1 2.60 202 6.99 13.5
0 38.1 2.80 202 7.53 12.5
0 38.1 3.00 202 8.06 11.7
1 33.1 2.60 142 83.0 1.13
1 34.1 2.60 142 35.8 2.63
1 35.1 2.60 142 28.7 3.28
1 36.1 2.60 142 54.8 1.72
1 33.1 2.80 142 27.6 3.41

. . . . . . . . . . . . . . . . . .
1 37.1 2.00 202 35.4 2.66
1 37.1 2.20 202 39.0 2.42
1 37.1 2.40 202 42.5 2.22
1 38.1 2.80 202 52.6 1.79
1 38.1 3.00 202 56.4 1.67
2 35.1 2.60 142 47.3 1.99
2 36.1 2.60 142 72.8 1.29
2 33.1 2.60 142 59.3 1.59
2 34.1 2.60 142 66.2 1.42
2 34.1 2.80 142 71.3 1.32

. . . . . . . . . . . . . . . . . .
2 37.1 3.20 202 45.9 2.05
2 37.1 3.00 202 43.0 2.19
2 38.1 2.80 202 44.4 2.12
2 38.1 2.40 202 38.1 2.48
2 38.1 2.20 202 34.9 2.70
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In this paper, the residual strength data of 93 sets of pipelines with erosion defects
obtained by simulation are used, and each set of data contains eight types. The pipe
diameter, wall thickness, yield strength, tensile strength, notch length, notch width, and
notch depth are used as input, and the residual strength is used as output. In total, 73 sets
of data were randomly selected as the training set, and the remaining 20 sets of data were
used as the test set. Part of the sample data is shown in Table 7.

Table 7. Residual intensity sample data.

Pipe
Diameter

(mm)

Wall
Thickness

(mm)

Defect
Length
(mm)

Defect
Depth
(mm)

Defect
Width
(mm)

Yield
Strength

(MPa)

Tensile
Strength

(MPa)

Residual
Strength

(MPa)

1320 22.9 100 13 26 690 886 25.2
1320 22.9 120 13 26 690 886 24
1320 22.9 140 13 26 690 886 22.8
1320 22.9 160 13 26 690 886 21.7
1320 22.9 180 13 26 690 886 20.7
. . . . . . . . . . . . . . . . . . . . . . . .

1320 22.9 200 14 26 690 886 18.4
1320 22.9 200 15 26 690 886 17.5
1320 22.9 200 16 26 690 886 16.8
1320 22.9 200 17 26 690 886 16.1
1320 22.9 200 18 26 690 886 14.5

1422.4 20.1 100 11 22 795 840 15.7
1422.4 20.1 120 11 22 795 840 14.67
1422.4 20.1 140 11 22 795 840 13.8
1422.4 20.1 160 11 22 795 840 12.78
1422.4 20.1 180 11 22 795 840 12.3

. . . . . . . . . . . . . . . . . . . . . . . .
1422.4 20.1 200 12 22 795 840 11.2
1422.4 20.1 200 13 22 795 840 10.01
1422.4 20.1 200 14 22 795 840 9.31
1422.4 20.1 200 15 22 795 840 8.57
1422.4 20.1 200 16 22 795 840 8.2
914.4 16.4 100 10 20 739 813 15.4
914.4 16.4 120 10 20 739 813 14.1
914.4 16.4 140 10 20 739 813 13.21
914.4 16.4 160 10 20 739 813 12.5
914.4 16.4 180 10 20 739 813 12.2

. . . . . . . . . . . . . . . . . . . . . . . .
914.4 16.4 200 11 20 739 813 10.2
914.4 16.4 200 12 20 739 813 9.4
914.4 16.4 200 13 20 739 813 8.7
914.4 16.4 200 14 20 739 813 7.2
914.4 16.4 200 15 20 739 813 5.83

The comparison between the simulation value and the prediction results of the two
models is shown in Figure 19. It is known from the figure that the prediction accuracy of the
ELM model for the erosion rate, residual life, and residual strength is 90.387%, 93.863%, and
97.556%. The accuracy of the GA-ELM model is 93.954%, 99.618%, and 99.648%, which are
higher than the ELM model. It proved that this optimization algorithm could significantly
improve the prediction accuracy.
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6. Conclusions

In this paper, taking the defective elbow pipes as the research object, the numerical
simulation method is used to analyze the influence of the flow rate, particle size, and mass
flow rate of solid particles on the erosion characteristics of the elbow with defects. In
addition, this paper studies the influence of defect length, width, and depth on residual
strength. Furthermore, it combines artificial intelligence algorithms to predict the residual
life and residual strength of erosion. The above calculation results show that:
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(1) As has been noted, the simulation results are in good agreement with the published
experimental data. The average errors of maximum erosion rate and residual strength pre-
diction are 12.7% and 3.7%, respectively, which are within the acceptable range. Therefore,
it is verified that the mathematical model adopted in this paper can effectively calculate the
erosion rate and residual strength of the defective elbow pipes.

(2) In this study, the maximum erosion rate of the elbow with defects has a positive
linear relationship with the mass flow rate of solid particles. In contrast, it has a nonlinear
relationship with flow rate and particle size. The maximum equivalent stress of the defective
elbow pipes can be divided into the yield stage and the plastic strengthening stage. The
residual strength of the defective elbow pipes is negatively correlated with the depth and
length of the defect, whereas positively correlated with the width of the defect relation.

(3) As described above, the extreme learning machine GA-ELM model optimized by
the genetic algorithm in this paper is reasonable and feasible, and the prediction accuracy
of the blasting test data of pipelines with defects reached 99.729%. The accuracy of the
GA-ELM model in predicting the erosion rate, residual life, and residual strength of the
elbow with defects is 93.954%, 99.618% and 99.648%, respectively. Compared with the
traditional extreme learning machine ELM model, the prediction accuracy is effectively
improved by 3.567%, 5.755%, and 2.092%, respectively.
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Nomenclature

E(θ) corrosion rate (kg/m2·s)
g(θ) function of impact angle
E90 reference wear rate (kg/m2·s)
Hv Vickers hardness of the eroded material
up relative velocity between particle and wall (m/s)
dp particle size of erosion particles (µm)
upre f particle reference velocity constant
dpre f reference particle size
σθ Von Mises equivalent stress (MPa)
σ1 the stress along the X-axis (MPa)
σ2 the stress along the Y-axis (MPa)
σ3 the stress along the Z-axis (MPa)
l defect length (mm)
w defect width (mm)
d defect depth (mm)
GA− ELM extreme learning machine optimized by genetic algorithm
n number of input layers
L number of hidden layer neurons
ai,bi hidden layer node parameters
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βi outer weight between the i-th hidden layer node and the network output
g activation function
H hidden layer output matrix
J squared loss function
N determine population size
Pc cross probability
Pm mutation probability
X(0) initial population
k current evolutionary algebra
Y maximum evolutionary algebra
h safe allowable wall thickness of the pipe wall (m)
ρ density of X100 steel (kg/m3)
T erosion life (s)
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