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Abstract: In this work, the process of solid-state dewetting in FePd thin films and its influence on
structural transformation and magnetic properties is presented. The morphology, structure and
magnetic properties of the FePd system subjected to annealing at 600 ◦C for different times were
studied. The analysis showed a strong correlation between the dewetting process and various physical
phenomena. In particular, the transition between the A1 phase and L10 phase is strongly influenced
by and inextricably connected with solid-state dewetting. Major changes were observed when the
film lost its continuity, including a fast growth of the L10 phase, changes in the magnetization reversal
behavior or the induction of magnetic spring-like behavior.

Keywords: thin films; solid-state dewetting; magnetism; magnetization reversal mechanism; FePd
alloy; phase transformation

1. Introduction

Fe/Pd multilayers and FePd alloys are of great interest due to their possible applica-
tions in magnetic recording [1], permanent magnets [2], surface acoustic wave filters [3],
and terahertz magnonics [4]. Such a wide range of applications results from the unique
properties of Fe/Pd and FePd systems, which exhibit many interesting magnetic phenom-
ena. In particular, the Fe/Pd bilayer shows the presence of spin-orbit torque [5] and the
Dzyaloshinskii–Moriya interaction at the Fe/Pd interface [6] which opens the possibil-
ity of skyrmion engineering in this system [7,8]. A small Gilbert damping constant of
0.002–0.004, together with the prospects of its tuning [9], makes the material useful for
spin-transfer-torque magnetoresistive random access memory [10,11], or the detection of
spin waves [12–14]. In the case of ultra-thin FexPd1−x alloy, the dependence of magnetic
anisotropy on electrical voltage as an indication of the magnetoelectric effect was found [15].
For the alloys enriched with palladium, a spin current polarization appears with Pd atoms
acting as highly spin-dependent scattering centers [16]. Furthermore, magnetostriction
and magnetic shape memory effects were observed in FePd thin films [17] with potential
application as actuators for biomedicine [18,19], photothermal therapy [20] or as a coating
layer for titanium implants with good blood- and histo-compatibility [21]. The FePd shows
also catalytic [22,23] and sensing properties [24,25] and can be used for the fabrication of fer-
rofluids with high metallic and thermal conductivity [26]. It has been demonstrated [27,28]
that some of these properties, such as hydrogenation capabilities, depend on the magnetism
of FePd thin alloy films.

These properties of Fe-Pd systems are strongly related to the crystallographic structure
and stoichiometry. For an FePd alloy with an atomic ratio close to 1:1, only the chemically
disordered A1 phase and chemically ordered L10 phase are thermodynamically stable at
room temperature. The cubic A1 phase is created spontaneously and the transformation
to the tetragonal L10 phase with strong uniaxial magnetocrystalline anisotropy of the or-
der of MJ/m3 [29] proceeds through an ordering process which progresses gradually in a
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cascade-type transformation. It involves decomposition into fcc phases and congruent trans-
formation to metastable L12, L1′ (modified L10 formed from hybridized L10–L12 phases)
or fct A6 phases, and then atomic ordering to the L10 phase [30–32]. The formation of the
L10 phase with an easy axis of magnetic anisotropy normal to the film plane, i.e., perpen-
dicular magnetic anisotropy, requires proper fabrication conditions and thermal treatment
performed during or after deposition [33,34]. The polycrystalline film annealing at tem-
peratures higher than 400 ◦C initiates the formation of L10 crystallites [35] while further
annealing at 600 ◦C leads to a significant increase in L10 phase contribution accompanied
by an enhancement of the magnetic coercive field and magnetic anisotropy [36]. The an-
nealing of the thin film is usually accompanied by solid-state dewetting, a process whereby
isolated particles are formed while the material remains solid. Its onset is determined by
the interface energy between the thin film and substrate [37] and can limit the reliability
of devices based on such films due to the loss of film continuity [38]. On the other hand,
adequately controlled solid-state dewetting can be used for the fabrication of nanomaterials
with new features and properties [39]. In particular, the phenomenon has been used for
FePd systems to create free-standing magnetic particles [40], release residual stress [41], fab-
ricate patterned nanoparticles with preferred crystallographic orientation [42], or produce
particles with different morphology depending on the used substrate [37]. Additionally,
the process can be controlled by doping with other elements, such as Cu, or by substrate
nanopatterning to produce an ordered array of nanoparticles [43].

Despite the broad use of solid-state dewetting, its influence on L10 phase formation in
FePd systems has not yet been thoroughly investigated. During annealing, polycrystalline
FePd alloy thin films exhibit simultaneous phase transformation together with solid-state
dewetting. An in-depth understanding of their mutual influence is crucial for the controlled
fabrication of FePd thin alloy systems with desired magnetic properties. The relation
between these two processes is, therefore, the central point of our studies. We started with
the Fe/Pd system and performed annealing at 600 ◦C at different times, up to 5 h, while
tracking the changes in morphology, structure, and magnetic properties of the films. We
demonstrated that the phase transition between the A1 and the L10 phase is driven by the
solid-state dewetting with strong correlations between morphology, structure and magnetic
properties. Those correlations are the main subject of our investigations and show how
solid-state dewetting influences chemical transformation and magnetism. In particular,
we demonstrated that the most significant changes are observed when the film loses its
continuity, resulting in the fast growth of the L10 phase and a change in magnetization
reversal behavior, prompting magnetic spring-like behavior.

2. Materials and Methods

The samples were prepared with the thermal evaporation method. A multilayer of
Fe (4 N, Trace Sciences International) and Pd (5 N, Sigma-Aldrich, Saint Louis, MO, USA)
was deposited onto a Si/SiOx(100 nm) substrate in an ultrahigh vacuum (base pressure
10−9 mbar). As a result, a multilayered stack of Si/SiOx/Pd1.5nm/[Fe1nm/Pd1nm]5/Pd1nm
with a total thickness of 12.5 nm and Fe45Pd55 atomic stoichiometry was obtained, and was
chosen to fall into the middle of the Fe:Pd ratio range for L10 phase formation [44]. The
layer thickness was controlled during the deposition with a quartz monitor and confirmed
ex situ with X-ray reflectometry.

The transformation of the Fe/Pd multilayer into a FePd thin alloy film was performed
by annealing at 600 ◦C in a high vacuum of 10−5 mbar or better. The annealing at high
temperatures was performed for different times between 0 and 300 min, where 0 means
immediate cooling down of the sample after achieving 600 ◦C, whereas in other cases, the
samples were kept for 4, 15, 30, 60, and 300 min at the final temperature before turning off
the heater. The heating ratio was kept at 10 ◦C /min. As a result, a series of FePd thin alloy
films were created.

The X-ray diffraction (XRD) measurements with θXRD/2θXRD Bragg–Brentano geom-
etry were performed with a PANalytical X’Pert Pro diffractometer using Cu Kα line. A



Materials 2023, 16, 92 3 of 18

detailed description of the measurement procedure for thin film measurements can be
found in [45]. The analyses were conducted with FullProf software [46]. Morphology
studies were performed using scanning electron microscopy (SEM) (Tescan, Vega 3) with
an electron beam energy of 3 keV and with the use of a secondary electron detector.

Studies of macroscopic magnetic properties were focused on field-dependent mag-
netization curves M(H) and were performed with a Magnetic Properties Measurements
System (MPML XL) from Quantum Design company equipped with a Superconducting
Quantum Interference Device detector (SQUID). The measurements were performed at
room temperature in a magnetic field range of ±50 kOe. The angle of the magnetic field
with respect to the sample surface varied between 0 and 90 degrees for all samples. The
signal from the holder and the substrate was subtracted from the measured data and only
the ferromagnetic part of the signal was analyzed.

3. Results and Discussion
3.1. Crystallographic Structure and Morphology

The XRD diffractograms for FePd alloy thin films obtained after different times of
annealing are presented in Figure 1a. The peaks located around 24, 41, 47 and 49.5 deg
show the presence of the FePd L10 phase with tetragonal distortion and correspond to (001),
(111), (200) and (002) crystallographic planes, respectively [47]. Both the L10 fct phase with
space group P4/mmm and the fcc FePd A1 phase with space group Fm-3m are necessary to
reproduce the experimental patterns (red and blue colored areas in Figure 1a) [48]. The
presence of both phases shows that the samples are a mixture of chemically disordered A1
and ordered L10 phases, that coexist even after 5 h of annealing. The high intensity of (111)
Bragg peaks indicates a strong (111) crystallographic texture for both phases.
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Figure 1. (a) Diffractograms of FePd thin alloy films after different times of annealing. The blue and 

red colors correspond to the A1 phase and the L10 phase, respectively. The parameters extracted 
Figure 1. (a) Diffractograms of FePd thin alloy films after different times of annealing. The blue and
red colors correspond to the A1 phase and the L10 phase, respectively. The parameters extracted
from the XRD patterns are presented below: (b) cell parameters, (c) cell volume, and (d) coherence
length. The inset of figure (c) shows the tetragonal distortion ratio c/a.

The lattice parameters for L10 and A1 phases are presented in Figure 1b and collected
in Table S1 in Supplementary Materials Section S1 with the percentage contribution of the
L10 phase. The amount of the L10 phase increases with annealing time and the largest rise
occurs for the time between 15 and 30 min. The fcc disordered phase shows an almost
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constant and temperature independent lattice parameter a of 3.81 Å, close to the bulk value.
On the other hand, the a and c lattice parameters of the L10 phase slowly increase with
annealing time (Figure 1b), and the most significant rise again takes place between 15 and
30 min of annealing. This effect is better seen in cell volume dependence on annealing time
(Figure 1c), which shows an increase for the L10 phase above the annealing time of 15 min
and reaches the bulk value for the samples annealed longer than 30 min. In the case of the
sample annealed for 5 h, the values of cell volume of both phases are equal. The tetragonal
distortion (the inset of Figure 1c) does not change significantly with annealing time and
equals 0.955. Such behavior corresponds to the situation when the a and c parameters
increase similarly in all crystallographic directions, demonstrating the proportional growth
of the crystallographic cell. The c/a value is slightly smaller than the value of ~0.965 usually
observed for thin films [49] and single crystals [50], indicating a larger tetragonal distortion
of the studied films. This could be related to the nonstoichiometric iron to palladium ratio,
an effect also observed in the work of Bahamida et al. for Fe56Pd44 alloy [33].

The XRD data were used for calculating Scherrer coherent length (Lcoh), a parameter
connected to the crystallographic sheer grain size [51]. Figure 1d presents the Lcoh depen-
dence vs. annealing time calculated for L10 and A1 phases using (111) Bragg maxima. The
coherent length shows an increase for initial annealing and tends to saturate for annealing
times above 60 min. The data were fitted with the time-dependent grain growth model
described as [52]

Ln
coh − Ln

0 = c ∗ (t− t0) (1)

where the parameter L0 is the initial grain size; n is the growth exponent; t is the anneal-
ing time; c = c0 exp(−Ea/kBT) is a growth rate parameter which has a constant value
for annealing at constant temperature T; c0 is the initial growth rate constant; Ea is the
activation energy for grain boundary motion; and kBT is thermal energy. The Scherrer
coherence length Lcoh for the L10 phase shows growth after 30 min of annealing; therefore,
an additional initial grain growth time parameter t0= 30 min was introduced to reproduce
the data for this phase. The obtained values of the n exponent between 9 and 11 for A1 and
L10 phases, respectively (see Figure 1d), indicate a very slow grain growth process found
previously for FePd [33] or FePt [53] systems.

The L10 phase shows an unusual behavior of crystallographic grain growth. For a
short time of annealing, up to 30 min, the crystallographic grains nucleate with a mean
size of approximately 10 nm, while only after 30 min the process of grain growth starts.
The 30 min of annealing was previously mentioned as the time when a significant increase
in the contribution of the L10 phase was noticed (associated with the decrease of the A1
phase contribution). This is a completely different behavior from the A1 phase where the
nucleation of crystallographic grains and the growth take place simultaneously with the t0
parameter equal to 0.

The values of the coherence length are larger than the thickness of the film, suggesting
material dewetting during the annealing process, which was confirmed by the morphology
studies using SEM (see Figure 2). For the shortest times of annealing, small voids in the
FePd film appear filled with small particles (islands). The size of the voids and the number
of particles increase with the annealing time. The most significant change is found in
images taken after 30 and 60 min of annealing (Figure 2e,d), where the voids merge and the
whole surface is covered only with the isolated particles, and the layer loses its continuity.

The SEM images can be used for quantitative analysis of the FePd lateral particle size
distribution. The histograms of the particle sizes are presented in Figure 3a and are fitted
with a generalized gamma distribution function [54]. For the short times of annealing, the
smallest particles dominate and the histograms show fast decay. On the other hand, for
the samples annealed for 60 and 300 min, a maximum in particle size distribution above
200 nm is found, as presented in Figure 3b. The mean particle size shows a rise between
30 and 60 min of annealing, corresponding to the change in film morphology caused by
solid-state dewetting. It is connected with a loss of film continuity leading to the reduction
of the number of new nucleation centers [55] (see Figure 2d,e). For the longest time of
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annealing, the FePd alloy is mostly in the form of separated particles (islands) which restrict
the ability to nucleate new ones. In that case, a dominant process is the slow growth of
existing particles and the reduction in the number of the smallest ones. Similar behavior
was found by Barrera et al. for Fe80Pd20 alloy [40], where the authors observed emerging
voids in the film evolving into isolated islands after annealing for 30 min and the successive
increase in the islands’ mean size.
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thin film.

The mean particle sizes presented in Figure 3b were fitted using Equation (1). The
initial time t0 = 30 min was used, as in the case of crystallographic grains of the L10 phase.
The obtained value of the growth exponent of 8.8 shows that in this case, the growth of the
islands is also very slow. The growth parameters behave similarly to the coherence length
of the L10 phase, suggesting that solid-state dewetting is an important factor necessary
to induce the diffusion and transformation of the A1 phase into the L10 structure. The
particles (islands) at the beginning of the dewetting process are composed of an A1 and
L10 crystallites mixture with a predominance of the disordered phase. When the film
losses continuity, the transformation of the A1 phase to the chemically ordered L10 phase
proceeds. Structural analyses show that these two processes are inextricably linked.

A closer analysis of SEM images shows that dewetting in the FePd film is a two-step
process. At first, the top of the film corrugates and a grainy structure is created while the
structure of the bottom part of the film remains unchanged. In the next step, the islands
are formed and the substrate is exposed. Similar processes of solid-state dewetting were
observed for silver, gold and nickel [56–58]. The two-step process is clearly visible in the
SEM image of the sample annealed for 4 min at 600 ◦C (Figure 3c). The bottom part of the
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image presents a nominal, non-dewetted FePd film having a light grey color. The upper
part of the figure shows a region where dewetting caused a partial reduction of the film
thickness (a grey color) with small dark areas where a silica substrate is exposed. Finally,
the islands formed in the process are visible as white dots. These different dewetting
regimes are well illustrated on the profile line where the large particles give high peaks
while the partially dewetted film has a value between 0 and 1. This effect can also be
found in other samples annealed for various times. A closer inspection of the images
(see Figure S1 in Supplementary Materials S2) reveals the presence of areas with different
stages of dewetting in all samples. Even the sample annealed for 300 min still shows some
regions with a continuous flat film, demonstrating that the process of FePd alloy formation
does not reach thermodynamic equilibrium and longer annealing times are needed to
improve quality and enhance the contribution of the L10 phase. Indeed, Vlasova et al.
showed that even after annealing at 550 ◦C for 100 h, FePd forms a mixture of different
phases [59].
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Figure 3. (a) Histogram of particle sizes from SEM microscopy fitted with gamma distribution, differ-
ent colors correspond to different times of annealing; (b) particle size mean values; (c) SEM image
at the void edge of the sample annealed for 4 min showing successive changes in film morphology.
The orange line on the right side of the image shows the variation in the grayscale of the SEM signal,
where 0 corresponds to the darkest regions, i.e., uncovered silica substrate, and 1 corresponds to the
regions of unchanged FePd thin film.

These observed correlations between morphology and crystallographic structure
demonstrate that the L10 phase starts to dominate in volume over the chemically disordered
or partially ordered phases when the film loses its continuity. Those observations can be
compared with the studies described in [31], where two stages of structural transformation
were found: a cooperative displacement and transformation from the A1 to the A6 structure,
and in the next step, further ordering from the A6 to the L10 phase. Therefore, solid-state
dewetting not only leads to material agglomeration, but also supports the transformation
of chemically disordered phases to an ordered L10 structure. In this context, the dewetting
and diffusion process works simultaneously to create and enhance the formation of the
L10 phase.
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3.2. Macroscopic Magnetic Properties

Field-dependent magnetization curves measured for annealed samples with the mag-
netic field applied perpendicular (⊥) and parallel (||) to the sample surface are presented
in Figure 4. The magnetization saturates at approximately 3µB/Fe for all samples, which is
the value expected in FePd alloy [60,61].
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Figure 4. Magnetic hysteresis loops for annealed samples measured with the magnetic field perpen-
dicular (black curves) and parallel (red curves) to the sample surface. Graphs (a–f) refer to different
times of annealing indicated in the left top corner.

For the pristine sample, an in-plane magnetic anisotropy is observed (see Figure 4a),
whereas annealing for 300 min results in a similar shape of in-plane and out-of-plane
hysteresis loops signifying the isotropic distribution of magnetization local easy axes. The
hysteresis loops for intermediate annealing times show a systematic change of magnetic
anisotropy from in-plane to almost isotropic behavior.

The parameters extracted from M(H) curves are presented in Table 1. Coercivity larger
than 1 kOe is found in all cases with a tendency to increase with annealing time. It saturates
around 2.5 kOe and 2 kOe for in-plane and out-of-plane configurations, respectively (see
Figure 5a). The maximal value is reached for an annealing time of 60 min or longer and the
obtained values are close to those found in the literature [1,36,62]. The effective anisotropy
constants Ke f f , calculated according to the method described in [63], are of the order of
105 J/m3, similar to the values for thin-film systems or nanoparticles [64]. The magnetic
anisotropy values decrease with annealing time.



Materials 2023, 16, 92 8 of 18

Table 1. Coercive field HC, remanence MR and saturation magnetization MS, loop squareness
MR/MS for in-plane and out-of-plane measurements, and effective energy density anisotropy con-
stant Ke f f .

Time of
Annealing

(min)

H||
C (kOe)
±0.05

M||
R

(µB/f.u.)
±0.03

M||
S

(µB/f.u.)
±0.03

M||
R /M||

S
±0.02

H⊥C (kOe)
±0.05

M⊥R (µB/f.u.)
±0.03

M⊥S (µB/f.u.)
±0.03

M⊥R /M⊥S
±0.01

Keff (MJ/m3)
±0.02

0 1.29 2.28 3.11 0.73 1.08 0.53 3.12 0.17 0.41

4 1.49 1.91 2.97 0.64 1.38 0.81 2.96 0.27 0.26

15 2.12 1.92 3.06 0.63 1.66 0.91 3.04 0.30 0.26

30 2.26 1.94 2.94 0.66 1.86 0.89 2.96 0.30 0.26

60 2.61 1.69 2.88 0.60 1.85 1.15 2.94 0.39 0.16

300 2.55 1.79 3.08 0.61 1.95 1.08 3.09 0.35 0.16
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To verify and precisely determine the direction of the easy and hard axis of magnetiza-
tion, a series of angle-dependent hysteresis curves were measured for the magnetic field
applied at various angles ϕ with respect to the sample surface. Figure 5b shows the values
of magnetization squareness MR/MS, where the lines are results of fitting according to
the formula:

MR/MS(ϕ) = A ∗ cos(ϕ− ∆ϕ) + M0 (2)

The ϕ parameter is an angle between the applied magnetic field and the sample surface,
A is an amplitude and M0 is a squareness value for ϕ− ∆ϕ = 90◦. The measurements were
performed for angles between 0 and 90 deg, so an additional parameter, the phase shift
∆ϕ, is needed to precisely identify the direction of the easy magnetization axis. Results of
the fitting procedure with Equation (2) are presented in Table 2. It is seen that the in-plane
direction is an easy axis of magnetization, regardless of the applied annealing time, while
the out-of-plane direction is a hard magnetic axis (Figure 5b). Furthermore, when

• ϕ− ∆ϕ = 0◦, the A + M0 = M‖R/M‖S (the in-plane squareness value from Table 1);
• ϕ− ∆ϕ = 90◦, the M0 = M⊥R /M⊥S (the value of squareness for out-of-plane direction

from Table 1).
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Table 2. Parameters of the MR/MS(ϕ) dependence fitted with Equation (2), together with the
calculated orientation ratio OR.

Time of
Annealing (min) A

M0(
=M⊥R /M⊥S

) A+M0(
=M‖R/M‖S

) ∆ϕ
(deg.)

OR
(1− M0

A+M0
)

0 0.613(22) 0.151(14) 0.764(36) 1.7 0.80(4)

4 0.399(14) 0.249(9) 0.648(24) 3.0 0.62(4)

15 0.361(14) 0.279(9) 0.641(23) 3.2 0.56(5)

30 0.379(12) 0.283(8) 0.662(20) 2.8 0.57(4)

60 0.216(5) 0.377(4) 0.593(9) 3.5 0.36(3)

300 0.256(9) 0.331(6) 0.588(14) 4.4 0.44(4)

The values of ∆ϕ angle are relatively small and close to the value of 0 degrees, con-
firming that the easy and hard magnetization axis are in-plane and normal to the plane
directions, respectively. The calculated values of A + M0 = M‖R/M‖S and M0 = M⊥R /M⊥S
agree very well with the values presented in Table 1.

Table 2 also presents the results of the orientation ratio (OR) parameter defined as

1 − M0
A+M0

(corresponding to 1 − M⊥R /M⊥S
M‖R/M‖S

). Typically the OR parameter is defined as a

ratio of the remanence for the easy magnetization axis to the remanence measured for
the hard magnetization direction [65], but here the parameter is restricted to the range
between 0 (for isotropic distribution) and 1 (for perfect in-plane magnetic anisotropy) due
to the renormalization used. The values show a decrease with annealing time, confirming
the more isotropic magnetic behavior for samples annealed for the longest time. In the
beginning, the OR value strongly decreases then stabilizes for the annealing time between 4
and 30 min, and further decreases for the longer annealing time. Similar behavior was found
for Ke f f values (see Table 1). The loss of film continuity occurring between 30 and 60 min
of annealing reduces the shape anisotropy and, in consequence, leads to the reduction of
in-plane anisotropy, resulting in the isotropic distribution of magnetic moments.

To check if the presence of two crystallographic phases of FePd alloy, A1 and L10,
can be identified in the magnetic measurement, and determine how they influence the
magnetization switching behavior, the switching field (HSF) as the first derivative of an
hysteresis loop’s branch was calculated. The maximum of dM/dH corresponds to the
M(H) inflexion point, which is the point where changes in magnetization are the fastest
and the largest part of the sample is switched. Hence, the HSF is defined as a field when an
inflexion of the magnetization loop happens. The width of the dM/dH maxima determines
the switching field distribution (SFD). Figure 6 shows an exemplary first derivative for
the sample annealed for 60 min with the magnetic field applied at an angle of 40 degrees.
The first derivative was fitted with the Lorentz function having an asymmetric distribution
with different values of half width at half maxima for the left (ωL) and right (ωR) side (see
also Supplementary Materials S3 and Figure S2). A Lorentz-like distribution of switching
fields suggests a cooperative behavior of magnetic moments and the presence of magnetic
interactions between them. In the case of non-interacting magnetic clusters, Gaussian-like
behavior is expected.

The dependence of the switching field as a function of the direction of the applied
magnetic field can be used to determine the magnetization reversal mechanism. Figure 7
shows the results of HSF(ϕ) for different times of annealing, where solid lines are the
fitted functions of the modified Kondorsky model (weighted sum of coherent rotation and
domain wall motion mechanism, Figure 7a) and the M-type multidomain ferromagnet with
rotating magnetization model (Figure 7b); for details, see Section S4 in the Supplementary
Materials including Figure S3 and Table S2a,b. The shape of HSF(ϕ) strongly depends on
the annealing time. In samples annealed for short time, a strong increase in switching field
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values around 70–80 degrees can be observed, accompanied by a firm reduction in HSF
above these angles. This behavior suggests a dominant role of wall nucleation and motion
for small angles, while the rotation of magnetic moments becomes predominant for angles
close to the hard magnetic axis. On the other hand, for samples annealed for the longest
time, a strong decrease in the HSF(ϕ)/HSF(0) value below 1 for angles above 60 degrees
is visible, preceded by a very weak maximum. Zhao et al. [66] observed similar angular
dependences of the coercive field for L10 FePt alloy and explained the almost flat curves as
an effect of domain wall pinning.
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Figure 7. Angular dependence of switching field for samples annealed for different times with solid
lines corresponding to fitted functions of (a) the modified Kondorsky model and (b) the M-type
model of the multidomain ferromagnet. (c) Critical angle of reversal magnetization mechanism
ϕ

M−type
C and ϕmodK

C .

Figure 7c presents values of critical angles ϕmodK
C and ϕ

M−type
C corresponding to the

maximum for modified Kondorsky and M-type models from Figure 7a,b. The remaining
parameters describing modified Kondorsky or M-type reversal mechanisms are collected
in Table S5a,b. A large similarity in values ϕmodK

C and ϕ
M−type
C is observed. A reduction

in the critical angles ϕC with annealing time is found and presented in Figure 7c. In the
case of the modified Kondorsky model, the reduction is connected with an increase in
an inverse domain wall nucleation field (HDWM

0 ) in relation to the magnetic field needed
for reversal by magnetization rotation (HCR

0 ). The relationship between these two fields
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(Figure 8a) indicates that the nucleation of inversed domain wall becomes less probable for
samples annealed for a longer time and the influence of the rotation mechanism increases
with annealing time. The turnover point between the two switching mechanisms happens
at angle ϕmodK

C when the HSF(ϕ)/HSF(0) curve shows a maximum.
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HDWM

0 /HCR
0 parameter with the critical angle ϕmodK

C in the modified Kondorsky model and the ratio

of demagnetization factors N with ϕ
M−type
C in the M-type model.

On the other hand, in the case of the M-type model, the reduction of the ϕ
M−type
C angle

is connected with a change in the ratio of demagnetization factors N =
Neasy−axis

Nhard−axis+NA
, i.e., the

demagnetization factors for the easy and hard magnetic axis (Neasy/hard−axis) and the mean
magnetocrystalline anisotropy (NA) (for details see Supplementary Materials S4). If N → 0
(i.e., when Neasy−axis → 0), the reversal model reduces to a simple Kondorsky model (see
Equation (S1) in Supplementary Materials S4). In the case of the studied samples, the N
parameter is different to zero, leading to a mixed case of the Kondorsky mode and reversal
by magnetic moment rotation. The observed increase in N parameter with annealing time
(see Figure 8a) is a consequence of the reduction in magnetic anisotropy when the Neasy−axis
increases and Nhard−axis decreases. Therefore, the N parameter becomes an important
factor that demonstrates which reversal mechanism is dominant, nucleation and motion of
domain walls or magnetic moment rotation.

Many aspects could influence the magnetic anisotropy, such as the variations in shape
anisotropy caused by changes in film morphology, or alterations in magnetic properties
with modification of phase composition affecting the magnetocrystalline anisotropy. SEM
analysis clearly showed the loss of film continuity in samples annealed longer than 30 min,
where an observed development of islands leads to the reduction of shape anisotropy.
On the other hand, an increase in magnetocrystalline anisotropy (and a change of the NA
factor) can be expected since an increased contribution of the L10 phase was found in
samples subjected to long annealing. In the case of a (111) crystallographic texture, which
is dominant in our samples, the magnetocrystalline anisotropy promotes an easy axis at the
azimuthal angle of ±54.7

◦
from the film normal.

The linear correlation of HDWM
0 /HCR

0 vs. ϕmodK
C and N vs. ϕ

M−type
C is presented in

Figure 8b. Such a good agreement between both models demonstrates their complementar-
ity, i.e., both describe a case of a mixed magnetization reversal process between domain wall
motion and rotational behavior. Furthermore, both models allowed, with similar accuracy,
the determination of the critical angle for which the change of dominant magnetization
reversal mechanism happened. The onset of the switching is shifted to lower angles propor-
tionally to an increase in HDWM

0 /HCR
0 , which describes the energy cost for the nucleation

of inversed domain wall and to the N factor related to a reduction in magnetic anisotropy.



Materials 2023, 16, 92 12 of 18

The switching field distribution was analyzed to fully understand the switching
behavior. The previously mentioned asymmetry of dM/dH curves (Figure 6) suggests
the presence of magnetic interparticle interactions, i.e., the strong influence of the L10
phase of the magnetically hard part of the sample onto the magnetically softer parts with a
chemically disordered A1 structure.

Figure 9a shows the angular dependence of the switching field distribution width
(ω = HWHM) for the left and right sides of the dM/dH peaks. Large differences between
the SFD for an easy and a hard magnetization axis are shown. For small angles, ω has a
value of around 1 kOe, while for angles close to 90 degrees, an increase above 10 kOe is
observed. The increase is very steep and takes place around 60 deg for samples annealed
for a short time, while for longer times of annealing, it is more blurred and shifts to lower
angles. Additionally, the starting value of ω (around ϕ ≈ 00) is slightly higher and reaches
2 kOe for samples annealed for a long time. Therefore, the longer the annealing time,
the wider the switching field distribution, meaning a larger magnetic disorder. The main
reason is the change in film morphology and progress in the dewetting process, causing
the creation of separated aggregates of FePd alloy with a large distribution of sizes. At the
same time, this mechanism is responsible for a decrease in magnetic shape anisotropy and
a more isotropic behavior of magnetization.

Figure 9b shows the difference ∆ω between the right ωR and the left ωL width of
SFD. For smaller values of ∆ω, the SFD is more symmetric. The smallest values occur
for angles ϕ close to the easy magnetization axis and for samples annealed for a short
time. This result suggests that the magnetic shape anisotropy, dominating in those samples,
is the main factor responsible for the observed reversal mechanism and distribution of
switching fields. For all samples, ∆ω shows a maximum at angle ϕmax∆ω

SFD . The angle shifts
from values close to 90 deg for samples annealed for a short time to a value of 30 deg
for the sample annealed for 300 min. Figure 9c presents a map of ∆ω, with additionaly
marked angles for which the maximum appears. The values were normalized to the mean
value of the sum of the widths from the right and left sides: (ωR −ωL)/ 1

2 (ωR + ωL). The
obtained values of ϕmax∆ω

SFD resemble very well the critical angles found from the switching

mechanisms of ϕ
M−type
C and ϕmodK

C . Therefore, ϕmax∆ω
SFD is closely related to the change of

the magnetization reversal mechanism between domain wall motion and magnetization
rotation. A linear correlation dependence of the critical angle and the maximum in SFD
asymmetry is presented in Figure 9d.

The SFD is small and symmetric as long as the film is continuous and the shape
anisotropy dominates. This suggests a cooperative behavior of magnetic moments within
the sample. If most of the material forms a continuous flat film, domain wall propagation
in the sample plane direction is easily realized. On the other hand, the formation and
propagation of the domain walls normal to the film plane direction, being a hard magnetic
axis, is no longer favored, since the typical domain wall width in the FePd alloy has
a value of ∼ 7.5 nm (ref. [67]), while the film thickness is 12.5 nm. The progress of
dewetting reduces the shape anisotropy and induces the granular structure which shifts
the critical angle of the magnetization reversal to lower values. Those changes are the
main reason for the increase in SFD, as well as its asymmetry. One of the most important
reasons for SFD asymmetry is the interaction between the L10 magnetic hard phase and
magnetically softer phases (disordered A1, A6, or other partially ordered phases) randomly
distributed and mixed. The hard phase pins the magnetic soft part of the material and
leads to behavior similar to one observed in exchange spring systems or exchange-coupled
materials. The cooperative behavior between hard and soft magnetic phases is dominated
by magnetic shape anisotropy for the samples with continuous morphology, and by the
grain size distribution for dewetted samples. The effect of exchange hardening [68] and the
enhancement of coercive field resulting from the magnetic exchange interactions between
A1 and L10 phases was previously observed in the FePd patterned system of core/shell
nanoparticles [69] and dot arrays [70].
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Figure 9. (a) Switching field distribution for samples treated with different times of annealing. The
ωL and ωR are the widths of the left and right sides of the switching field distribution. (b) Difference
∆ω between the right ωR and left ωL width of the switching field distribution at different stages of
annealing. (c) Map of ∆ω data with colors corresponding to the renormalized ∆ω value. The dashed
line marks angles where the maximum of the ∆ω is observed. (d) Correlation of the critical angle of
the reversal mechanism and the angle of maximal asymmetry in the SFD. The colors on (a,b) refer to
samples annealed for different times.

4. Conclusions

We combined detailed magnetic studies with structural and morphology analysis to
inspect the process of phase transition and chemical ordering of FePd alloy accompanied
by solid-state dewetting. Thermal treatment was used to fabricate a hard magnetic L10
phase and induce changes in the film morphology from a continuous film to randomly
distributed particles of the FePd alloy. Structural studies showed that the FePd is a mixture
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of chemically disordered A1 and ordered L10 phases. The transformation to the L10 phase
was not completed even after 5 h of annealing, and the presence of both phases was ob-
served in all samples. The analysis of the grain growth process of XRD crystallites and SEM
particles revealed the importance of solid-state dewetting as a crucial boosting parameter of
the transformation from the A1 to the L10 phase. We concluded that the continuous film is
composed mostly of a disordered A1 phase, whereas the island-patterned structures consist
mostly of the L10 phase. The crucial time is found to be approximately 30 min of annealing,
which is when the film loses its continuity and the solid-state dewetting strengthens the
diffusion and stimulates the transformation and growth of L10 grains.

We performed an M(H, ϕ) study and analyzed the changes in magnetic anisotropy,
magnetization reversal mechanism and switching field distribution. They showed that,
again, the critical time point occurs at about 30 min of annealing when a loss of film
continuity and the formation of randomly distributed aggregates of different sizes occur.
The change in film morphology reduces the magnetic shape anisotropy, observed as the
decrease in the orientation ratio. The effect leads to the almost isotropic orientation of
magnetization in samples annealed for 60 min or longer.

The angular-dependent switching behavior of magnetization was found to be a mixed
process of reversal by domain wall motion and magnetization rotation, where the reversal
dominated by domain wall motion was observed for angles close to the film plane, while
reversal dominated by rotation was found for angles close to the perpendicular direction.
The critical angle for the change between magnetization reversal mechanisms shifts to
lower values with the annealing time. Two models of modified Kondorsky and M-type fer-
romagnet with a domain structure were applied, both giving similar results. The strongest
change was observed for the film with lost continuity and an ensemble of FePd isolated
islands. Solid-state dewetting and the formation of island-like FePd structures promote the
switching mechanism by rotation of magnetic moments and hinder the domain wall motion.
This effect is also connected with the pinning of the domain walls, seen as a flattening
of the switching field angular dependence and an increase in magnetic field coercivity.
The coexistence of different phases and grains with large size distribution is visible in
SFD, which reaches 10 kOe for directions close to the hard magnetic axis. The appearance
of large asymmetry between the right and left side of the switching field distribution,
i.e., for magnetic fields larger and lower then Hs f , revealed a presence of strong exchange
coupling and spring magnet-like behavior with pinning between soft and hard magnetic
phases. The behavior of the SFD asymmetry, and, hence, magnetic coupling, correlate
with a change in magnetic reversal behavior and sample morphology, showing that the
magnetic pinning is governed by the shape anisotropy and distribution of grain sizes. For
a continuous film with strong magnetic shape anisotropy, the material behaves collectively
with a small asymmetry of SFD for angles close to the easy axis. For a direction close to the
hard magnetic axis, the situation changes and magnetic interactions are ineffective because
of the external magnetic field, leading to large randomness in reversal behavior. After
annealing, the switching behavior and SFD in all directions are more alike, which results
from a large grain distribution rather than magnetic anisotropy.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ma16010092/s1, Table S1: Parameters extracted from XRD pat-
terns showing the lattice constant and coherence length for A1 and L10 phases after different times
of annealing. Values in parentheses represent measurement uncertainties (in Section S1: XRD anal-
ysis); Figure S1: SEM images of FePd alloy annealed at 600 ◦C for different times (in Section S2:
SEM); Figure S2: Comparison between different fitting approaches of switching field distribution (in
Section S3: Models of the magnetization reversal mechanism); Figure S3: Comparison between angu-
lar dependences of the coercivity field for modified Kondorsky and M-type magnetization rotation in
a multidomain ferromagnet (in Section S4)); Table S2a: Fitting parameters of the reversal mechanism
for the modified Kondorsky model; and Table S2b: Fitting parameters of the reversal mechanism for
the M-type model of a multidomain structure (in Section S4); Equation (S1): Models of the reversal
magnetization mechanism (in Section S4). Refs [71–81] are cited in the Supplementary Materials.
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