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Abstract: Although metasurfaces have received enormous attention and are widely applied in various
fields, the realization of multiple functions using a single metasurface is still rarely reported to date.
In this work, we propose a novel dual-functional metasurface that can be applied as a mid-infrared
narrowband thermal light source in optical gas sensing and a long-wave infrared broadband absorber
in photodetection. By actively tailoring the structure and constituent materials of the metasurface, the
device yields an absorptivity of over 90% from 8 µm to 14 µm, while it exhibits an emissivity of 97.4%
at the center wavelength of 3.56 µm with a full width at half-maximum of 0.41 µm. Notably, the
metasurface is insensitive to the incident angle under both TM- and TE-polarized light. The proposed
dual-functional metasurface possesses many advantages, including a simple structure, thin thickness,
angle and polarization insensitivity, and compatibility with optical devices, which are expected to
simplify the existing imaging systems and improve the performance of photodetection equipment.

Keywords: metasurface; broadband high absorption; narrowband high emission; thermal light
source; infrared imaging and detection

1. Introduction

Metasurfaces are artificially constructed periodic sub-wavelength microstructures
that can achieve a desired dielectric constant and permeability by actively selecting their
material, shape, and arrangement so as to effectively manipulate the phase, amplitude,
and polarization of electromagnetic waves [1–4]. Metasurfaces can precisely tune light–
matter interactions at subwavelength scales, effectively excite surface plasmons (SPs), and
achieve a variety of novel physical properties such as zero refractive index [5], negative
reflection [6], super-resolution [7], and metalens [8–10]. More recently, many researchers
have enabled metamaterials to achieve perfect emission/absorption by properly designing
the electrical and magnetic responses, which break the limits of conventional devices and
play important roles in the fields of thermal emitters [11], thermal imaging [12], energy
harvesting [13,14], and gas detection [15], etc.

However, existing metasurfaces usually exhibit a single function [16–18]. For instance,
detecting and monitoring hazardous gases has an important role in health, safety, and
environmental protection [19–21]. Each gas has its own characteristic absorption spectrum
in the infrared (IR) band. Highly selective, sensitive, compact, and low-cost sensing devices
can be accordingly developed by designing narrowband high-emission metasurfaces cor-
responding to the characteristic spectra of the target gases; on the other hand, long-wave
infrared (LWIR) detection is limited by the thickness of conventional absorbers. Distinct
from omnidirectional absorbers with 1D multilayers or 2D or dispersed structures in a wide
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wavelength range [22–24], metasurfaces can effectively break the limitations of traditional
materials and significantly improve the performance of LWIR detectors [25–27]. In general,
the working waveband and function of a metasurface are already determined during the
design process, while integrating multiple functions in different wavebands usually needs
a metasurface group, undoubtedly increasing the complexity and difficulty of the design.
Although challenging, it would be highly desirable if a single metasurface could be devel-
oped to achieve multiple functions, bringing great advantages in terms of both expanding
applications and simplifying manufacturing steps.

In this work, we aim to combine two functions of gas sensing and detection together.
We propose a novel dual-functional metasurface featuring mid-infrared (MIR) narrowband
thermal emission and long-wave infrared broadband absorption simultaneously. Compared
with other metasurfaces, higher emission/absorption can be achieved by optimizing the
resonator geometry in combination with high-loss materials. The design process and
the emission/absorption properties of the metasurface are specifically demonstrated and
simulated. Then, to analyze the principle of its emission/absorption generation, the
electromagnetic field distribution in the microstructure is calculated and discussed. An
equivalent circuit model is proposed to explain the corresponding principle. Subsequently,
to validate the feasibility of its two applications in optical gas sensing and LWIR detection,
the emission performance of the proposed metasurface is tested under different incident
angles and polarizations. Finally, a brief outlook on its development potential is presented.

2. Structure Design and Simulation Details

To achieve high emission/absorption, the metasurface needs to suppress reflection
and transmission in the operating wavelength range, and to this end, we conducted a series
of designs in terms of material selection, structural design, and numerical simulation.

Metasurfaces are usually composed of three parts: a resonator, spacer, and bottom layer.
We used chromium (Cr) as the material for the resonator and bottom layer. The intrinsic
broadband plasmonic resonances of Cr can broaden the bandwidth of absorption, and the
inherent loss of the metal can further improve the intensity of emission and absorption [28].
The thicknesses of the bottom layer and resonator were both 100 nm, which can suppress
the transmission and excited localized surface plasmons (LSPs) to enhance the absorption
of the metasurface, respectively. On the other hand, high-dispersive dielectrics, such as
silicon dioxide (SiO2) and silicon nitride (Si3N4), have intrinsic vibrational modes (optical
phonons) in the infrared range [29]. These optical phonons can be coupled with excited
plasmonic effects, thereby modifying the optical response of the metasurface. Accordingly,
we selected SiO2 and Si3N4 as the spacer of the metasurface.

In terms of structural design, we first developed a Cr–Si3N4–Cr metasurface S1,
which was comprised of metal wire resonators, a metal plane bottom, and a dielectric
layer in the middle. On this basis, we selected SiO2 to overlay the spacer layer to build
a new microstructure S2. To confine its operating wavelengths in a certain range, we
adjusted the parameters of the resonator by performing numerical simulations. By actively
choosing the resonator structure, optical resonances within the metasurface were effectively
enhanced. Finally, a square resonator geometry was designed. To shift the emission
peak of the metasurface towards 3.58 µm to match the characteristic spectrum of CH4
gas, we adjusted the composition of the dielectric layer. After sufficient simulations for
structure parameter optimization, we chose a stacked dielectric layer consisting of SiO2
and Si3N4 with thicknesses of 80 nm and 720 nm, respectively. The new Cr–SiO2–Si3N4–
Cr metasurface was named S3. The structural diagrams of S1, S2, and S3 are shown
in Figure 1a.
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Figure 1. (a) Design process of metasurfaces involving three structures of S1, S2, and S3. (b) Schematic
of boundary condition settings in simulation.

The metasurface was numerically simulated by the finite-difference time-domain
(FDTD) algorithm. One unit cell of the proposed periodic microstructure was simulated.
Each simulation typically took 2–3 h by using a common personal computer. In a series of
simulations, the periodic condition was adopted as the boundary condition in both X- and
Y-directions, while the perfectly matched layer condition was adopted in the Z-direction for
the sake of extracting the reflectance spectra (see Figure 1b). The characteristic parameters
for the Cr and SiO2 material such as the permittivity and refractive index, were obtained
from the Palik database [30], and the Si3N4 parameters were obtained by Kischkat [31].
The absorptance (A) of the metasurface was calculated through the reflectance (R) and
transmittance (T) obtained by simulation: A = 1 − R − T. The simulated emissivity was
subsequently obtained according to Kirchhoff’s law of thermal radiation, namely, the
emissivity of material equals its absorptivity at thermodynamic equilibrium. Additionally,
the simulations were repeated to guarantee their accuracy.

3. Results and Discussion
3.1. Optical Prorperties of Designed Metasurfaces

Table 1 exhibits the fundamental parameters and numerical simulation results of the
three mentioned structures. L and w are the length and width of the resonator, respectively.
After continuous optimization, the average emissivity of the metasurface in the entire
LWIR is improved from 81.3% to 92.0%, and the maximum emissivity in MIR is up to
97.4%. To concretely investigate the features of structure S3, we illustrate its detailed
structural parameters in Figure 2. The thicknesses of the resonator, dielectric layer, bottom
layer, and period are denoted as h, d, t, and p, respectively. Figure 3 shows the calculated
emissivity/absorptivity spectrum of S3. There is a high absorption of 92.0% in a broadband
wavelength spread from 8 to 14 µm, covering the entire LWIR atmospheric window. The
simulated absorption spectrum has three peaks at wavelengths of 8.2, 10.4, and 14.4 µm
with absorptivities of 92.8%, 96.6%, and 99.3%, respectively. Moreover, a high emissivity
of 97.4% is achieved at a wavelength around 3.6 µm with a full width at half-maximum
(FWHM) of 0.41 µm in MIR. In brief, a narrowband high emission in MIR and a broadband
high absorption in LWIR can be simultaneously achieved by the proposed structure S3.
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Table 1. Fundamental structural parameters and numerical simulation results of S1, S2, and S3.

Metasurface Material
Selection

Geometrical
Parameters

SiO2
Thickness

Si3N4
Thickness

Emission Peak
Wavelength

Maximum
Emissivity in MIR

Average Absorptivity
in LWIR

S1 Cr
Si3N4

L = 800 nm
w = 200 nm 0 nm 1000 nm 4.06 µm 86.4% 81.3%

S2
Cr

SiO2
Si3N4

L = 800 nm
w = 200 nm 80 nm 720 nm 3.58 µm 86.6% 84.2%

S3
Cr

SiO2
Si3N4

L = 800 nm
w = 800 nm 80 nm 720 nm 3.58 µm 97.4% 92.0%
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3.2. Principle of Metasurface Emission/Absorption Generation

To analyze the principle of the emission/absorption generation, we calculated and
analyzed the electromagnetic field distribution of S3 at 3.6 µm, 8.2 µm, 9.2 µm, 10.4 µm,
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12.1 µm, and 14.4 µm (see Figure 4). Meanwhile, we also calculated its intensity distribution
for each layer at the above wavelengths using the following equation (see Figure 5) [32]:

Q(ω) =
1
2
× ω × Im(ε)× E2(ω) (1)

in which ω is the angular frequency, Im(ε) is the imaginary part of the dielectric permittivity,
and E(ω) is the local electric field. Here, the electric field intensity used in the calculation
is based on the relative values extracted from the simulation results in Figure 4a–l; thus,
Q(ω) calculated by Equation (1) is the relative distribution rather than the actual one.
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Through the distribution of the electric field presented in Figure 4a–f, we found that
the current is mainly concentrated at the edges of the resonator. It can be suggested that
the LSPs are excited at the edges of the resonator due to the electromagnetic wave incident
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on the metamaterial; however, it is clear that they do not have the same intensity since the
response intensity is related to the material, shape, and size of the resonators.

To further explain the physical mechanism, we simulated the magnetic field distribu-
tion of the metasurface at each wavelength. The first mode is M1, as shown in Figure 4j–l.
The PSP excited at the dielectric—metal interface enables the magnetic field to be mainly
concentrated below the resonator. Then, the SPs will be coupled to the dielectric layer
interacting with the optical phonons of the Si3N4 layer, and the coupling will be further en-
hanced in the cavity consisting of the resonator and the bottom layer. The optical property
of the PSP can be expressed theoretically by the following equations [33]:

k = k0 sin θ + i × 2π

p
(2)

kPSP = k0

√
εmεd

εm + εd
(3)

Equation (2) is the Bragg coupling condition, in which k0 = ω
C = 2π

λ is the free-space
wave vector, θ is the angle of the incident electromagnetic wave, integer i is the diffraction
order of grating, and p is the grating period. Equation (3) indicates the wave vector of the
PSPs; εm and εd are the dielectric constants of the metal and insulator medium, respectively.
Only when k = kPSP does the incident electromagnetic wave couple to PSPs.

The second mode is M2, as shown in Figure 4h,i. The magnetic field is mainly
distributed in the dielectric layer, which is attributed to the strong coupling of the LSP
generated by the resonator with the optical phonons in the dielectric. As shown in Figure 4,
the SiO2 in the stacked dielectric layer contributed to the absorption the most.

The LSPR mode of the metasurface can be described by the equivalent circuit model.
As shown in Figure 6a, the resonance wavelength λn can be expressed as [34]:

λn = 2πcCn

√
2Ln + Lt,n + Lb,n (4)
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The parameters of the equivalent circuit model indicated in Figure 6 can be obtained
such that Ln = 0.5µ0dl

nw denotes the inductances of the resonator and bottom layer separated
by the dielectric spacer; Cn = 2βnε0εd lw

nd is the capacitance of the dielectric spacer between the

two parallel plates; Rt,n = l
nδeffwωε0

(
ε2

ε2
1+ε2

2

)
and Lt,n = −l

nδeffwω2ε0

(
ε1

ε2
1+ε2

2

)
are the resistance

and kinetic inductances of the resonator, respectively; and Rb,n = 1
nδeffωε0

(
ε2

ε2
1+ε2

2

)
and
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Lb,n = −1
nδeffω

2ε0

(
ε1

ε2
1+ε2

2

)
are the resistance and kinetic inductances of the bottom layer,

respectively. For these parameters, the resonance modes of the metasurface are labeled with
the subscript n; ω is the angular frequency of the incident wave; µ0 and ε0 are the vacuum
permeability and vacuum permittivity, respectively; εd is the dielectric permittivity; ε1 and
ε2 are the real and imaginary parts of the metal permittivity, respectively; βn considers
the non-uniform charge distribution along the surfaces of the capacitor; δeff is the effective
penetration depth of the metal; and c denotes the speed of light in the vacuum. It can be
said that, in the above two modes, the local plasmon resonance (LSPR) of the resonator,
the cavity resonance between the resonator and the substrate, and the optical phonon
resonance in the spacer are the main factors required for the proposed metasurface to
achieve the near-perfect absorption characteristics in the broadband range.

The third mode is M3, as shown in Figure 4g. For the high emissivity at 3.6 µm
(Figure 5), we found that the metal made the largest contribution to the emission, which is
attributed to the intrinsic plasmon resonance and inherent loss of the metal, in agreement
with our mentioned design concept. Due to the Fabry–Perot cavity between the resonator
and bottom layer, the LSPR excited by the resonator is further enhanced, which significantly
contributes to the high emissivity of the metasurface.

As previously mentioned, the principle of emission/absorption generation in the
metasurface is consistent with our original design, and furthermore, different resonance
modes will promote or inhibit each other. For example, in the LWIR region, the interactions
between optical phonons and SPs in different dielectric layers (SiO2 and Si3N4) can be
mutually suppressed or not acted upon owing to their different response bands, which
ultimately broadens the absorption wavebands of the proposed metasurface.

3.3. Metasurface Performance under Different Incident Conditions

In consideration of the performance stability of the metasurface within a wide range of
incident angles and polarization statuses, we characterized the dependence of its absorption
performance on different incident conditions, as shown in Figure 7. The simulated results
show that the broadened high absorptivity of the proposed metasurface in the LWIR region
can be maintained when the incident angle varied from 0◦ to 40◦ under TE-polarized
light and up to 50◦ under TM-polarized light. Thus, the performance of the designed
metasurface remains efficient and stable under different incident conditions, i.e., exhibits
“omnidirectional” features, which is beneficial for realizing dual applications in the areas of
gas sensing and LWIR detection.
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The absorption of the metasurface will inevitably lead to an increase in temperature.
Therefore, we investigated the emission performance of the metasurface at different temper-
atures. As shown in Figure 8, the proposed metasurface presents excellent thermal stability,
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as indicated by its ability to monitor the target gas with high efficiency even at an extreme
temperature (300 ◦C).
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In order to underline the unique working wavebands of the proposed metasurface,
we provide information about several dual-band metamaterials previously reported in the
literature as a contrast, as shown in Table 2.

Table 2. Comparison of optical properties of representative infrared dual-band metasurfaces in
recent years.

References
MIR LWIR

Average
Absorptivity

Central
Wavelength

Absorption
Bandwidth

Average
Absorptivity

Central
Wavelength

Absorption
Bandwidth

[35] 85.0% 6.18 µm narrowband 89.0% 8.32 µm narrowband
[36] >80.0% 6.15 µm 2.70 µm >80.0% 10.10 µm 0.80 µm
[37] >90.0% 3.70 µm narrowband >90.0% 11.20 µm narrowband

[38] 80.0% approximate
4.20 µm 0.38 µm >90.0% approximate

10.40 µm 2.48 µm

[39] 50.0% 4.00 µm 2.00 µm <90.0% 10.50 µm 5.00 µm
our work 97.4% 3.58 µm 0.82 µm 92.0% 11.00 µm 6.00 µm

Figure 9 gives a visual schematic of the dual functions of the proposed metasurface.
In brief, the advantages of the proposed metasurface as compared with conventional
metasurfaces are:

(i). Narrowband high-emission (FWHM as low as 0.41 µm), which can be utilized as a
compact selective thermal light source for gas sensing;

(ii). High absorptivity in broadband (over 90% from 8 to 14 µm), which can be applied
as a LWIR broadband absorber in photodetectors;

(iii). Great absorption/emission stability under large incident angles and different polar-
ization statuses;

(iv). Ultra-thin thickness (T = 1 µm), which is ideal for directly integrating with detectors
and is of great benefit in improving its photodetection performance.
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Figure 9. Demonstration of the designed dual-function metasurface.

With the development of microfabrication technologies, the fabrication of metamate-
rials is feasible. Specifically, the multilayer structure of the proposed metamaterials can
be prepared by magnetron sputtering or electron beam evaporation, while the square
resonator can be prepared by existing nano-processing methods such as electron beam
lithography (EBL).

4. Conclusions

In summary, we have successfully demonstrated a novel wide-angle, dual-function
metasurface with simple structure and thin thickness. The combination of LSPR, PSPR, and
optical phonon resonance on the metasurface achieves a high absorptivity of over 90% in the
broadband range. Meanwhile, the intrinsic plasmonic resonances and the inherent loss of
the metal in the metasurface leads to a narrowband high-emissivity of 97.4% with an FWHM
of 0.41 µm due to the Fabry–Perot resonance between the resonator and bottom layer. These
characteristics permit the designed metasurface to simultaneously act as a compact selective
thermal source in gas sensing and an LWIR broadband absorber in photodetectors. The
development of a dual-functional metasurface with a simple configuration such as this is
highly desirable and significant.
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