

Article A p–n Junction by Coupling Amine-Enriched Brookite–TiO₂ Nanorods with Cu_xS Nanoparticles for Improved Photocatalytic CO₂ Reduction

Zhangjing Chen¹, Xueteng Zhu¹, Jinyan Xiong^{2,*}, Zhipan Wen³ and Gang Cheng^{1,*}

- ¹ School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Donghu New & High Technology Development Zone, Wuhan 430205, China
- ² College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, China
- ³ State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
 - * Correspondence: xjybear@163.com (J.X.); gchenglab@163.com (G.C.)

Abstract: Photocatalytic CO₂ reduction is a promising technology for reaching the aim of "carbon peaking and carbon neutrality", and it is crucial to design efficient photocatalysts with a rational surface and interface tailoring. Considering that amine modification on the surface of the photocatalyst could offer a favorable impact on the adsorption and activation of CO₂, in this work, amine-modified brookite TiO₂ nanorods (NH₂-B-TiO₂) coupled with Cu_xS (NH₂-B-TiO₂-Cu_xS) were effectively fabricated via a facile refluxing method. The formation of a p–n junction at the interface between the NH₂-B-TiO₂ and the Cu_xS could facilitate the separation and transfer of photogenerated carriers. Consequently, under light irradiation for 4 h, when the Cu_xS content is 16%, the maximum performance for conversion of CO₂ to CH₄ reaches at a rate of 3.34 µmol g⁻¹ h⁻¹ in the NH₂-B-TiO₂-Cu_xS cup of Cu_xS composite, which is approximately 4 times greater than that of pure NH₂-B-TiO₂. It is hoped that this work could deliver an approach to construct an amine-enriched p–n junction for efficient CO₂ photoreduction.

Keywords: amine modification; charge separation; p–n junction; photocatalytic CO_2 reduction; TiO_2 - Cu_xS composites

1. Introduction

The excessive emission of CO_2 resulting from the acceleration of industrialization and use of fossil fuel has caused global warming and serious environmental problems [1]. Photocatalytic CO_2 reduction, denoted as "artificial photosynthesis", is a promising technology for CO_2 conversion [2–4]. It is critical to develop efficient photocatalysts through surface and interface engineering [5,6]. Semiconductor TiO₂ has attracted extensive attention concerning CO_2 photoreduction owing to its stability, low cost, and low toxicity. However, TiO₂ is an n-type semiconductor with a wide band gap, and the disadvantages of limited light harvesting and poor electron–hole pair separation are not conducive to highly efficient photocatalytic CO_2 reduction [7–9].

Construction of a p–n junction is one promising approach to facilitate the separation of photogenerated carriers and improve the utilization of solar energy [10–13]. Fan et al. reported that 3D CuS@ZnIn₂S₄ p–n heterojunctions with 2D/2D nanosheet subunits can promote the separation of photogenerated carriers and accelerate carrier transfer [14]. Yu et al. suggested that a CuO/TiO₂ p–n heterojunction can improve the separation efficiency of photogenerated electron–hole pairs [15]. It is well known that CuS and Cu₂S are p-type semiconductors with narrow bandgaps [16,17]. When coupling Cu_xS with TiO₂, upon light irradiation, an internal electric field is established with the formation of a p–n heterojunction. Accordingly, the lower flat band potential of Cu_xS allows for the

Citation: Chen, Z.; Zhu, X.; Xiong, J.; Wen, Z.; Cheng, G. A p–n Junction by Coupling Amine-Enriched Brookite–TiO₂ Nanorods with Cu_xS Nanoparticles for Improved Photocatalytic CO₂ Reduction. *Materials* **2023**, *16*, 960. https:// doi.org/10.3390/ma16030960

Academic Editor: Roberta G. Toro

Received: 23 December 2022 Revised: 14 January 2023 Accepted: 17 January 2023 Published: 19 January 2023

Copyright: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). transfer of photoexcited electrons from Cu_xS to TiO_2 , while the holes diffuse from TiO_2 to Cu_xS [18,19], which could suppress the charge recombination to achieve an efficient separation of electrons and holes during the photocatalytic process. In this regard, the formation of a TiO_2/Cu_xS p–n junction has potential for improving photocatalytic CO_2 reduction. However, most of the studies upon TiO_2/CuS p–n junctions focus on the applications of photocatalytic pollution degradation and hydrogen (H₂) energy generation from water [19–22]. There are few works relevant to photocatalytic CO_2 reduction by designing TiO_2/CuS composites. Recently, Lee et al. [23] reported a CuS_x - TiO_2 film could effectively promote photogenerated charge separation for CO_2 photoreduction. It is still a challenge to rationally design CuS_x - TiO_2 p–n junctions for efficient CO_2 photoreduction.

Due to the unique surface state and higher conduction band position of brookite TiO_2 compared to anatase and rutile [24,25], great potential has emerged in the field of photocatalytic CO_2 reduction. Liu et al. reported that defective brookite TiO_2 had the highest yield for CO and CH_4 production among the three TiO_2 polymorphs [26]. Subsequently, Peng's group studied exposed-crystal-face controlling [27], the construction of heterojunctions [28], and supported metal cocatalysts and dual cocatalysts [29,30] to improve the CO₂ photoreduction activity of brookite TiO₂. In fact, the activation and adsorption of CO_2 are significant factors to enhance CO_2 photoreduction [31–33]. Surface amine modification has attracted great attention in this issue, because the amine groups can not only promote the adsorption and activation of CO₂, but also coordinate with other metal ions to bind closely. Jin et al. [32] reported that surface amine modification enhances the activity of metal@TiO2 photocatalysts. On the basis of the above backgrounds, in this work, amine-modified brookite TiO₂ nanorods coupled with Cu_xS nanoparticles has been successfully fabricated. A significant p-n junction is formed between the NH₂-B-TiO₂-Cu_xS interface, which effectively improves the transfer and separation of charge carriers. The composition and morphology of NH₂-B-TiO₂ are characterized and the improved performance of photocatalytic CO₂ reduction is also discussed.

2. Experimental

2.1. Reagents

All the analytical reagents were used without advance refinement. Tetrabutyl titanate (TBOT), thioacetamide (TAA) and copper (II) acetate monohydrate (Cu(CH₃COO)₂·H₂O) were purchased from Aladdin in China. Ethanediamine (EDA), ethylene glycol (EG) and absolute ethyl alcohol were provided by Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China). All the experiments were conducted with deionized water.

2.2. Materials Synthesis

Synthesis of amine-modified brookite TiO₂ (NH₂-B-TiO₂): First, titanium glycolate precursor was synthesized based on our previous reports [34–36]; 5 mL tetrabutyl titanate (TBT) was placed into a round-bottomed flask containing 180 mL ethylene glycol (EG) and swirled with magnetic force for 1 h at 120 °C. The white powder material was washed five times with deionized water and once with anhydrous ethanol before being dried at 60 °C for 48 h. To make amine-modified brookite TiO₂, 0.5 g of the as-prepared titanium glycolate precursor was disseminated in 35 mL of deionized water and 35 mL of ethylenediamine by ultrasonic treatment, and this mixture was uniformly transferred to a 100 mL Teflon-lined stainless-steel autoclave and then placed in an oven at 180 °C for 12 h. Following filtration and washing with deionized water 5 times and with anhydrous ethanol once, finally, the product was gathered after drying at 60 °C for 12 h.

Synthesis of brookite TiO₂ (B-TiO₂): Thus method is similar to the method used to prepare amine-modified brookite TiO₂. Firstly, titanium glycolate precursor was synthesized and then 0.5 g of the as-prepared titanium glycolate precursor was dispersed in 64 mL of deionized water and 6 mL NaOH (1 mol/L) using ultrasonic treatment, which was evenly transferred to a 100 mL Teflon-lined stainless-steel autoclave and later heated at 180 °C for 12 h. Following filtration and washing with deionized water and anhydrous ethanol to pH = 7, the product was gathered and dried at 60 °C for 12 h.

Synthesis of Cu_xS particles: First, 100 mg Cu(CH₃COO)₂·H₂O (0.5 mmol) was added to a round-bottomed flask containing 20 mL of anhydrous ethanol in an oil bath held at 80 °C under magnetic stirring, to which 42 mg of TAA was added, and kept at reflux for 4 h. The obtained product was centrifuged and washed numerous times with distilled water and anhydrous alcohol.

Synthesis of NH₂-B-TiO₂-Cu_xS: As-synthesized NH₂-B-TiO₂ (12.5, 25, 50 mg, respectively) and 10 mg Cu(CH₃COO)₂·H₂O were added to a round-bottomed flask containing 20 mL of anhydrous ethanol in an oil bath held at 80 °C under magnetic stirring, then we added 42 mg of TAA and kept at reflux for 4 h. Then, the suspension was washed with distilled water and distilled alcohol several times via centrifugation. Finally, the obtained product was dried at 60 °C for 12 h. Different ratios of NH₂-B-TiO₂-Cu_xS composites were denoted as NH₂-B-TiO₂-Cu_xS-n, where n represented the molar ratio of Cu_xS, and the values of n were 8, 16, and 32, respectively.

2.3. Characterization of Photocatalysts

X-ray powder diffraction (XRD) measurements were carried out on an Ultima IV X-ray diffractometer with Cu K α radiation in a range of 10–80° and the scan rate was 10°/min at 40 kV and 30 mA. Fourier-transform infrared (FT-IR) spectra were collected on a Nicolet iS10 IR spectrometer to analyze the chemical bonds and functional groups of the material. Scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) techniques on a JSM 2100 electron microscope operating at a 200 kV accelerating voltage were used to display the morphologies and elemental dispersion of the samples. X-ray photoelectron spectroscopy (XPS) spectra were measured using Thermo Scientific K-Alpha with an Al K α X-ray sources (h ν = 1486.6 eV, 12 kV 6 mA). All binding energies were calibrated through the C 1s peak at 284.8 eV. UV–vis diffuse reflectance spectrum (UV–vis DRS) was investigated on a Shimadzu UV-2550 spectrometer in a range of 200-800 nm. The photocurrent and electrochemical impedance measurements were performed on a CHI 760E electrochemical workstation, including a standard three-electrode system in 0.2 M Na_2SO_4 solution, where Pt wire, Hg/HgCl₂, and the as-prepared product were used as counter electrode, reference electrode, and working electrode, respectively. Mott-Schottky (M-S) and photocurrent decay plots were also carried out on a CHI 760E electrochemical workstation in 0.2 M Na₂SO₄ solution. Among them, the preparation process of the working electrode involved weighing 10 mg of the sample in the sample tube and then adding 1 mL N, N dimethylformamide (DMF) and 20 µL Dupont Nafion membrane solution, which was then stirred for 30 min; after it was completely uniform, we used a pipette gun to transfer 30 µL of the mixed solution coated on the FTO conductive glass. Finally, it was dried in a vacuum oven.

2.4. Evaluation of Photocatalytic CO₂ Reduction

The photocatalytic reduction of CO_2 was evaluated under irradiation of 300 W xenon lamp and its wavelength was used to simulate sunlight in a gas-closed quartz reactor with a volume of 200 mL. Typically, 50 mg of the as-prepared catalyst was dispersed completely in 1 mL of deionized water in a glass Petri dish, which was then transferred to a quartz reactor with a bottom of 10 mL of deionized water. The reactor was bubbled with high-purity CO_2 gas for half an hour and the air inside was exhausted prior to illumination. Then, the reaction system was sealed and we turned on the xenon lamp. Subsequently, 1 mL of gaseous product was extracted from the glass reactor by a sampling needle every 1 h, and an irradiation duration of 4 h was applied and analyzed using a gas chromatograph (GC-7900, CEAULIGHT Beijing, China) equipped with an FID detector while N₂ gas served as the carrier gas. The reactor temperature was maintained at 25 °C and atmospheric pressure after starting the photocatalytic reaction.

3. Results and Characterization

The formation process of Cu_xS particles supported on amine-modified brookite nanorods is shown in Figure 1. Firstly, the titanium glycolate precursor is synthesized by a simple reflux method. Subsequently, ethylenediamine is introduced to prepare aminemodified brookite TiO₂ nanorods via a hydrothermal method. Finally, Cu_xS nanoparticles are deposited on the as-synthesized brookite TiO₂ nanorods by a refluxing method using copper acetate monohydrate and thioacetamide (TAA) as the precursors.

Figure 1. Illustration of the NH₂-B-TiO₂-Cu_xS composites process.

Figure 2a shows the X-ray diffraction (XRD) pattern of the as-prepared samples to analyze the composition of the sample. It can be seen that the prepared pure brookite TiO_2 matches well with the standard one (JCPDF No. 15-875), while the obtained Cu_xS corresponds to a mixture of the CuS phase (JCPDF No.65-3588) and low-chalcocite Cu₂S phase (JCPDF No. 65-3816). It can be found that the peaks of brookite TiO_2 appear in all the as-prepared composites. However, the peaks of Cu_xS can only be found in the NH₂-B- TiO_2 -Cu_xS 32% sample, which may be due to the strong diffraction peaks of brookite TiO_2 and low contents of Cu_xS particles in this composite. The UV-Vis absorption (UV-DRS) spectra of the as-synthesized materials are displayed in Figure 2b. It became apparent that the pristine NH_2 -B-TiO₂ has an absorption edge at around 390 nm. However, the NH_2 -B-TiO₂-Cu_xS composites show red shift to the visible light region (400–800 nm), and the light absorption intensity gradually increases with the increase in $Cu_x S$ loading. Further, the Fourier-transform infrared (FT-IR) is used to analyze the chemical bonds and functional groups of the sample. Figure 2c shows FT-IR spectra of the NH₂-B-TiO₂ and NH₂-B-TiO₂- Cu_x S-16% samples, in which the brookite TiO₂ (B-TiO₂) (XRD in Figure 2d) is also prepared in the presence of NaOH for comparison. Indeed, the B-TiO₂ has no amine modification, while the NH₂-B-TiO₂ and NH₂-B-TiO₂-Cu_xS samples have two new peaks located at ~1620 and ~3400 cm⁻¹, respectively, which may be attributed to the N–H bending vibration and N–H stretching vibration, respectively [37,38].

To further confirm the composition of the sample, X-ray photoelectron spectroscopy (XPS) analysis was also performed to study the composition and surface chemical status of samples. Figure 3a shows the full XPS survey spectra of the NH₂-B-TiO₂, Cu_xS, and NH₂-B-TiO₂-Cu_xS samples. Among them, the full XPS survey spectra of the NH₂-B-TiO₂-Cu_xS composite confirms the existence of N, Ti, O, Cu, and S elements. In Figure 3d, for N 1s in NH₂-B-TiO₂, the binding energy peak at 400 and 401.2 is attributed to the NH₂ group and N-H bonds [37,39], respectively, which suggests amine modification was achieved. After loading Cu_xS, the N 1s peak shifted positively and it was proposed that the amines donate their lone pair of electrons on N atoms to Cu. For NH₂-B-TiO₂, the high-resolution XPS spectra of Ti 2p are shown in Figure 3b, and two tiny peaks observed at 458.6 and

464.3 eV are related to Ti $2p_{3/2}$ and Ti $2p_{1/2}$, respectively, which indicates the presence of Ti⁴⁺ [40,41]. Furthermore, Figure 3c exhibits two peaks located at 529.8 and 530.7 eV, which correspond to lattice oxygen and chemisorbed and dissociated oxygen, respectively [42–44]. For Cu_xS, as shown in Figure 3e, the peaks at 932.6 and 952.7 eV belong to Cu $2p_{1/2}$ and Cu $2p_{3/2}$ of Cu⁺ species, respectively [45,46], while the peak positions at 935.6 and 955.6 eV are consistent with Cu $2p_{3/2}$ and Cu $2p_{1/2}$ of Cu²⁺ [47]. These characteristic peaks with a spin–orbit separation of 20 eV indicate the presence of Cu²⁺ ions [16]. In addition, the other two satellite peaks of Cu⁺ and Cu²⁺ appear at 940.7 and 944.7 eV, respectively. Figure 3f displays the high-resolution spectrum at the S 2p region. The typical peak at 162.3 eV is from S 2p of S²⁻ [48,49]; moreover, a small peak at 169.1 eV is ascribed to SO₄²⁻, which is due to S²⁻ being oxidized partially [50,51]. However, in the NH₂-B-TiO₂-Cu_xS composite, all the binding energies of Ti, O, and N shift to higher regions, whereas Cu and S shift to lower binding energies compared with the pristine TiO₂ and Cu_xS. It might be attributed to chemical interaction and electron transfer in the p–n junction formed at the interface of NH₂-B-TiO₂ and Cu_xS [52].

Figure 2. (a) XRD patterns of the NH_2 -B-TiO₂-Cu_xS composites; (b) UV-DRS spectra of the NH_2 -B-TiO₂, Cu_xS, and NH_2 -B-TiO₂-Cu_xS composites; (c) FTIR spectra of B-TiO₂, NH_2 -B-TiO₂, and NH_2 -B-TiO₂-Cu_xS-16%; (d) XRD pattern of brookite TiO₂ (B-TiO₂).

The morphology structures of the as-prepared materials are further determined by SEM. Figure 4a shows that the as-prepared NH₂-B-TiO₂ is a rod-like structure with a diameter of 600–800 nm and a length of 2.5–3.5 μ m. It can be observed that the microrods assemble with many tiny nanoparticles distributed on the surface. Figure 4b is an SEM image of Cu_xS, in which the size and morphology are difficult to determine due to the phenomenon of particle aggregation. As shown in Figure 4c, Cu_xS particles are dispersed on the surface of NH₂-B-TiO₂ nanorods. In addition, energy-dispersive X-ray spectroscopy (EDX) mapping images of the NH₂-B-TiO₂-Cu_xS composites show the presence and even

distribution of Ti, O, N, Cu, and S elements on the surface of the nanorod in Figure 4d–i, which further confirms that NH₂-B-TiO₂ and Cu_xS are hybridized uniformly.

Figure 3. (a) XPS survey spectra of NH_2 -B-TiO₂, Cu_xS , and NH_2 -B-TiO₂- Cu_xS -16% samples; XPS spectra of (b) Ti 2p, (c) O 1s, (d) N 1s, (e) Cu 2p and (f) S 2p for different materials.

In order to explore further CO₂ photoconversion efficiency, the photocatalytic CO₂ reduction performances of the as-obtained materials are evaluated in the presence of H₂O using a gas chromatograph. As shown in Figure 5a, under the irradiation of a 300 W xenon lamp, only CH₄ was detected in the photocatalytic process of all samples, which may be because the prepared materials only meet the reduction potential of CO₂ reduction to CH₄ (E⁰ = -0.24 eV). All the samples have the activity of photocatalytic reduction of CO₂ into CH₄, except for the bare Cu_xS. Among those samples, the brookite TiO₂ modified with amines (NH₂-B-TiO₂) has superior capability to that of B-TiO₂, indicating that amine modification has a positive effect on the reduction of CO₂ to CH₄. With loading

of Cu_xS nanoparticles, the NH₂-B-TiO₂-Cu_xS composites have enhanced performances for photocatalytic CO₂ reduction into CH₄. In particular, the NH₂-B-TiO₂ shows a low CH₄ production rate of about 0.73 µmol g⁻¹ h⁻¹, while the optimized NH₂-B-TiO₂-Cu_xS-16% sample has a yield rate of 3.34 µmol g⁻¹ h⁻¹, which is 4-fold more than that of the pure NH₂-B-TiO₂. Those results suggest that the Cu_xS could act as a cocatalyst in the amine-enriched B-TiO₂-Cu_xS composite for improvements in photocatalytic CO₂ reduction compared to pristine ones. Typically, to evaluate the stability of the as-synthesized photocatalyst, the photocatalytic CO₂ reduction activity with five-run cycling of the NH₂-B-TiO₂-Cu_xS 16% sample is tested (Figure 5b). It can be found that the activity of CO₂ photoconversion to CH₄ is unstable, and the yield of CH₄ production gradually decreases, which could be attributed to the deactivation of the composite resulting from the oxidation of Cu_xS.

Figure 4. SEM images of (**a**) NH₂-B-TiO₂, (**b**) Cu_xS, and (**c**) NH₂-B-TiO₂-Cu_xS-32% samples; (**d**–**i**) EDX mapping images of the NH₂-B-TiO₂-Cu_xS-32%.

Figure 5. (a) Photocatalytic CO₂ reduction activity of NH₂-B-TiO₂, Cu_xS and NH₂-B-TiO₂-Cu_xS composites. (b) Stability of CO₂ photoconversion in NH₂-B-TiO₂-Cu_xS samples.

Figure 6 shows the XPS spectra of Cu 2p of the NH₂-B-TiO₂-Cu_xS 16% sample after the photocatalytic reaction. It can be observed that the valence state of copper displays obvious changes. The binding energies of 932.7 and 952.7 eV are ascribed to Cu $2p_{3/2}$ and Cu $2p_{1/2}$, respectively, a typical peak location of Cu²⁺ in CuS [14,20]. A weak satellite peak around 944 eV further indicates the presence of Cu²⁺ [53]. These results indicate that Cu⁺ was completely oxidized to Cu²⁺ after the photocatalytic reaction in this photocatalysis system, which might weaken the cycling performance of the NH₂-B-TiO₂-Cu_xS composite.

Figure 6. XPS spectra of Cu 2p after the photocatalytic reaction.

As a matter of fact, as shown in the Mott–Schottky curve in Figure 7a–c, the slope of NH_2 -B-TiO₂ is positive, suggesting an n-type semiconductor [54]. At the same time, the slope of Cu_xS is negative, suggesting that Cu_xS is an p-type semiconductor. However, the NH_2 -B-TiO₂- Cu_xS -16% composite exhibits an inverted "V- shape", being a symbol of a typical p–n junction [55,56], which indicates that a p–n heterojunction could be constructed between the NH_2 -B-TiO₂ and Cu_xS . In addition, the formation of the p–n heterojunction is further confirmed by valence band (VB)-XPS and core-level spectrum analyses. As shown in Figure 7d–f, the band alignment of NH_2 -B-TiO₂ and Cu_xS between the NH_2 -B-TiO₂- Cu_xS heterojunction interface can be calculated according to the following: Equations (1)–(3) [57].

$$\Delta E_{\text{VBO}} = \left(E_{\text{CL}}^{\text{Cu}_{x}\text{S}} - E_{\text{VBM}}^{\text{Cu}_{x}\text{S}}\right) - \left(E_{\text{CL}}^{\text{TiO}_{2}} - E_{\text{VBM}}^{\text{TiO}_{2}}\right) + \Delta E_{\text{CL}}^{\text{Int}}$$
(1)

$$\Delta E_{CL}^{Int} = \left(E_{CL}^{TiO_2} - E_{CL}^{Cu_x S} \right)^{NH_2 - B - TiO_2 - CuxS - 16\%}$$
(2)

$$\Delta E_{\text{CBO}} = E_{\text{g}}^{\text{CuxS}} - E_{\text{g}}^{\text{TiO}_2} \tag{3}$$

In the above equations, the ΔE_{VBO} represents the valence band offset, which is the energy difference between the core energy level (E_{CL}) and the valence band maximum (E_{VBM}) in a pure material; meanwhile, ΔE_{CL}^{Int} illuminates the energy difference between the core levels. ΔE_{CBO} represents the conduction band offset. Further, the band gap of the as-synthesized materials is calculated according to the Kubelka–Munk function in Figure 8a,b [58,59], and the band gap energies of pure NH₂-B-TiO₂ and Cu_xS are 3.14 and 2.04 eV, respectively. Based on the information reflected from the XPS and DRS analyses, Figure 8e reveals $\Delta E_{VBO} = 2.38$ eV and $\Delta E_{CBO} = 1.28$ eV for the NH₂-B-TiO₂-Cu_xS nanocomposite. The VB-XPS spectra are verified, as shown in Figure 8c,d, as the valence band position for NH₂-B-TiO₂ and Cu_xS is 2.74 and 1.48 eV, respectively [60]. Therefore, the

conduction band position of NH₂-B-TiO₂ and Cu_xS can be calculated as -0.4 and -0.56, respectively. In this regard, the formation of such a p–n junction and the resulting charge transfer are shown in Figure 8e. After contact, the Fermi levels of NH₂-B-TiO₂ and Cu_xS move down and up, respectively, until an equilibrium state is reached. When a built-in electric field between the NH₂-B-TiO₂ and Cu_xS interface is established, this allows for the electrons in Cu_xS to migrate to NH₂-B-TiO₂ while the holes in NH₂-B-TiO₂ are transferred to the Cu_xS. It is proposed that Cu_xS as a cocatalyst promotes the efficient separation of photogenerated charge carriers.

Figure 7. Mott-Schottky plots of (a) pure NH₂-B-TiO₂, (b) Cu_xS particles, (c) NH₂-B-TiO₂-16%; VB-XPS and core-level spectrum of (d) Cu_xS and (e) NH₂-B-TiO₂; (f) XPS core-level spectrum of NH₂-B-TiO₂-16%.

Generally, the separation efficiency of photogenerated electrons and holes has a significant impact on the photocatalytic performance [61–63]. Herein, photo/electrochemical measurements are carried out to study the charge transfer of the as-synthesized materials. In Figure 9a, the photocurrent density of the NH₂-B-TiO₂-Cu_xS-16% composite is higher than pure NH₂-B-TiO₂, which indicates that the loading of Cu_xS can effectively prevent recombination of the photogenerated electrons and holes. As shown in Figure 9b, the semicircle radius of the NH₂-B-TiO₂-Cu_xS-16% sample is smaller than that of pure NH₂-B-TiO₂, implying that the charge carriers have a rapid transfer rate on the composite.

Based on the above results and discussions, a possible CO₂ photoreduction process is proposed in Figure 9c. Before the photoreduction reaction, the surface amine modification is helpful for the adsorption and activation of CO₂ [31,37]. Under irradiation of a light source, n-type (NH₂-B-TiO₂) and p-type semiconductors (Cu_xS) generate photogenerated electrons in the conduction band (CB) and holes in the valence band (VB). The CB of NH₂-B-TiO₂ is more positive than that of Cu_xS, and the VB of Cu_xS is more negative than that of NH₂-B-TiO₂. After contact between NH₂-B-TiO₂ and the Cu_xS interface, the built-in electric field is established, which promotes the migration of photoexcited electrons from the CB of Cu_xS to NH₂-B-TiO₂ and the migration of holes from the VB of NH₂-B-TiO₂ to Cu_xS, and these facilitate the separation and transfer of photogenerated electrons and holes. Further, the rate of reduction of CO₂ to CH₄ by the photoinduced electrons in CB of NH₂-B-TiO₂ is improved.

Figure 8. The plot of transformed Kubelka-Munk function of (**a**) NH_2 -B-TiO₂ and (**b**) Cu_xS . The valance-band XPS spectrum of (**c**) NH_2 -B-TiO₂ and (**d**) Cu_xS ; (**e**) schematic illustration for formation of p-n junction on the NH_2 -B-TiO₂- Cu_xS composite.

As shown in Table 1, the CO_2 photoreduction activity of the NH₂-B-TiO₂-Cu_xS composite is higher than that of other TiO₂-based binary and ternary composites reported previously.

Table 1. A comparative study on photocatalytic CO₂ reduction upon different photocatalysts.

Photocatalyst	Light Source	Reaction Condition	CH4 Production Rate [µmol/g/h]	References
NH2-B-TiO2-CuxS	300 W Xe lamp	H ₂ O vapor	3.34	This work
Pt-Cu ₂ O/TiO ₂	300 W Xe lamp	H ₂ O vapor	1.42	[64]
$TiO_2/g-C_3N_4$	300 W Xe lamp	H ₂ O vapor	2.50	[28]
Au@TiO ₂	300 W Xe lamp	H ₂ O vapor	2.52	[65]
CdS/rGO/TiO ₂	300 W Xe lamp	H_2O vapor	0.063	[66]
Mg-TiO ₂	300 W Xe lamp	H ₂ O vapor	1.0	[67]

Figure 9. (a) Transient photocurrent responses and (b) Nyquist plots of NH₂-B-TiO₂ and NH₂-B-TiO₂-Cu_xS-16%; (c) possible photocatalytic CO₂ reduction process for the NH₂-B-TiO₂-Cu_xS composite.

4. Conclusions

In summary, an amine-enriched p–n junction upon the NH₂-B-TiO₂-Cu_xS composite was successfully prepared. The modification of amine on the surface of the photocatalyst has a positive effect on the enhancement of CO₂ activity. The photocatalytic CO₂ reduction activity of amine-modified brookite TiO₂ is higher than that of amine-free modified brookite TiO₂. Further, coupling different contents of Cu_xS with NH₂-B-TiO₂, the NH₂-B-TiO₂-Cu_xS-16% composite exhibits the greatest CH₄ yield rate of 3.34 µmol g⁻¹ h⁻¹ following 4 h of lighting, which is 4 times higher than that of pure NH₂-B-TiO₂. Combining the valence band XPS spectra with photo/electrochemical measurements, the formation of a p–n junction between the NH₂-B-TiO₂-Cu_xS interface was confirmed. With the formation of such a heterojunction, the recombination of photogenerated electrons and holes is inhibited, thereby greatly improving the photocatalytic CO₂ reduction activity. It is hoped that this work could provide an approach to construct amine-enriched p–n junctions for efficient CO₂ photoreduction.

Author Contributions: Methodology, J.X.; Formal analysis, X.Z. and Z.W.; Writing—original draft, Z.C.; Writing—review & editing, G.C. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Graduate Innovative Fund of Wuhan Institute of Technology (NO. CX2021336).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All relevant data are contained in the present manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Ahmad, T.; Liu, S.; Sajid, M.; Li, K.; Ali, M.; Liu, L.; Chen, W. Electrochemical CO₂ reduction to C² products using Cu-based electrocatalysts: A review. *Nano Res. Energy* **2022**, *1*, e9120021. [CrossRef]
- Lu, K.-Q.; Li, Y.-H.; Zhang, F.; Qi, M.-Y.; Chen, X.; Tang, Z.-R.; Yamada, Y.M.A.; Anpo, M.; Conte, M.; Xu, Y.-J. Rationally designed transition metal hydroxide nanosheet arrays on graphene for artificial CO₂ reduction. *Nat. Commun.* 2020, *11*, 5181. [CrossRef] [PubMed]
- Kong, T.; Jiang, Y.; Xiong, Y. Photocatalytic CO₂ conversion: What can we learn from conventional CO_x hydrogenation? *Chem. Soc. Rev.* 2020, 49, 6579–6591. [CrossRef] [PubMed]
- 4. Yin, S.; Zhao, X.; Jiang, E.; Yan, Y.; Zhou, P.; Huo, P. Boosting water decomposition by sulfur vacancies for efficient CO₂ photoreduction. *Energy Environ. Sci.* **2022**, *15*, 1556–1562. [CrossRef]
- Liu, L.; Wang, S.; Huang, H.; Zhang, Y.; Ma, T. Surface sites engineering on semiconductors to boost photocatalytic CO₂ reduction. Nano Energy 2020, 75, 104959. [CrossRef]
- Li, X.; Yu, J.; Jaroniec, M.; Chen, X. Cocatalysts for Selective Photoreduction of CO₂ into Solar Fuels. *Chem. Rev.* 2019, 119, 3962–4179. [CrossRef]
- Yu, Y.; Dong, X.; Chen, P.; Geng, Q.; Wang, H.; Li, J.; Zhou, Y.; Dong, F. Synergistic Effect of Cu Single Atoms and Au–Cu Alloy Nanoparticles on TiO2 for Efficient CO₂ Photoreduction. ACS Nano 2021, 15, 14453–14464. [CrossRef] [PubMed]
- Li, M.; Liu, Z.; Wu, S.; Zhang, J. Advances for CO₂ Photocatalytic Reduction in Porous Ti-Based Photocatalysts. ACS EST Eng. 2022, 2, 942–956. [CrossRef]
- 9. Qiu, P.; Lu, M.; Cheng, G.; Li, W.; Liu, L.; Xiong, J. Co-implantation of oxygen vacancy and well-dispersed Cu cocatalyst into TiO₂ nanoparticles for promoting solar-to-hydrogen evolution. *Int. J. Hydrog. Energy* **2023**, *48*, 933–942. [CrossRef]
- 10. Jiang, L.; Wang, K.; Wu, X.; Zhang, G. Highly Enhanced Full Solar Spectrum-Driven Photocatalytic CO₂ Reduction Performance in Cu_{2-x}S/g-C₃N₄ Composite: Efficient Charge Transfer and Mechanism Insight. *Sol. RRL* **2021**, *5*, 2000326. [CrossRef]
- Qiu, P.; Xiong, J.; Lu, M.; Liu, L.; Li, W.; Wen, Z.; Li, W.; Chen, R.; Cheng, G. Integrated p-n/Schottky junctions for efficient photocatalytic hydrogen evolution upon Cu@TiO₂-Cu₂O ternary hybrids with steering charge transfer. *J. Colloid Interface Sci.* 2022, 622, 924–937. [CrossRef] [PubMed]
- 12. Yang, G.; Qiu, P.; Xiong, J.; Zhu, X.; Cheng, G. Facilely anchoring Cu₂O nanoparticles on mesoporous TiO₂ nanorods for enhanced photocatalytic CO₂ reduction through efficient charge transfer. *Chin. Chem. Lett.* **2022**, *33*, 3709–3712. [CrossRef]
- Ávila-López, M.A.; Tan, J.Z.Y.; Luévano-Hipólito, E.; Torres-Martínez, L.M.; Maroto-Valer, M.M. Production of CH₄ and CO on CuxO and NixOy coatings through CO₂ photoreduction. *J. Environ. Chem. Eng.* 2022, *10*, 108199. [CrossRef]
- 14. Fan, H.-T.; Wu, Z.; Liu, K.-C.; Liu, W.-S. Fabrication of 3D CuS@ZnIn₂S₂ hierarchical nanocages with 2D/2D nanosheet subunits p-n heterojunctions for improved photocatalytic hydrogen evolution. *Chem. Eng. J.* **2022**, 433, 134474. [CrossRef]
- 15. Yu, D.; Xu, L.; Zhang, H.; Li, J.; Wang, W.; Yang, L.; Jiang, X.; Zhao, B. A new semiconductor-based SERS substrate with enhanced charge collection and improved carrier separation: CuO/TiO₂ p-n heterojunction. *Chin. Chem. Lett.* **2022**, 107771. [CrossRef]
- Neelgund, G.M.; Oki, A. Folic acid and CuS conjugated graphene oxide: An efficient photocatalyst for explicit degradation of toxic dyes. *Appl. Surf. Sci.* 2021, 566, 150648. [CrossRef]
- 17. Rameshbabu, R.; Ravi, P.; Sathish, M. Cauliflower-like CuS/ZnS nanocomposites decorated g-C₃N₄ nanosheets as noble metal-free photocatalyst for superior photocatalytic water splitting. *Chem. Eng. J.* **2019**, *360*, 1277–1286. [CrossRef]
- Wu, Z.; Liu, X.; Yu, C.; Li, F.; Zhou, W.; Wei, L. Construct interesting CuS/TiO₂ architectures for effective removal of Cr(VI) in simulated wastewater via the strong synergistic adsorption and photocatalytic process. *Sci. Total Environ.* 2021, 796, 148941. [CrossRef]
- 19. Chandra, M.; Bhunia, K.; Pradhan, D. Controlled Synthesis of CuS/TiO₂ Heterostructured Nanocomposites for Enhanced Photocatalytic Hydrogen Generation through Water Splitting. *Inorg. Chem.* **2018**, *57*, 4524–4533. [CrossRef] [PubMed]
- Lu, Y.Y.; Zhang, Y.Y.; Zhang, J.; Shi, Y.; Li, Z.; Feng, Z.C.; Li, C. In situ loading of CuS nanoflowers on rutile TiO₂ surface and their improved photocatalytic performance. *Appl. Surf. Sci.* 2016, 370, 312–319. [CrossRef]
- Chen, Q.; Zhang, M.; Li, J.; Zhang, G.; Xin, Y.; Chai, C. Construction of immobilized 0D/1D heterostructure photocatalyst Au/CuS/CdS/TiO₂ NBs with enhanced photocatalytic activity towards moxifloxacin degradation. *Chem. Eng. J.* 2020, 389, 124476. [CrossRef]
- 22. He, H.Y. Facile synthesis of ultrafine CuS nanocrystalline/TiO₂: Fe nanotubes hybrids and their photocatalytic and Fenton-like photocatalytic activities in the dye degradation. *Microporous Mesoporous Mater.* **2016**, 227, 31–38. [CrossRef]
- Lee, H.; Kwak, B.S.; Park, N.-K.; Baek, J.-I.; Ryu, H.-J.; Kang, M. Assembly of a check-patterned CuS_x-TiO₂ film with an electron-rich pool and its application for the photoreduction of carbon dioxide to methane. *Appl. Surf. Sci.* 2017, 393, 385–396. [CrossRef]

- Lin, H.; Li, L.; Zhao, M.; Huang, X.; Chen, X.; Li, G.; Yu, R. Synthesis of High-Quality Brookite TiO₂ Single-Crystalline Nanosheets with Specific Facets Exposed: Tuning Catalysts from Inert to Highly Reactive. J. Am. Chem. Soc. 2012, 134, 8328–8331. [CrossRef] [PubMed]
- Wang, Y.; Lkhamjav, S.; Qiu, B.; Dong, C.; Dong, C.; Zhou, Y.; Shen, B.; Xing, M.; Zhang, J. A facile strategy to prepare Fe³⁺ modified brookite TiO₂ with high photocatalytic activity under ultraviolet light and visible light. *Res. Chem. Intermed.* 2017, 43, 2055–2066. [CrossRef]
- Liu, L.; Zhao, H.; Andino, J.M.; Li, Y. Photocatalytic CO₂ Reduction with H₂O on TiO₂ Nanocrystals: Comparison of Anatase, Rutile, and Brookite Polymorphs and Exploration of Surface Chemistry. ACS Catal. 2012, 2, 1817–1828. [CrossRef]
- 27. Li, K.; Peng, T.; Ying, Z.; Song, S.; Zhang, J. Ag-loading on brookite TiO₂ quasi nanocubes with exposed {210} and {001} facets: Activity and selectivity of CO₂ photoreduction to CO/CH₄. *Appl. Catal. B* **2016**, *180*, 130–138. [CrossRef]
- Li, K.; Peng, B.; Jin, J.; Zan, L.; Peng, T. Carbon nitride nanodots decorated brookite TiO₂ quasi nanocubes for enhanced activity and selectivity of visible-light-driven CO₂ reduction. *Appl. Catal. B* 2017, 203, 910–916. [CrossRef]
- 29. Jin, J.; Luo, J.; Zan, L.; Peng, T. One-Pot Synthesis of Cu-Nanocluster-Decorated Brookite TiO₂ Quasi-Nanocubes for Enhanced Activity and Selectivity of CO₂ Photoreduction to CH₄. *ChemPhysChem* **2017**, *18*, 3230–3239. [CrossRef]
- Xiao, J.; Chen, S.; Jin, J.; Li, R.; Zhang, J.; Peng, T. Brookite TiO₂ Nanoparticles Decorated with Ag/MnO_x Dual Cocatalysts for Remarkably Boosted Photocatalytic Performance of the CO₂ Reduction Reaction. *Langmuir* 2021, 37, 12487–12500. [CrossRef]
- Cho, K.M.; Kim, K.H.; Park, K.; Kim, C.; Kim, S.; Al-Saggaf, A.; Gereige, I.; Jung, H.-T. Amine-Functionalized Graphene/CdS Composite for Photocatalytic Reduction of CO₂. ACS Catal. 2017, 7, 7064–7069. [CrossRef]
- Jin, L.; Shaaban, E.; Bamonte, S.; Cintron, D.; Shuster, S.; Zhang, L.; Li, G.; He, J. Surface Basicity of Metal@TiO₂ to Enhance Photocatalytic Efficiency for CO₂ Reduction. ACS Appl. Mater. Interfaces 2021, 13, 38595–38603. [CrossRef]
- Yang, G.; Xiong, J.; Lu, M.; Wang, W.; Li, W.; Wen, Z.; Li, S.; Li, W.; Chen, R.; Cheng, G. Co-embedding oxygen vacancy and copper particles into titanium-based oxides (TiO₂, BaTiO₂, and SrTiO₂) nanoassembly for enhanced CO₂ photoreduction through surface/interface synergy. *J. Colloid Interface Sci.* 2022, 624, 348–361. [CrossRef] [PubMed]
- Zhu, J.; Xiong, J.; Cheng, G.; Li, W.; Dou, S. Promoting solar-to-hydrogen evolution on Schottky interface with mesoporous TiO₂-Cu hybrid nanostructures. J. Colloid Interface Sci. 2019, 545, 116–127. [CrossRef] [PubMed]
- Gan, Y.; Wei, Y.; Xiong, J.; Cheng, G. Impact of post-processing modes of precursor on adsorption and photocatalytic capability of mesoporous TiO₂ nanocrystallite aggregates towards ciprofloxacin removal. *Chem. Eng. J.* 2018, 349, 1–16. [CrossRef]
- Wei, Y.; Cheng, G.; Xiong, J.; Zhu, J.; Gan, Y.; Zhang, M.; Li, Z.; Dou, S. Synergistic impact of cocatalysts and hole scavenger for promoted photocatalytic H₂ evolution in mesoporous TiO₂-NiS_x hybrid. *J. Energy Chem.* 2019, 32, 45–56. [CrossRef]
- 37. Zhu, Q.; Cao, Y.; Tao, Y.; Li, T.; Zhang, Y.; Shang, H.; Song, J.; Li, G. CO₂ reduction to formic acid via NH₂-C@Cu₂O photocatalyst in situ derived from amino modified Cu-MOF. *J. CO2 Util.* **2021**, *54*, 101781. [CrossRef]
- Wang, S.; Zhao, X.; Muhammad Adeel Sharif, H.; Chen, Z.; Chen, Y.; Zhou, B.; Xiao, K.; Yang, B.; Duan, Q. Amine-CdS for exfoliating and distributing bulk MoO₂ for photocatalytic hydrogen evolution and Cr(VI) reduction. *Chem. Eng. J.* 2021, 406, 126849. [CrossRef]
- 39. Shao, Y.; Dou, Z.; Liang, X.; Zhang, X.; Ji, M.; Pang, M.; Wang, M.; Wang, X. ZnIn₂S₄ nanosheet growth on amine-functionalized SiO₂ for the photocatalytic reduction of CO₂. *Catal. Sci. Technol.* **2022**, *12*, 606–612. [CrossRef]
- Liu, J.; Li, Y.; Ke, J.; Wang, S.; Wang, L.; Xiao, H. Black NiO-TiO₂ nanorods for solar photocatalysis: Recognition of electronic structure and reaction mechanism. *Appl. Catal. B* 2018, 224, 705–714. [CrossRef]
- Torres, J.A.; da Cruz, J.C.; Nogueira, A.E.; da Silva, G.T.S.T.; de Oliveira, J.A.; Ribeiro, C. Role of Cu₀-TiO₂ interaction in catalyst stability in CO₂ photoreduction process. *J. Environ. Chem. Eng.* 2022, 10, 107291. [CrossRef]
- 42. Fu, J.; Cao, S.; Yu, J. Dual Z-scheme charge transfer in TiO₂–Ag–Cu₂O composite for enhanced photocatalytic hydrogen generation. *J. Mater.* **2015**, *1*, 124–133. [CrossRef]
- 43. Yuan, L.; Hung, S.-F.; Tang, Z.-R.; Chen, H.M.; Xiong, Y.; Xu, Y.-J. Dynamic Evolution of Atomically Dispersed Cu Species for CO₂ Photoreduction to Solar Fuels. *ACS Catal.* **2019**, *9*, 4824–4833. [CrossRef]
- 44. Zhang, F.; Li, Y.-H.; Qi, M.-Y.; Tang, Z.-R.; Xu, Y.-J. Boosting the activity and stability of Ag-Cu₂O/ZnO nanorods for photocatalytic CO₂ reduction. *Appl. Catal. B* **2020**, *268*, 118380. [CrossRef]
- 45. Li, Y.; Zhang, W.; Shen, X.; Peng, P.; Xiong, L.; Yu, Y. Octahedral Cu₂O-modified TiO₂ nanotube arrays for efficient photocatalytic reduction of CO₂. *Chin. J. Catal.* **2015**, *36*, 2229–2236. [CrossRef]
- 46. Liang, T.-Y.; Chan, S.-J.; Patra, A.S.; Hsieh, P.-L.; Chen, Y.-A.; Ma, H.-H.; Huang, M.H. Inactive Cu₂O Cubes Become Highly Photocatalytically Active with Ag₂S Deposition. *ACS Appl. Mater. Interfaces* **2021**, *13*, 11515–11523. [CrossRef] [PubMed]
- Zhang, W.; Jiang, M.; Yang, S.; Hu, Y.; Mu, B.; Tie, Z.; Jin, Z. In-situ grown CuO_x nanowire forest on copper foam: A 3D hierarchical and freestanding electrocatalyst with enhanced carbonaceous product selectivity in CO₂ reduction. *Nano Res. Energy* 2022, 1, e9120033. [CrossRef]
- Zhang, F.; Zhuang, H.-Q.; Zhang, W.; Yin, J.; Cao, F.-H.; Pan, Y.-X. Noble-metal-free CuS/CdS photocatalyst for efficient visible-light-driven photocatalytic H₂ production from water. *Catal. Today* 2019, 330, 203–208. [CrossRef]
- 49. Wang, Q.; Yun, G.; Bai, Y.; An, N.; Chen, Y.; Wang, R.; Lei, Z.; Shangguan, W. CuS, NiS as co-catalyst for enhanced photocatalytic hydrogen evolution over TiO₂. *Int. J. Hydrogen Energy* **2014**, *39*, 13421–13428. [CrossRef]
- 50. Zhang, L.J.; Xie, T.F.; Wang, D.J.; Li, S.; Wang, L.L.; Chen, L.P.; Lu, Y.C. Noble-metal-free CuS/CdS composites for photocatalytic H₂ evolution and its photogenerated charge transfer properties. *Int. J. Hydrogen Energy* **2013**, *38*, 11811–11817. [CrossRef]

- Jiang, Y.; Zhang, M.; Xin, Y.; Chai, C.; Chen, Q. Construction of immobilized CuS/TiO₂ nanobelts heterojunction photocatalyst for photocatalytic degradation of enrofloxacin: Synthesis, characterization, influencing factors and mechanism insight. *J. Chem. Technol. Biotechnol.* 2019, 94, 2219–2228.
- 52. Wang, L.; Dong, Y.; Zhang, J.; Tao, F.; Xu, J. Construction of NiO/g-C₃N₄ p-n heterojunctions for enhanced photocatalytic CO₂ reduction. *J. Solid State Chem.* **2022**, *308*, 122878. [CrossRef]
- Li, R.; Ma, H.; Shu, J.; Lian, Z.; Chen, N.; Ou, S.; Jin, R.; Li, S.; Yang, H. Surface engineering of copper sulfide-titania-graphitic carbon nitride ternary nanohybrid as an efficient visible-light photocatalyst for pollutant photodegradation. *J. Colloid Interface Sci.* 2021, 604, 198–207. [CrossRef] [PubMed]
- 54. Lu, Y.; Wu, D.; Qin, Y.; Xie, Y.; Ling, Y.; Ye, H.; Zhang, Y. Facile construction of BiOBr/CoAl-LDH heterojunctions with suppressed Z-axis growth for efficient photoreduction of CO₂. *Sep. Purif. Technol.* **2022**, *302*, 122090. [CrossRef]
- Wang, L.; Wang, W.; Chen, Y.; Yao, L.; Zhao, X.; Shi, H.; Cao, M.; Liang, Y. Heterogeneous p–n Junction CdS/Cu₂O Nanorod Arrays: Synthesis and Superior Visible-Light-Driven Photoelectrochemical Performance for Hydrogen Evolution. ACS Appl. Mater. Interfaces 2018, 10, 11652–11662. [CrossRef]
- 56. Meng, F.; Li, J.; Cushing, S.K.; Zhi, M.; Wu, N. Solar Hydrogen Generation by Nanoscale p–n Junction of p-type Molybdenum Disulfide/n-type Nitrogen-Doped Reduced Graphene Oxide. *J. Am. Chem. Soc.* **2013**, *135*, 10286–10289. [CrossRef]
- Aguirre, M.E.; Zhou, R.; Eugene, A.J.; Guzman, M.I.; Grela, M.A. Cu₂O/TiO₂ heterostructures for CO₂ reduction through a direct Z-scheme: Protecting Cu₂O from photocorrosion. *Appl. Catal. B* 2017, 217, 485–493. [CrossRef]
- 58. Yang, Q.; Qin, W.; Xie, Y.; Zong, K.; Guo, Y.; Song, Z.; Luo, G.; Raza, W.; Hussain, A.; Ling, Y.; et al. Constructing 2D/1D heterostructural BiOBr/CdS composites to promote CO₂ photoreduction. *Sep. Purif. Technol.* **2022**, *298*, 121603. [CrossRef]
- Shafiq, I.; Hussain, M.; Rashid, R.; Shafique, S.; Akhter, P.; Yang, W.; Ahmed, A.; Nawaz, Z.; Park, Y.-K. Development of hierarchically porous LaVO₄ for efficient visible-light-driven photocatalytic desulfurization of diesel. *Chem. Eng. J.* 2021, 420, 130529. [CrossRef]
- 60. Cai, W.; Yu, X.; Cao, Y.; Hu, C.; Wang, Y.; Zhao, Y.; Bu, Y. Electron-coupled enhanced interfacial interaction of Ce-MOF/Bi₂MoO₆ heterostructure for boosted photoreduction CO₂. J. Environ. Chem. Eng. **2022**, 10, 107461. [CrossRef]
- Tang, Z.; Wang, C.; He, W.; Wei, Y.; Zhao, Z.; Liu, J. The Z-scheme g-C₃N₄/3DOM-WO₃ photocatalysts with enhanced activity for CO2 photoreduction into CO. *Chin. Chem. Lett.* 2022, 33, 939–942. [CrossRef]
- 62. Wu, X.; Wang, C.; Wei, Y.; Xiong, J.; Zhao, Y.; Zhao, Z.; Liu, J.; Li, J. Multifunctional photocatalysts of Pt-decorated 3DOM perovskite-type SrTiO₃ with enhanced CO₂ adsorption and photoelectron enrichment for selective CO₂ reduction with H₂O to CH₄. *J. Catal.* **2019**, *377*, 309–321. [CrossRef]
- Xiong, J.; Zhang, M.; Lu, M.; Zhao, K.; Han, C.; Cheng, G.; Wen, Z. Achieving simultaneous Cu particles anchoring in meso-porous TiO₂ nanofabrication for enhancing photo-catalytic CO₂ reduction through rapid charge separation. *Chin. Chem. Lett.* 2022, 33, 1313–1316. [CrossRef]
- Xiong, Z.; Lei, Z.; Kuang, C.-C.; Chen, X.; Gong, B.; Zhao, Y.; Zhang, J.; Zheng, C.; Wu, J.C.S. Selective photocatalytic reduction of CO₂ into CH₄ over Pt-Cu₂O TiO₂ nanocrystals: The interaction between Pt and Cu₂O cocatalysts. *Appl. Catal. B* 2017, 202, 695–703. [CrossRef]
- 65. Tu, W.; Zhou, Y.; Li, H.; Li, P.; Zou, Z. Au@TiO₂ yolk–shell hollow spheres for plasmon-induced photocatalytic reduction of CO₂ to solar fuel via a local electromagnetic field. *Nanoscale* **2015**, *7*, 14232–14236. [CrossRef]
- 66. Kuai, L.; Zhou, Y.; Tu, W.; Li, P.; Li, H.; Xu, Q.; Tang, L.; Wang, X.; Xiao, M.; Zou, Z. Rational construction of a CdS/reduced graphene oxide/TiO₂ core–shell nanostructure as an all-solid-state Z-scheme system for CO₂ photoreduction into solar fuels. *RSC Adv.* **2015**, *5*, 88409–88413. [CrossRef]
- 67. Manzanares, M.; Fàbrega, C.; Oriol Ossó, J.; Vega, L.F.; Andreu, T.; Morante, J.R. Engineering the TiO₂ outermost layers using magnesium for carbon dioxide photoreduction. *Appl. Catal. B* **2014**, *150–151*, *57–62*. [CrossRef]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.