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Abstract: The development of accurate and efficient numerical methods is of crucial importance
for the analysis and design of composite structures. This is even more true in the presence of variable
stiffness (VS) configurations, where intricate load paths can be responsible for complex and localized
stress profiles. In this work, we present the ps−version of the finite elements method (ps−FEM),
a novel FE approach which can perform global/local analysis through different refinement strategies
efficiently and easily. Within this framework, the global behavior is captured through a p−refinement
by increasing the polynomial order of the elements. For the local one, a mesh−superposition
technique, called s−refinement, is used to improve locally the solution by defining a local/fine
mesh overlaid to the global/coarse one. The combination of p− and s−refinements enables us
to achieve excellent accuracy−to−cost ratios. This paper aims to present the numerical formulation
and the implementation aspects of this novel approach to VS composite shell analysis. Numerical
tests are reported to illustrate the potential of the method. The results provide a clear insight of its
potential to guarantee fast convergence and easy mesh refinement where needed.

Keywords: finite element method; numerical methods; thin shells; variable−stiffness structures

1. Introduction

The anisotropic nature of composite laminates is responsible for structural responses
characterized by complex couplings between extension, bending, torsion, and shearing
modes [1]. Such effects are particularly relevant when laminates with curvilinear reinforce-
ments [2–5] are of concern.

These effects require appropriate numerical tools to be available to conduct accurate and
reliable analyses. This is even more true as composite thin shells are increasingly used in primary
load−carrying structural components. Hence, the interest of the designers is not restricted to the
global response, but includes also local effects, such as stress profiles in critical regions due
to geometric discontinuities, material interphases, and areas affected by load introduction. In this
framework, the finite element method (FEM) is the most commonly used tool for the analysis
and design of composite structures. The main advantages can be found in the high flexibility
of modeling complex domains, the possibility of considering arbitrary material properties, and
handling different loading/boundary conditions.

Over the years, different strategies have been developed to maximize the accuracy
of the FE solution, while keeping the computational cost at a minimum. The classical ap-
proaches to improve accuracy are represented by the h− and p−refinements [6]. In the for-
mer, accuracy is increased by reducing the mesh size h, while the interpolation order
of the elements p is fixed [7]. In the latter, the polynomial degree p is increased, while
the mesh resolution h is left unchanged [8]. The h− and p−refinements provide two system-
atic ways to improve the precision of the FE solution and yield excellent results when global
quantities are of interest. Different applications of these strategies to advanced composite
shells and plates can be found in the literature, such as sandwich plates [9], functionally
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graded laminates [10,11], shell structures with orthogonal periodic configurations [12],
cylindrical shells made of metamaterials with spatially variable elastic properties [13], and
variable stiffness composites [14–17].

Local refinement strategies are needed whenever focus is required on the response
in specific regions. Adaptive h−refinement procedures have been proposed in the lit-
erature, e.g., [18–20]. In these works, a posteriori error estimators are coupled with
the h−refinement strategy to generate adaptable meshes locally refined in the most crit-
ical zones. The hp−refinement approach [21] represents an extension of the adaptive
h−refinement where an increase of the interpolation order of elements (p−refinement)
is added on top of a suitable mesh adaptation (h−refinement). A simultaneous increase
of the order p combined with a graded increase of the mesh resolution h yields exponential
convergence rate for non−smooth problems, where steep gradients or singular points are
present [22,23].

One of the challenges associated with simultaneous h− and p−refinements relates
to the complexity in generating an h−adaptable mesh. Typical procedures to cope with
this problem involve the adoption of transition elements [24–26] or sophisticated multi-
constraints approaches [27].

An alternative and simpler way to perform local mesh refinements is given by mesh su-
perposition techniques. One of the first works in this field was by Mote [28], who employed
the Ritz method to capture the global deflections of the structure, while a superposed local
FE model was proposed for capturing stress concentrations.

The spectral overlay finite element method (SOFEM) proposed by Belytschko [29]
is another example of an FE scheme based on solution superposition, where local refine-
ments are performed by a spectral overlay on an FE mesh. A generalization of SOFEM
is represented by the superposition−version, or s−version, of the finite element method
(s−FEM) proposed by Fish [30]. In the s−FEM the solution accuracy is locally enhanced
by superposing one or more high−order local meshes onto a global one. This extension
of the FEM has been applied successfully for linear static, frequency, and buckling analysis
of laminated composite plates and shells [31–34], stress analysis of laminated smart struc-
tures [35], microscopic stress analysis of heterogeneous materials [36], and dynamic crack
analysis in steel structures [37].

A further superposition refinement approach is implemented in the hp− d−version
of the finite element method (hp− d−FEM) developed by Rank [38]. The hp− d−FEM
improves the solution efficiency by representing the smooth part of the solution with
a coarse/high−order global mesh, while the non−smooth features are resolved by one
or more [39] fine/low−order local meshes. The method is applied for solving linear and
nonlinear elasticity problems with singularities in [39,40]. The multi−level hp−method
introduced by Zander et al. [41] recovers the idea of the hp− d−FEM where the super-
position meshes used for the local refinement employ high−order instead of low−order
elements. This approach permits to achieve much faster convergence rates, as shown
in [42,43], where the method is used for solving fracture mechanics, linear elastodynamics,
and shell problems.

All the previous works have shown the potential of mesh superposition techniques
to achieve refined solutions while keeping at minimum the implementation efforts. The present
work aims at recovering such techniques to realize an efficient global/local formulation of the
FEM, here denoted as the ps−version of the finite element method (ps−FEM), for the anal-
ysis of laminated composite shells. More specifically, the FE framework presented herein
exploits a p−refinement strategy, based on the hierarchic polynomial space first formulated
by [8], to capture the global response of the laminate. For the resolution of the local solution
features, the p−refinement is combined with the mesh superposition refinement approach,
or s−refinement, developed by [30,41].

Differently from existing works in the literature, superposition techniques are em-
ployed here for the first time for the analysis of composite shells, including straight−fiber
and VS configurations.
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The outline of the paper is as follows: the shell mathematical model is presented in
Section 2; Section 3 discusses the formulation and implementation aspects of the proposed
FEM; in Section 4, the method is applied to several test cases involving laminated shells.
Finally, the main findings of this study are summarized in Section 5.

2. Theoretical Model

This section illustrates the theoretical framework for the analysis of laminated com-
posite shells. In the first part, the shell geometry is discussed by presenting the relevant
equations employed next in the finite element approximation. Then, the constitutive law
for handling the case of curvilinear fiber paths is presented. Finally, the shell governing
equations are derived in the context of a total Lagrangian description.

2.1. Geometry Description

The geometric description of shells is developed under the theory of surfaces, which
provides a general framework to define panels with arbitrary configurations and curvatures.

The reference surface Ω is assumed to be coinciding with the shell’s midsurface and
is parametrized by two arc−length coordinates ξ1 ∈ [0, a] and ξ2 ∈ [0, b], where a and b
are the curvilinear lengths of the shell edges. The normal direction to Ω is parametrized
by the coordinate ζ ∈ [−t/2,+t/2], where t is the thickness of the shell. It is assumed that
the triad (ξ1, ξ2, ζ) forms an orthogonal curvilinear coordinate system such that ξ1 and ξ2
are aligned with the principal lines of curvature on the midsurface, as shown in Figure 1.

Considering a global reference system (O, x, y, z), any point on Ω can be described by
the position vector r:

r(ξ1, ξ2) = rx(ξ1, ξ2)ex + ry(ξ1, ξ2)ey + rz(ξ1, ξ2)ez (1)

where rx, ry and rz are definite, continuous, single-valued functions of ξ1 and ξ2 representing
the components of r on the global reference system with unit directors ex, ey and ez.

Figure 1. Shell geometry definition.

The tangent vectors on Ω to the two coordinate lines, ξ1 and ξ2, are obtained by
differentiation of Equation (1):

gα =
∂r

∂ξα
= r,α for α = 1, 2 (2)

where the comma denotes differentiation with respect to the coordinate ξα.
Accordingly, the unit normal to the reference surface is defined as:

n =
g1 × g2
|g1 × g2|

(3)

where × denotes the cross product and | · | the Euclidean norm. The unit normal in
Equation (3) is assumed to be common to all the shell laminas Ω(ζ), see Figure 1.
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Considering a lamina at a distance ζ from Ω, the position vector of the generic point
on Ω(ζ) is expressed as:

r(ζ)(ξ1, ξ2, ζ) = r(ξ1, ξ2) + ζn(ξ1, ξ2) (4)

while the corresponding tangent vectors along the curvilinear lines ξ1 and ξ2 are:

g(ζ)α = r(ζ),α = r,α + ζn,α for α = 1, 2 (5)

By application of the Weingarten–Gauss relations [1]:

n,α =
gα

Rα
(6)

the following relation between the tangent vectors on Ω(ζ) and Ω holds:

g(ζ)α =

(
1 +

ζ

Rα

)
gα for α = 1, 2 (7)

where Rα are the principal radii of curvature of the reference surface and are defined as [44]:

Rα = − gα · gα

gα,α · n
for α = 1, 2 (8)

where · denotes the dot product. In general, the two principal radii of curvatures R1 and
R2 are not constant and can be a function of the coordinate lines ξ1 and ξ2.

Referring to Equation (4), the differential position vector is given as:

dr(ζ) = r(ζ),1 dξ1 + r(ζ),2 dξ2 + r(ζ),ζ dζ = g(ζ)1 dξ1 + g(ζ)2 dξ2 + ndζ (9)

From Equation (9), the square distance dl between two arbitrary points in the shell
volume P(ξ1, ξ2, ζ) and P′(ξ1 + dξ1, ξ2 + dξ2, ζ + dζ) is computed as:

(dl)2 = dr(ζ) · dr(ζ) =
(

a(ζ)1 dξ1

)2
+
(

a(ζ)2 dξ2

)2
+ (dζ)2 (10)

where a(ζ)α are the Lamè parameters defined as:

a(ζ)α =

√
g(ζ)α · g

(ζ)
α =

(
1 +

ζ

Rα

)
aα for α = 1, 2 (11)

with:
aα =

√
gα · gα for α = 1, 2 (12)

For the development of the shell mathematical model, the geometric measures are
expressed in terms of reference surface Ω quantities. Accordingly, the element lines and
cross section areas along the coordinates ξ1 and ξ2 are given as:

dlα = a(ζ)α dξα =

(
1 +

ζ

Rα

)
aαdξα

dAα = dlαdζ =

(
1 +

ζ

Rα

)
aαdξαdζ for α = 1, 2 (13)

while the element surface and volume are given by:

dΩ =
∣∣∣r(ζ),1 dξ1 × r(ζ),2 dξ2

∣∣∣ = a1a2

(
1 +

ζ

R1

)(
1 +

ζ

R2

)
dξ1dξ2

dV =
(

r(ζ),1 dξ1 × r(ζ),2 dξ2

)
· r(ζ),ζ dζ = a1a2

(
1 +

ζ

R1

)(
1 +

ζ

R2

)
dξ1dξ2dζ (14)
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The geometric formulation presented here furnishes the background to develop the fi-
nite elements discussed next, where plates and shells with variable curvature can be taken
into account.

2.2. Curvilinear Fiber Path Description

The shell elements considered here can be applied to the analysis of isotropic and com-
posite structures. For generality purposes, the model is developed to allow non−uniform
elastic properties to be considered along the surface. Hence, new configurations such as
variable stiffness (VS) laminates can be studied within the proposed framework. Specifi-
cally, a laminate with VS properties is achieved by stacking together plies with curvilinear
reinforcing fibers [2]. Different strategies have been proposed in the literature for de-
scribing the path of the fibers. Without loss of generality, the approach considered here
relies on the Lagrange polynomials introduced in [4]. According to this mathematical
formulation, the curvilinear paths are described by a set of parameters Tmn according to:

θ(ξ1, ξ2) =
M−1

∑
m=0

N−1

∑
n=0

Tmn ∏
n 6=i

(
ξ1 − ξ

(i)
1

)
(

ξ
(n)
1 − ξ

(i)
1

) · ∏
m 6=j

(
ξ2 − ξ

(j)
2

)
(

ξ
(m)
2 − ξ

(j)
2

) (15)

where
(

ξ
(n)
1 , ξ

(m)
2

)
are pre−selected control points over a uniform grid N ×M in [0, a]×

[0, b]. From Equation (15), it is possible to understand the parameters Tmn as the fiber
orientation angle at the control points, as one can see that θ

(
ξ
(n)
1 , ξ

(m)
2

)
= Tmn. The

information of fiber orientation on a the generic VS ply can thus be defined through
a matrix T ∈ RM×N . This enables us to specify VS lamination sequences very concisely as
[T1/T2/ . . . /T Np ], where Np stands for the number of plies.

An alternative formulation is also possible where the control points are defined
at a quarter of the laminate and the resulting fiber orientation distribution is reflected
to the rest of the domain. In this case, the expression of Equation (15) modifies as:

θ(ξ1, ξ2) =
M−1

∑
m=0

N−1

∑
n=0

Tmn ∏
n 6=i

(
|ξ̃1| − ξ̃

(i)
1

)
(

ξ̃
(n)
1 − ξ̃

(i)
1

) · ∏
m 6=j

(
|ξ̃2| − ξ̃

(j)
2

)
(

ξ̃
(m)
2 − ξ̃

(j)
2

) (16)

where the new coordinates are ξ̃1 = ξ1 − a/2 and ξ̃2 = ξ2 − b/2, while the control points(
ξ̃
(n)
1 , ξ̃

(m)
2

)
are now defined over a grid N ×M in [0, a/2]× [0, b/2].

2.3. Shell Description

The displacements of an arbitrary point on the shell domain Ω are denoted by u1,
u2 and u3. These components correspond to the displacements along the ξ1, ξ2 and ζ
directions, respectively. The component u3 is taken positive in the outward direction
from the center of the smallest radius of curvature. Considering only von Kàrmàn nonlin-
earities, the components of the Green–Lagrange strain tensor in the orthogonal curvilinear
coordinate system (ξ1, ξ2, ζ) are [45]:
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ε11 =
1

1 + ζ/R1

(
u1,1

a1
+

a1,2

a1a2
u2 +

u3

R1

)
+

1
2

(
1

1 + ζ/R1

)2(u3,1

a1

)2

ε22 =
1

1 + ζ/R2

(
u2,2

a2
+

a2,1

a1a2
u1 +

u3

R2

)
+

1
2

(
1

1 + ζ/R2

)2(u3,2

a2

)2

γ12 =
1

1 + ζ/R1

(
u2,1

a1
− a1,2

a1a2
u1

)
+

1
1 + ζ/R2

(
u1,2

a2
− a2,1

a1a2
u2

)
+

1
(1 + ζ/R1)(1 + ζ/R2)

(
u3,1

a1

u3,2

a2

)
γ13 = u1,ζ +

1
1 + ζ/R1

(
u3,1

a1
− u1

R1

)
γ23 = u2,ζ +

1
1 + ζ/R2

(
u3,2

a2
− u2

R2

)
ε33 = u3,ζ (17)

where εαα and γαβ are the normal and shearing strains, respectively.
The shell kinematics is described according to the first shear deformation theory

(FSDT), so:

u1(ξ1, ξ2, ζ, t) = u(ξ1, ξ2) + ζφ1(ξ1, ξ2, t)

u2(ξ1, ξ2, ζ, t) = v(ξ1, ξ2) + ζφ2(ξ1, ξ2, t)

u3(ξ1, ξ2, ζ, t) = w(ξ1, ξ2) (18)

where u, v and w are the displacement components of an arbitrary point on Ω along
ξ1, ξ2 and ζ, respectively, while φ1 and φ2 are the rotations. The choice of FSDT is
due to the easier FE implementation compared with the classical Kirchhoff theory (CLT).
At the same time, FSDT allows shear deformability to be taken into account with a small
number of unknown fields. Higher−order theories are not considered here, but can be
of practical interest to guarantee improved description of the thickness−wise response,
while avoiding the use of the shear factor. The strains of the kinematic model at hand can
be obtained upon the substitution of Equation (18) into Equation (17):

ε = ε0 + ζk, γ = γ0 (19)

where ε = {ε11 ε22 γ12}T and γ = {γ13 γ23}T. The definition of ε0 = {ε0
11 ε0

22 γ0
12}T,

k = {k11 k22 k12}T and γ0 = {γ0
13 γ0

23}T is available in the Appendix A.
The membrane resultant on the cross section dA2, i.e., the section normal to ξ1, is:∫ t/2

−t/2
σ11dA2 =

[∫ t/2

−t/2
σ11

(
1 +

ζ

R2

)
dζ

]
a2dξ2 = N11a2dξ2 (20)

where the definition of the resultant N11 follows from the equation above. The other
resultants are derived in a similar manner, leading to:


N11
N22
N12
N21

 =
∫ t/2

−t/2



σ11

(
1 + ζ

R2

)
σ22

(
1 + ζ

R1

)
σ12

(
1 + ζ

R2

)
σ21

(
1 + ζ

R1

)


dζ,


M11
M22
M12
M21

 =
∫ t/2

−t/2
ζ



σ11

(
1 + ζ

R2

)
σ22

(
1 + ζ

R1

)
σ12

(
1 + ζ

R2

)
σ21

(
1 + ζ

R1

)


dζ,

{
Q1
Q2

}
= Ks

∫ t/2

−t/2

σ13

(
1 + ζ

R2

)
σ23

(
1 + ζ

R1

)dζ

(21)

where Ks is the shear correction factor, which is taken as equal to 5/6. The shear stress
resultants, N12 and N21, and the twisting moments, M12 and M21, are different due to the
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curvature terms. For shallow and moderately thick shells, i.e., h/Rα < 1/20, the simplifying
assumption N12 ≈ N21 and M12 ≈ M21 can be introduced.

Based on the assumption above, the constitutive law reads:


N
M
Q

 =

A(ξ1, ξ2) B(ξ1, ξ2) 0
B(ξ1, ξ2) D(ξ1, ξ2) 0

0 0 A(ξ1, ξ2)


ε0

k
γ0

 (22)

where N = {N11 N22 N12}T, M = {M11 M22 M12}T, Q = {Q1 Q2}T are the vectors
collecting the force and moment resultants, whereas A, D, B and A are the membrane,
bending, membrane−bending coupling and shear stiffness matrices, respectively.

The equations of motion are derived by referring to Hamilton’s principle:∫ t2

t1

δΠdt =
∫ t2

t1

δ[K− (U + V)]dt = 0 (23)

where K, U and V are the kinetic and elastic energies and the potential of the applied
loads, respectively. For the shell model developed in this work, these energy quantities are
defined as follows:

K =
1
2

∫
Ω

[
I0

(
u̇2 + v̇2 + ẇ2

)
+ 2I1(φ̇1u̇ + φ̇2v̇) + I2

(
φ̇1

2
+ φ̇2

2
)]

a1a2dξ1dξ2

U =
1
2

∫
Ω

[
ε0T

Aε0 + kTDk + 2ε0T
Bk + γ0T

Aγ0
]

a1a2dξ1dξ2

V =−
∫

Ω

[
w
(

1 +
h

2R1

)(
1 +

h
2R2

)
q+
]

a1a2dξ1dξ2

−
∫

∂Ω1

(
uN11 + vN12

)
a2dξ2 +

∫
∂Ω2

(
vN22 + uN12

)
a1dξ1 (24)

where the dot denotes the time derivative, q+ is the pressure applied on the upper surface
(ζ = h/2), ∂Ω1 and ∂Ω2 are the boundaries at ξ1 = const and ξ2 = const, respectively.
The terms Iα are the moment of inertia defined as:

Iα =
∫

A
ρ

(
1 +

ζ

R1

)(
1 +

ζ

R2

)
(ζ)αdζ α = 0, 1, 2 (25)

where ρ is the mass density.

3. The ps−Version of the Finite Element Method

The finite element method (FEM) developed in this work is a combination of two
FE schemes, i.e., the p−version of the finite element method (p−FEM) and the s−version
(s−FEM). The former is an extension of the conventional FEM, or h−version (h−FEM),
where the accuracy is increased by increasing the interpolation order (p−refinement). The
latter is an FE scheme where arbitrary local improvements of the mesh resolution are
possible through the adoption of advanced mesh superposition techniques (s−refinement).
The two features of these numerical approaches are put together into an extended FE frame-
work, called the ps−version of the finite element method (ps−FEM), where simultaneous
p− and s−refinement (ps−refinement) can be performed to adaptively adjust the inter-
polation order p and the size h of the elements. Within the ps−FEM, the construction
of the polynomial space Sp is inspired from the p−FEM, while the design of the mesh
∆ follows the ideas implemented in the s−FEM, see Figure 2. In the following, the two
main pillars of the ps−FEM, i.e., p−FEM and s−FEM, are presented. Then, the ps−FEM
is introduced and applied to composite shell problems by referring to the equilibrium
equations of Section 2.3.
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Figure 2. Building blocks of the ps−FEM framework.

3.1. p−Refinement

The core idea of the p−refinement strategy is to progressively increase the polyno-
mial order p of the shape functions to improve the quality of the numerical solution.
One crucial aspect regards the worsening of the conditionality of the global stiffness matrix
as p is increased. In the p−FEM, this issue can be mitigated by constructing the set of shape
functions starting from Legendre polynomials. The properties of these functions enable
better numerical conditioning in comparison to the Lagrange polynomials commonly used
in the h−FEM. High−order polynomials can be considered in the p−FEM—even beyond
p = 3—, without encountering numerical issues.

Considering a generic two−dimensional solution field φ depending on x and y, the FE
discretization in the elemental domain Ω(k) is:

φ(k)(x, y) = φ(k)(χ(k)) =
p+1

∑
i=1

p+1

∑
j=1

cij fi(ξ) f j(η) in Ω(k) (26)

where −1 < {ξ, η} < 1 are the nondimensional coordinates in the computational domain
Ωst, χ(k) is an array of functions mapping the standard element in the k−th element
of the mesh ∆, see Figure 3, the coefficients p and cij are the element interpolation order
and degrees of freedom, respectively, while fi and f j are polynomial shape functions.
In the p−FEM the polynomial space Sp is constructed as:

f1(ξ) =
1
2
(1 + ξ), f2(ξ) =

1
2
(1− ξ)

fi+1(ξ) =

√
2i− 1

2

∫ ξ

−1
Pi−1(ξ)dξ for i = 2, 3, . . . p (27)

where Pn(ξ) is the Legendre polynomial functions of order n:

P0(ξ) = 1, P1(ξ) = ξ

Pn(ξ) =
1
n
[ξ(2n− 1)Pn−1(ξ)− (n− 1)Pn−2(ξ)] for n = 2, 3, . . . p (28)

From Equation (27), it is possible to distinguish two families of functions describing
different deformation modes, i.e., nodal and internal ones. Nodal modes are represented by
f1(ξ) and f2(ξ), which are Lagrange linear interpolation polynomials. Internal modes are
reproduced by the higher−order terms, fα(ξ) (for α ≥ 3), which are based on the integrals
of Legendre polynomials. The combination of nodal and internal modes leads to different
types of two−dimensional shape functions, i.e., nodal (two nodal modes), edge (one nodal
mode and one internal mode), and face (two internal modes) shape functions, see Figure 4.
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The series expansion in Equation (27) offers several advantages over the classical
Lagrangian polynomial base. The first one is that it inherits the orthogonal properties
of the original Legendre polynomials, indeed:∫ +1

−1

∂ fi
∂ξ

∂ f j

∂ξ
dξ = δij for i ≥ 3, j ≥ 1 or for j ≥ 3, i ≥ 1 (29)

Figure 3. Element mapping procedure.

Figure 4. Two−dimensional shape functions.

This property provides the stiffness matrix with a quasi−diagonal structure, which
significantly eases the solution process and enables the use of shape functions with a
very high polynomial order. The second feature regards the hierarchical nature of these
functions: p−refinements implies adding new higher−order terms in Equation (27),
while the low−order ones remain unchanged. As a consequence, the final stiffness
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matrix is obtained by successively adding rows and columns associated with new lev-
els of p−refinements.

Relatively few elements are in most cases sufficient to meet the desired levels of accuracy.
At the same time, the method should be capable of appropriately representing the geometry
of the structure with a limited number of elements. For this purpose, blending functions [46,47]
are usually combined with the p−FEM. The mapping procedure for the transformation of the stan-
dard element in Ωst to the k−th element of the mesh in Ω(k) is:

x = Q(k)
x (ξ, η) = f1(η)[ex1(ξ)− f1(ξ)X1] + f2(ξ)[ex2(η)− f1(η)X2]

f2(η)[ex3(ξ)− f2(ξ)X3] + f1(ξ)[ex4(η)− f2(η)X4]

y = Q(k)
y (ξ, η) = f1(η)

[
ey1(ξ)− f1(ξ)Y1

]
+ f2(ξ)

[
ey2(η)− f1(η)Y2

]
f2(η)

[
ey3(ξ)− f2(ξ)Y3

]
+ f1(ξ)

[
ey4(η)− f2(η)Y4

]
(30)

where Q(k)
x (ξ, η) and Q(k)

y (ξ, η) are general nonlinear mapping functions, (Xα, Yα) are
the nodal coordinates of the element, while eαx and eαy with α = 1, . . . , 4 are the functions
defining the curves of the element edge, as illustrated in Figure 3.

From the mapping of Equation (30), the derivatives with respect to the physical
coordinates x and y are computed as:

{
∂

∂x
∂

∂y

}
=

 ∂Q(k)
x

∂ξ

∂Q(k)
y

∂ξ

∂Q(k)
x

∂η

∂Q(k)
y

∂η


−1{

∂
∂ξ
∂

∂η

}
=

[
J(k)11 J(k)12

J(k)21 J(k)22

]−1{ ∂
∂ξ
∂

∂η

}
(31)

where J(k)αβ are the components of the Jacobian matrix J(k).
Line integrals at the four sides of the element read:∫

eα

F(x, y)dx =
∫ 1

−1
F (ξ,±1)

√
J(k)11

2
+ J(k)12

2
dξ for α = 1, 3

∫
eα

F(x, y)dy =
∫ 1

−1
F (±1, η)

√
J(k)21

2
+ J(k)22

2
dη for α = 2, 4 (32)

while the surface ones are:∫
Ω(k)

F(x, y)dxdy =
∫ 1

−1

∫ 1

−1
F (ξ, η)Jdξdη (33)

where F is the generic integrand, F is obtained from F by replacing x and y with the map-
ping functions in Equation (30), while J = detJ(k) is the determinant of the Jacobian matrix.

3.2. s−Refinement

The main problem in performing local mesh refinements relates to the need to generate
a transition between refined and unrefined regions. Different approaches are available
in the literature to address this issue, for example transition elements or multi−point con-
straints approaches [24–27]. The s−refinement strategy offers the advantage of simplifying
this process by allowing an element size reduction in the desired regions only. This result is
achieved through the definition of an independent local/fine mesh which is superimposed
to a global/coarse one [30].

Using this idea, the final FE approximation φ can be represented as:

φ =

{
φG+φL p in Ω−ΩL

φG + φL in ΩL
(34)

where φG is the global mesh solution defined in Ω, while φL is the local mesh solution defined
in ΩL ⊂ Ω, see Figure 5. Note that the mesh superposition technique allows for incompatible
discretization between global and local mesh. This gives an extremely high level of flexibility when
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performing local h−refinements, as no transition regions [24–26] or multi-point constraints [27]
are required.

Figure 5. Conceptual idea of mesh superposition.

This concept of solution superposition can be extended to multi−level refinements [41].
In this case, the elements of the local mesh can be further refined by superposing one over
the other multiple levels of overlaid meshes. In this case, the final FE solution φ becomes:

φ =


φG+φ

(1)
L + ... + φ

(s)
L + ... + φ

(Ns)
L in Ω−Ω(1)

L

φG + φ
(1)
L +... + φ

(s)
L + ... + φ

(Ns)
L in Ω(1)

L −Ω(2)
L

. . .

φG + φ
(1)
L + · · ·+ φ

(s)
L + · · ·+ φ

(Ns)
L in Ω(Ns)

L

(35)

where φ
(s)
L is the local solution given by the mesh at level s covering the domain Ω(s)

L ⊂
Ω(s−1)

L ⊂ · · · ⊂ Ω. Note that the solution on the global φG and local meshes φ
(s)
L can be

represented by any FE scheme, such as the p−FEM presented in Section 3.1.
Two conditions, i.e., compatibility of the basis functions and their linear independency,

are required to apply this multi−level decomposition of the solution field φ.
The first condition implies C1−continuity within each elements and C0−continuity

across the element boundaries. The C1−continuity is satisfied by construction. On
the contrary, the inter−element continuity is not guaranteed and needs to the imposed.
This is achieved by enforcing homogeneous Dirichlet boundary conditions on the boundary
of the overlaid meshes, as depicted in Figure 6a.

Figure 6. Conditions to satisfy when performing s−refinements: (a) compatibility and (b) linear indipen-
dency.

The second condition on the linear independency is required to avoid singularities
in the stiffness matrix. In general, the redundant degrees−of−freedom can be removed
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during the factorization process by elimination of the equations with zero pivots [30].
If the p−FEM is employed for the global and local meshes, this is avoided by ensuring that
shape functions of the same type (nodal, side, face) and polynomial order p appear only
once in regions with multiple meshes. This idea is graphically illustrated in Figure 6b.

3.3. ps−Refinement

The ps−refinement procedure is a combination of the p− and s−FEM approaches.
In this framework, the order of interpolation p can be increased with no numerical issues
owing to the properties of Legendre polynomials; at the same time, the elements size h can
be adaptively reduced by overlaying different levels of superposition meshes s.

In this work, the ps−refinement is used to develop an advanced FEM, called the ps−FEM,
which is exploited to perform global/local analysis of laminated shells. In particular,
the p−refinement strategy is exploited to capture the smooth features of the solution
at global scale, such as the global deformation field, while the s−refinement approach is
employed to capture local effects, such as stress concentrations.

The refinement process is outlined in Figure 7. First, a global/base mesh ∆G is
defined. The resolution of ∆G is chosen to guarantee appropriate definition of the loading
and boundary conditions, and to avoid the description of the geometry using distorted
elements. Then, a p−refinement is performed until the required accuracy on the global
response is reached. Finally, the solution is s−refined with local meshes in the regions
where enhanced interpolation capability is required.

Figure 7. Refinement process in the ps−FEM.

The ps−FEM shares similar convergence features with the hp−FEM. Indeed, by in-
creasing the order of the polynomial expansion in combination with overlaid meshes, it is
possible achieve an exponential decaying global approximation error. This is true even
when the solution presents steep gradients or singular points. More insights on convergence
properties can be found in the work of [42].

In the proposed framework, three different combinations of p− and s−refinement
are allowed, namely linear, uniform, and graded ps−refinements. In the linear case [39],
the global solution is represented by a coarse high−order mesh, while locally a multi−level
s−refinement is performed with low−order meshes. The uniform and graded ps−refinement
strategies [41] are an extension of the previous one, where high−order local meshes are
employed. In the first case, the local meshes have the same order p of the global one, while
in the second case p is different from level to level.
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In principle, s−refinement can be carried out considering local meshes with arbitrary
resolution and orientation, as originally done in [30]. A simplified approach is implemented
here, inspired by the work of [41]. In particular, the elements of the refined region are
divided to half of the original size. These elements are then used to define the superposed
mesh at the upper level. This procedure allows for a quicker refinement, with no need
to iterate to correlate the generic coordinates of the local and global element domain [30].

In the ps−FEM, the shell generalized displacements for the k−th element with inter-
polation order p at the s−level mesh are:

u(ξ1, ξ2, t) = u(χ(k,s), t) =
p1+1

∑
p=1

p1+1

∑
q=1

c(1)pq (t) fp(ξ) fq(η)

v(ξ1, ξ2, t) = v(χ(k,s), t) =
p2+1

∑
r=1

p2+1

∑
s=1

c(2)rs (t) fr(ξ) fs(η)

w(ξ1, ξ2, t) = w(χ(k,s), t) =
p3+1

∑
m=1

p3+1

∑
n=1

c(3)mn(t) fm(ξ) fn(η)

φ1(ξ1, ξ2, t) = φ1(χ
(k,s), t) =

p4+1

∑
i=1

p4+1

∑
j=1

c(4)ij (t) fi(ξ) f j(η)

φ2(ξ1, ξ2, t) = φ2(χ
(k,s), t) =

p5+1

∑
k=1

p5+1

∑
l=1

c(5)kl (t) fk(ξ) fl(η) in Ω(k) (36)

where pα and c(α) (α = 1, 2, 3, 4, 5) are the element expansion order and unknown amplitude
coefficients for the displacement fields, while χ(k,s) is the vector collecting the mapping
functions between the element computational space Ω(k,s)

st and element physical space
Ω(k,s). This mapping procedure is illustrated in Figure 8. For the global mesh elements
(s=0), the vector of mapping functions is defined by Equation (30). For the superimposed
mesh elements (s > 0), the following sequence of mapping is operated:

χ(k,s) = χ(k,0) ◦Ψ(k,1) ◦ ... ◦Ψ(k,s−1) ◦Ψ(k,s) (37)

where Ψ(k,s) is the vector collecting the mapping functions between the computational do-
main of the element and the underlying one, as shown in Figure 8. Each element is therefore
provided with two set of mapping functions, the global one χ(k,s) and the local one Ψ(k,s).
These functions are required for defining the derivatives and integrating at element level.



Materials 2023, 16, 1395 14 of 33

Figure 8. Mapping procedure between local meshes and global one.

It is noted that the ps−FEM can be applied for the numerical solution of any mathemat-
ical model, such as higher−order shear deformation theories, as well as three−dimensional
elasticity theories. The effectiveness of FE techniques relying on mesh superposition has
been discussed in the literature for such problems. Examples can be found in [42], where
the hp−d−FEM is employed to solve 3D linear elastodynamic problems, and in [32,35]
where the s−FEM is employed in the context of multiple model methods.

Using the approximation of Equation (36), the energy contributions of Equation (24) are:

K(k,s) =
1
2

[
M(11)

(pq)(pq) ċ
(1)
pq ċ(1)pq + M(22)

(rs)(rs) ċ
(2)
rs ċ(2)rs + M(33)

(mn)(mn) ċ
(3)
mn ċ(3)mn + M(44)

(ij)(ij)
ċ(4)ij ċ(4)

ij
+ M(55)

(kl)(kl)
ċ(5)kl ċ(5)

kl

+2M(14)
(pq)(mn) ċ

(1)
pq ċ(4)mn + 2M(25)

(pq)(mn) ċ
(2)
pq ċ(5)mn

]
U(k,s) =

1
2

[
K(11)
(pq)(pq)c

(1)
pq c(1)pq + 2K(12)

(pq)(rs)c
(1)
pq c(2)rs + 2K(13)

(pq)(mn)c
(1)
pq c(3)mn + 2K(14)

(pq)(ij)c
(1)
pq c(4)ij + 2K(15)

(pq)(kl)c
(1)
pq c(5)kl

+K(22)
(rs)(rs)c

(2)
rs c(2)rs + 2K(23)

(rs)(mn)c
(2)
rs c(3)mn + 2K(24)

(rs)(ij)c
(2)
rs c(4)ij + 2K(25)

(rs)(kl)c
(2)
rs c(5)kl

+K(33)
(mn)(mn)c

(3)
mnc(3)mn + 2K(34)

(mn)(ij)c
(3)
pq c(4)ij + 2K(35)

(mn)(kl)c
(3)
pq c(5)kl

+K(44)
(ij)(ij)

c(4)ij c(4)
ij

+ 2K(45)
(ij)(kl)c

(4)
ij c(5)kl

+K(55)
(kl)(kl)

c(5)kl c(5)
kl

+N (133)
(pq)(mn)(mn)c

(1)
pq c(3)mnc(3)mn +N

(233)
(rs)(mn)(mn)c

(2)
rs c(3)mnc(3)mn +N

(433)
(ij)(mn)(mn)c

(4)
ij c(3)mnc(3)mn

+N (533)
(kl)(mn)(mn)c

(5)
kl c(3)mnc(3)mn +N

(333)
(mn)(mn)(m̃n)c

(3)
mnc(3)mnc(3)m̃n +N(3333)

(mn)(mn)(m̃n)(m̂n)c
(3)
mnc(3)mnc(3)m̃nc(3)m̂n

]
V(k,s) =P(1)

pq c(1)pq + P(2)
rs c(2)rs + P(3)

mn c(3)mn (38)

where use is made of the index notation presented in [48]. According to this notation,
apq represents a vector, A(pq)(rs), A(pq)(rs)(mn), A(pq)(rs)(mn)(ij) are second−, third− and
fourth−order fourth−order arrays.

By application of Hamilton’s principle to the generic element, the following kernel
is obtained:
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∫ t2

t1

δΠ(k,s)dt = δc(k,s)T
M(k,s) c̈(k,s) + δc(k,s)T

K(k,s)c(k,s) + δc(k,s)P(k,s) = 0 (39)

where u(k,s) is the vector collecting the element degrees of freedom, M(k,s), K(k,s), P(k,s) are
the element stiffness, mass matrices, and load vector.

Upon assembly of the contributions of all elements, the governing equations are
obtained as follows:

Mc̈ + Kc + N2c + N3c = P (40)

where M, K and P are the global mass, linear stiffness matrices and vector of external loads,
respectively, while N2 and N3 are the nonlinear contributions due to cubic and quartic
terms in the elastic energy, respectively. The set of ODEs reported in Equation (40) describe
the nonlinear dynamics of the shell and can be solved via implicit or explicit integration
techniques. In this work, the discussion is restricted to the quasi−static case, so the relevant
equations simplify to:

Kc + N2c + N3c = P (41)

for which the solution is computed by referring to the Newton–Raphson method.

4. Results

This section presents applications of ps−FEM to laminated shell problems.
The method has been implemented in a Matlab environment, while all analysis have
been run on a laptop with the following characteristics: 1.4 GHz Intel Core i7 processor,
16 GB 1867 MHz LPDDR3 memory, Intel HD Graphics 6,151,536 MB.

In the first part of the section, a series of validation studies is proposed. Then, the nu-
merical technique proposed herein is exploited to solve exemplary test cases for laminated
shell problems. The potential of the ps−refinement is illustrated against classical h− and
p−refinements for linear and geometrically nonlinear problems.

4.1. Validation
4.1.1. Test Case 1: Vibrations of Elliptical Shells

The first study aims at validating the shell model implemented and, for this purpose,
the vibration response is studied for three elliptical cylindrical shells. The test case is taken
from the literature [49] and covers the case of shells characterized by different eccentricities
e. The position vector of the reference surface is expressed as:

r(ξ1, ξ2) = ξ1ex +RA sin (ξ2)ey +RB cos (ξ2)ez for ξ1 ∈ [0, L] and ξ2 ∈ [0, 2π] (42)

where RA and RB are the semi−major and semi−minor axis, respectively, while L is
the length. A sketch of the shell is provided in Figure 9, while the geometric configurations
considered in this study are summarized in Table 1. The shells are made of an aluminum
whose properties are E = 68, 950 MPa, ν = 0.3, and ρ = 2766 kgm/3. Clamped−free
boundary conditions are considered.

Table 1. Shell geometry.

L (mm) RA (mm) RB (mm) e (-)

Shell 1 594.9188 304.8000 304.8000 0.0000
Shell 2 595.3250 328.9300 279.6540 0.5265
Shell 3 595.3760 365.5060 237.4900 0.7601
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Figure 9. Cylindrical elliptical shell: geometry.

The numerical model consists of a coarse mesh with five elements along the circum-
ferential direction and two along the axial one, see Figure 10. The polynomial order is
p = 10.

Figure 10. Cylindrical elliptical shell: mesh.

The results are reported in Table 2 for the first ten natural frequencies. A comparison
is illustrated against the reference results taken from [49], where the same shell kinemat-
ics and geometric formulation were adopted. In [49] the shell governing equations are
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expressed in strong−form and are solved using the generalized differential quadrature
method. Excellent matching is achieved for the reported frequencies, where the error
is evaluated as E% = |ω − ωref|/ωref × 100. For the reported modes, the percentage er-
rors are of the order of E% = 10−2 − 10−3. The almost perfect agreement gives evidence
of the correct implementation of the shell geometry and kinematics.

Table 2. Natural frequencies ω (rad/s) for elliptical shells with different eccentricities e. Subscript:
percent difference against ref. [49].

Mode N° e = 0.0000 e = 0.5265 e = 0.7601

1 611.2500(0.0031) 597.7019(0.0033) 539.5629(0.0041)

2 611.2500(0.0031) 597.7020(0.0034) 539.5683(0.0059)

3 643.1510(0.0003) 618.4085(0.0016) 542.8651(0.0025)

4 643.1510(0.0003) 618.4086(0.0015) 542.8681(0.0023)

5 701.4954(0.0042) 712.9803(0.0025) 715.4793(0.0009)

6 701.4954(0.0042) 712.9810(0.0025) 715.5105(0.0049)

7 857.9875(0.0014) 847.2782(0.0010) 785.3787(0.0042)

8 857.9875(0.0014) 847.2840(0.0014) 785.5405(0.0080)

9 864.4224(0.0025) 870.6317(0.0001) 892.8773(0.0072)

10 864.4224(0.0025) 870.6408(0.0003) 893.0180(0.0147)

4.1.2. Test Case 2: Vibration of Variable Stiffness Plate

The second study aims at validating the ability of the proposed numerical code to han-
dle the case of structures with non−uniform stiffness. In this regards, the example presented
herein provides a validation of the correctness of the constitutive law implemented [50].

A free vibration analysis is conducted by considering a variable stiffness (VS) rect-
angular laminate, as illustrated in Figure 11. In particular, the geometry is defined by
a = b = 300 mm and t = 1.2 mm. The material is characterized by the following elas-
tic properties: E11 = 10,000 MPa, E22 = 9000 MPa, G12 = G13 = G23 = 5000 MPa,
ν12 = ν13 = ν23 = 0.3. The stacking sequence is described in compact manner as [±T ]2s,
where the entries of the the matrix T are:

T = 〈T11|T12〉 with T11 = −45 and T12 = {45, 30, 15, 0,−15,−30,−45} (43)

where different values of T12 define different fiber paths. Starting from the configurations
defined by Equation (43), the local fiber orientation is obtained by referring to Equation (16).

Figure 11. Variable stiffness plate—Geometry.
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The VS plate is clamped at the four edges and is modeled with one single element
of polynomial order p. The results are presented in terms of the first nondimensional
frequency Ω = ωa

√
ρ/E22 in Table 3. The comparison against the reference results is pro-

vided by considering different degrees of p−refinement. As shown, the FE results converge
quickly upon p−refinement with frequencies converging from above. This behavior is mo-
tivated by the hierarchical properties of the Legendre expansion [6]. It is important to note
that different FE discretizations may imply different distributions of the elastic properties
leading to nonmonothonic convergence of the solution. The comparison of the converged
frequencies with the reference ones [50] provides differences below 1%, thus illustrating
the possibility of successfully handling structures with non−uniform elastic properties
within the present framework.

Table 3. Natural frequencies (rad/s) of rectangular plate with different variable stiffness layups.
Subscript: percent difference against ref. [50].

p 〈−45|45〉 〈−45|30〉 〈−45|15〉 〈−45|0〉 〈−45|−15〉 〈−45|−30〉 〈−45|−45〉

4 0.0894(3.95) 0.0966(1.68) 0.1028(1.78) 0.1058(2.72) 0.1049(0.87) 0.1010(1.00) 0.0962(0.21)

6 0.0882(2.56) 0.0957(0.74) 0.1016(0.59) 0.1044(1.36) 0.1037(−0.29) 0.1005(0.50) 0.0960(0.00)

8 0.0868(0.93) 0.0948(−0.21) 0.1011(0.10) 0.1040(0.97) 0.1035(−0.48) 0.1004(0.40) 0.0959(−0.10)

10 0.0866(0.70) 0.0946(−0.42) 0.1009(−0.10) 0.1039(0.87) 0.1035(−0.48) 0.1004(0.40) 0.0959(−0.10)

4.1.3. Test Case 3: Static Analysis of Plate with Cutout

This test case deals with the static analysis of plate with circular cutout loaded in trac-
tion. The presence of the cutout determines the onset of stress concentrations, thus provid-
ing a useful mean for investigating the validity of the proposed ps−refinement strategies.

The plate, an illustration of which is reported in Figure 12, is characterized by di-
mensions a = 75 mm, b = 50 mm and r = 10 mm. The elastic properties considered
for the material are: E11 = 1,500,00 MPa, E22 = 9000 MPa, G12 = G13 = G23 = 5000 MPa,
ν12 = ν13 = ν23 = 0.32. A quasi−isotropic layup [±45, 90, 0]s is considered and each ply
has thickness tply = 1 mm. The traction load is prescribed at two parallel edges with
magnitude Nxx = 100 N/mm. The FE model is restricted to a quarter of the full structure
owing to the double symmetry of the problem.

Figure 12. Plate with cutout: geometry.
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The s−refinement strategy is considered for designing the mesh of the numerical
model. In particular, a base mesh having five elements with polynomial order p is super-
posed with s = 5 levels of overlaying meshes of decreasing size, as illustrated in Figure 13.
In the validation, the order p is increased until convergence of the global solution is reached.
The number of overlaying layers s is selected to have a proper representation of the lo-
cal response, while the resolution of the base mesh (number/size of elements) is chosen
to guarantee the appropriate subdivision of the domain for performing s−refinements
in the regions of interest. Specifically, the overlaying meshes are placed around the corners
of the cutout, where stress gradients are expected.

Figure 13. Plate with cutout — static analysis: (a) Base mesh, (b) s−refined mesh.

Three FE models employing the ps−refinement strategies illustrated in Figure 7
are set up for the validation study. The interpolation order of the superimposing ele-
ments are ps = 1 and ps = p for the linear and uniform ps−refinement, respectively.
Regarding the graded ps−refinement, the polynomial order ps is set according to the
following law:

ps = p− floor
( s

m

)
(44)

where m is a constant that controls the rate of decrease of p for increasing levels s. The
law of Equation (44) will be adopted in the rest of this work for the graded ps−refinement
strategy, unless otherwise specified. In the present study, the ps−refinements are performed
fixing the mesh and increasing the polynomial degree of the elements on the global mesh p,
while the order of the overlaying elements ps is adjusted according to the specific refinement
strategy, i.e., linear, uniform, or graded.

The validation is carried out using a FE model realized in Abaqus with S4 shell
elements. A preliminary convergence study was carried out with this model. Based on this
study, the total number of elements has been taken equal to 350,000 elements (h−refinement)
to guarantee convergence. The corresponding number of membrane degrees of freedom
is 7 × 105, approximately. Results are shown in Table 4 for different types and levels
of ps−refinements, and are presented in terms of nondimensional elastic energy:

U = U
E11

N2
xxr2t3

(45)

From Table 4, it can be seen that the nondimensional elastic energies of the three FE
models approach the reference one as p is increased. In particular, one can note a quick
monotonic convergence from below, i.e., the strain energy increases as the FE models are
more refined. This is an expected behaviour as the numerical model becomes more flexible
with an increasing number of degrees of freedom. For the linear and graded ps−refinement
strategies, convergence is reached with p = 5. Regarding the uniform ps−refinement,
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convergence is achieved with a slightly lower polynomial order (p = 4). This is due to the
use of high−order elements in the upper mesh levels which enable us to obtain a higher
approximation capability.

Table 4. Convergence of nondimensional energy for different ps−refinement strategies.

Linear
ps-Refinement

Uniform
ps-Refinement

Graded
ps-Refinement

(m = 1)
ps = 1 ps = p ps = p – floor

( s
m
)

p = 1 52.4124 52.4570 52.3428
p = 2 52.5307 52.5348 52.5254
p = 3 52.5433 52.5439 52.5433
p = 4 52.5445 52.5446 52.5445
p = 5 52.5446 52.5446 52.5446
p = 6 52.5446 52.5446 52.5446

Reference 52.5446

In Figure 14, the convergence curves are presented for the stress resultant Nxx mea-
sured at (ξ1, ξ2) = (0, r) for the three FE models considered for the validation. In all
cases, one can note a strong and non−monotonic convergence of Nxx to the reference
value of 378.26 MPa. The curves in Figure 14 provide insights on the local convergence
rate of the ps−refinement strategies. For the present problem, convergence of the stress
measures is reached for approximately 103 degrees of freedom, which is much lower than
the one required by the reference model where a h−refinement was employed.

Figure 14. Computed values of Nxx at (ξ1, ξ2) = (0, r) for different levels and types of ps−refinement:
(a) linear, (b) uniform, and (c) graded.
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The consistency of these results, both in terms of global and local quantities, provide
a validation for the ps−refinement strategies implemented in this work.

4.2. Applications
4.2.1. Example 1: Vibration and Buckling of a Highly Anisotropic Laminated Plate

The first application of the ps−FEM is an example taken from [51], and relates to
the vibration and buckling analysis of a highly anisotropic composite plate. The follow-
ing data are considered for the analysis: a/b = 1 and a/t = 100,000, see Figure 11.
The material has elastic properties given by: E11 = 393,000 MPa, E22 = 5030 MPa,
G12 = G13 = G23 = 5240 MPa, ν12 = ν13 = ν23 = 0.31, ρ = 1500 kg/m3. The plate is
a laminate with a single ply oriented at θ = 45. Simply supported boundary conditions are
considered along the four edges, while uniform edge−shortening conditions are considered
for the buckling analysis.

This problem has been studied in previous efforts in the literature due to its challeng-
ing convergence features. The eigenvalues of the problem, both for free vibrations and
buckling, tend to convergence with a slow rate as a consequence of the high orthotropy
ratio E11/E22 = 73.36, whose effects are exacerbated by the 45−oriented ply. Indeed,
this orientation promotes strong bending/twisting elastic couplings with highly localized
gradients in the modal shapes.

Two meshes are realized for conducting the numerical tests. The first one is a mesh with
5 × 5 quadrilateral elements, see Figure 15a. The second one is a s−refined mesh, whose
features are outlined in Figure 15b; the s−refinement is obtained starting from the base
mesh 5 × 5 and adding 15 layers of overlaying meshes. The refinement is conducted
to allow local effects arising from vibration and buckling modes to be accurately captured.

Figure 15. Highlyanisotropic plate – vibration and buckling analysis: (a) Base mesh, (b) s−refined
mesh.

Starting from these two meshes, five FE models are developed to illustrate the ef-
fect of different refinement strategies. The first two models, h− and p−models, em-
ploy the mesh in Figure 15a and implement the h− and p−refinement strategies, respec-
tively. The other three models, ps−L−, ps−U−, and ps−G−models, are constructed
from the s−refined mesh in Figure 15b and adopt the linear (L), uniform (U), and graded
(G) ps−refinement strategies, respectively. A summary of the FE models is reported in
Table 5, whose nomenclature will be used for the other examples reported next.



Materials 2023, 16, 1395 22 of 33

Table 5. Nomenclature for finite element models.

Refinement
Strategy

Mesh Resolution
(h)

Polynomial
Order (p)

Superposition
Levels (s)

h−model h Increased Fixed -
p−model p Fixed Increased -

ps−L−model Linear ps Fixed Increased Increased, ps = 1
ps−U−model Uniform ps Fixed Increased Increased, ps = p

ps−G−model Graded ps Fixed Increased Increased, ps set
with Equation (44)

In absence of available exact solutions, the first step consists of obtaining highly accu-
rate results to be used as a reference for comparing the five models later. The ps−U−model
is used for this scope. The results are summarized in Table 6 in terms of nondimensional
frequency and buckling load, defined as:

ω̂ = ω
a2

t

√
ρ

E22
, N̂xx = Nxx

a2

E22t3 (46)

where Nxx is the force per unit length on the loaded edges.

Table 6. Nondimensional frequency ω̂ and buckling load N̂xx for a SSSS anisotropic plate using
a uniform ps−refinement strategy.

Number of Unknowns ω̂ N̂xx

p = 1 1119 24.9319 52.5977
p = 2 2714 22.0819 31.6995
p = 3 4999 21.9341 30.2107
p = 4 7974 21.9289 30.1487
p = 5 11,639 21.9267 30.1416
p = 6 15,994 21.9264 30.1407
p = 7 21,039 21.9263 30.1402

As shown, a value of p = 7 guarantees convergence up to the third digit for both
vibration and buckling parameters. These values are retained as references for computing
the errors obtained with different refinement strategies.

The vibration and buckling mode shapes are illustrated in Figures 16 and 17. Both modes are
characterized by one single−skew half−wave, where stretching occurs in the direction of fibers,
i.e., θ = 45. From Figures 16a and 17a, one can note that the deflected shape w is smooth
in most of the domain apart from the two corners. Here, it is possible to note highly localized
effects, as evident from the plots of the twisting moments Mxy in Figures 16b and 17b where
strong stress concentrations are observed. This will have drastic consequences on the convergence
of the fundamental frequency and critical buckling load.
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Figure 16. Highly anisotropic plate: mode shapes for free vibration analysis: (a) deflection shape and
(b) twisting moment.

Figure 17. Highly anisotropic plate: mode shapes for buckling analysis: (a) deflection shape and
(b) twisting moment.
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The relative errors percentage from the numerical models of Table 5 are summarized
in Figure 18, where an additional curve in the results of [51], i.e., Ritz p−refinement, is
reported. The plots report the logarithmic relative errors percentage evaluated against
the reference solutions.

Figure 18. Highly anisotropic plate: convergence for different refinement strategies: (a) nondimen-
sional fundamental frequency and (b) nondimensional buckling load.

Despite quantitative distinctions, similar trends are observed for the frequency and
the buckling results, the latter requiring more degrees of freedom for a fixed corresponding
error. From Figure 18, the fast convergence rate achieved with the uniform and graded
ps−refinements is clearly visible. In particular, the ps−U− and ps−G−refinements out-
perform FE models implementing standard h− and p−refinement approaches. This effect
is clear from the error−to−degrees−of−freedom ratio of the nondimensional frequency
and buckling load in Figure 18, with the ps−U− and ps−G−models presenting the curves
with the steepest slopes. The excellent convergence properties just shown are made pos-
sible by the flexibility of the approach presented here: the degrees of freedom can be
employed to refine specific areas of the domain with no need of generating transition re-
gions, where refinement is not useful in terms of solution accuracy, but is a mean to generate
compatible meshes.

The plots of Figure 18 allow us to distinguish regions where the adoption of a re-
finement strategy is advantageous over the others. For instance, percentage errors E%
of the order of 0.1–1% suggest the adoption of a p−refinement strategy. On the contrary,
if stricter requirements are set, the ps−refinements provide the best mean for solving
the problem, with uniform and graded strategies as the most effective ones.

Benchmark results

The previous section demonstrated the advantages of the ps−FEM in deriving highly
accurate solutions with relatively low computational costs. The proposed ps−FEM frame-
work is then exploited to provide reference results to be used for comparison purposes
in future studies in the field.

The same plate considered earlier are studied, but the investigation is now extended to dif-
ferent orientation angles, θ = [30, 45, 60], and orthotropic ratios, E11/E22 = [73.36, 40, 20, 10].
By combining these values, twelve plates with different levels of anisotropy are obtained.

The analyses are performed using the ps−U−model considered in Table 6. The mesh
is illustrated in Figure 15b, and the corresponding total number of degrees of freedom is
approximately 2× 104.

A summary of the results is provided in Table 7 in terms of the nondimensional
eigenvalues according to Equation (46). The results are compared with the predictions
obtained using the Ritz method proposed in [51]. Specifically, the Ritz predictions are
obtained by expanding the unknowns with 250 × 250 Ritz functions, corresponding
to a total of 6× 104 degrees of freedom, i.e., six times higher than the present model.
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As shown, the eigenvalues obtained via ps−U−model are always smaller than the Ritz
ones. Owing to the convergence properties of the solution (the eigenvalues converge
from above) the present results are thus more accurate. The maximum differences are
reached for the plate with E11/E22 = 73.36 and θ = 45, which corresponds to the largest
degree of anisotropy. Note, for the buckling load, the difference is as high as 0.40%, approx-
imately, with respect to an already refined solution. The difference between the present and
reference results becomes smaller as the degree of anisotropy is reduced either by reducing
the off−axis angle or the orthotropy ratio.

Table 7. Nondimensional frequencies ω̂ and buckling load N̂xx for SSSS plates with different degrees
of anisotropy.

E11/E22
ω̂ N̂xx

ps-FEM Ritz Method %diff ps-FEM Ritz Method %diff

θ = 30 73.64 22.6796 22.6929 0.0584 38.7882 38.8328 0.1148
40 17.9948 17.9913 0.0195 26.7974 26.7858 0.0432
20 14.0520 14.0524 0.0032 17.7050 17.7064 0.0078
10 11.1987 11.1987 0.0004 11.8977 11.8978 0.0007

θ = 45 73.64 21.9263 21.9674 0.1873 30.1402 30.2538 0.3754
40 17.6666 17.6557 0.0619 22.9941 22.9633 0.1339
20 13.9480 13.9496 0.0115 16.4120 16.4163 0.0262
10 11.1537 11.1538 0.0010 11.4625 11.4628 0.0024

θ = 60 73.64 22.6796 22.6929 0.0584 24.1328 24.1571 0.1005
40 17.9948 17.9913 0.0195 19.3018 19.2959 0.0307
20 14.0520 14.0524 0.0032 15.0556 15.0563 0.0050
10 11.1987 11.1987 0.0004 11.7175 11.7176 0.0010

4.2.2. Example 2: Stress Analysis of Variable Stiffness Elliptical Shell

The response of a cylindrical laminated shell is investigated under the effect of a static
point load. The shell has an elliptical cross−section with semi−axes RA = 1000 mm and
RB = 500 mm, total thickness t = 10 mm, and length L = 2000 mm. The sketch of the struc-
ture is reported in Figure 9. The material has elastic properties E11 = 150,000 MPa,
E22 = 9000 MPa, G12 = G13 = G23 = 5000 MPa, ν12 = ν13 = ν23 = 0.32, while the stacking
sequence is given as:

[±T ]s with T = [30, 45, 30] (47)

where the fiber path is obtained via Equation (15). The shell is clamped at both ends and is
loaded with a transverse point load with magnitude P = 100 N and applied at (ξ1, ξ2) =
(L/2, 3/2π). This loading condition is of interest due to the localized phenomena associated
with the concentrated force and finds practical application in tests such as the single perturbation
load analysis (SPLA) [52], used for the assessment of shell imperfection sensitivity.

Two FE models are developed and compared. The two models share the same number
of degrees of freedom, 104, approximately, but have different features for the meshing
strategy. The first model relies upon a p−refinement strategy (p−model) and is presented
in Figure 19a. Its mesh has 8 × 8 elements, i.e., four elements along the circumferential and
the axial directions, with a polynomial order p = 11.

The second model adopts the s−refined mesh illustrated in Figure 19b. The base mesh
is unaltered with respect to the p−model. A local refinement is introduced with s = 5 layers
of overlaying meshes in the surroundings of the loaded region. The uniform ps−refinement
strategy (ps−U−model) is considered, with the polynomial order of the base elements set
to p = 5.
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Figure 19. Variable Stiffness cylindrical elliptical shell – static analysis: (a) Base mesh, (b) s−refined mesh.

The plots of the out−of−plane displacement w and the stress component σ22 on the out-
most ply at ξ2 = 3/2π are illustrated in Figure 20. Similar results are obtained for the
two models in terms of deflections, as shown in Figure 20a.

Figure 20. Variable stiffness cylindrical elliptical shell: comparison between p− and ps−U−models:
(a) displacement and (b) normal stress field.

The advantages of the ps−refinement are clear when addressing the predicted stress
σ22 in Figure 20b, where the discrepancies between the two models are noticeable. An excel-
lent prediction of the stress gradient, which is particularly exacerbated close in the loaded
region, is achieved via ps−refinement. The comparison between the peak values of the two
models reveals an underprediction of the p−model that is close to 60%.

The contour of the stress is reported in Figure 21. As shown, the p−model so-
lution presents severe oscillations in the surroundings of the stress peak (Figure 21a).
This phenomenon is typically observed in high−order approximations when the solution
displays steep gradients or discontinuities. Oscillations are greatly attenuated in the case
of the ps−refined solution, as revealed by Figure 21b. These results provide a clear insight
into the advantages of the proposed strategy. By recalling that the two models rely upon
the same number of unknowns, evidence is given on the superiority of the ps−refinement
strategy for problem characterized by strong gradients. As a matter of fact, the combination
of p− and s−refinements allows us to combine the advantages of both strategies. The ability
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of high−order approximations is exploited to capture effectively the global response, while
the superposed mesh provides an embedded approach suitable for detecting local effects.

Figure 21. Variable stiffness cylindrical elliptical shell: stress field σ22: (a) p−model and (b) ps−U−model.

4.2.3. Example 3: Snap−back of Cylindrical Panel

The static nonlinear response of a shell is discussed in this closing example. The test
case is taken from [53] and considers an isotropic cylindrical panel loaded by a point force
applied at its center and directed inward. The panel is illustrated in Figure 22, where
the following parameters are considered: a = b = 50.8 mm, R = 254 mm, t = 0.635 mm.
An isotropic material is considered with Young modulus E = 310.125 MPa and Poisson
ratio ν = 0.3. The panel is under simply−supported boundary conditions along the straight
edges, ξ2 = 0, b, while free conditions are imposed along the curved ones, ξ1 = 0, a.

Figure 22. Geometry of cylindrical panel.

The results are presented by comparing the h−model, p−model and ps−L−model
of Table 5. In all cases, the symmetry of the problem is exploited by modeling one quarter
of the structure and imposing symmetry boundary conditions.

A convergence study is performed by considering two levels of refinement for each
model, as displayed in Figure 23. The h−refinement procedure is performed for a fixed
polynomial order p = 1, with increased mesh resolution, as reported in Figure 23a. The
p−refinement strategy is carried out by increasing the polynomial order, p = 1, 3, 6,
on a mesh of 2 × 2 element, see Figure 23b. The ps−refinement is performed by increasing
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both the polynomial order p and the degree of s−refinement of the mesh s. More specifi-
cally, the p− and s−orders are increased simultaneously with steps of one (p = 1, 2, 3) and
five (s = 0, 5, 10), respectively, see Figure 23c. For clarity, a summary of the FE refinement
parameters is presented in Table 8 along with the number of degrees of freedom.

Figure 23. Cylindrical panel: refinement strategies: (a) h, (b) p, (c) ps−linear.

Table 8. Summary of the refinement parameters of the FE models used for solving the application
example 3.

Refinement Number
of Unknowns h p s

h−model 91 2 × 2 1 -
1 343 4 × 4 1 -
2 1327 8 × 8 1 -

p−model 91 2 × 2 1 -
1 343 2 × 2 3 -
2 1021 2 × 2 6 -

ps−L−model 91 2 × 2 1 0
1 252 2 × 2 2 5
2 453 2 × 2 3 10

The results are presented in terms of load−deflection curves in Figure 24. An arc−length
continuation procedure has been implemented for capturing the snap−back.
As shown, all the solutions converge to the reference one provided sufficient refinement
steps are performed. In particular, the results of Figure 24a demonstrate that 2 steps of re-
finement, leading to a total of 1327 dofs, are required for the h−model. On the contrary,
one single step of refinement is needed for the p−model and the ps−L−model, as clear
from the plots of Figure 24b,c. In these cases, the number of degrees of freedom is one
order of magnitude lower for the p−model (343) and ps−L−model (252). These results
demonstrate the advantage implied by the use of appropriate meshing and refinement
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strategies. Through a comparison of the p− and ps−refinement strategies with a classi-
cal h−refinement approach, the quality of the predictions is preserved, but the number
of degrees of freedom can be as low as 1/5. This saving becomes even more important
in the context of nonlinear analyses, where the overall process requires repeated matrix
factorizations and linear systems to be solved.

Figure 24. Cylindrical panel: load−deflection curves for different levels of (a) h−, (b) p− and
(c) ps−refinements.
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5. Conclusions

This paper dealt with the application of the ps−version of the finite element method
to the analysis of composite thin shells. The approach relies on the possibility of superposing
multiple local meshes in arbitrary regions to refine the solution only where actually needed.
No transition meshes are required nor special−purpose elements to connect areas with
different grid densities.

The implementation proposed herein allows a wide class of structures to be analyzed,
including shells with arbitrary curvature and innovative materials with variable in−plane
elastic properties. Both geometrically linear and nonlinear features are introduced. Three
different combinations of p− and s−refinements were considered, although other strategies
could be easily developed and implemented.

The proposed advanced refinement technique is useful under several circumstances
in the analysis of composite shells. The results illustrate this aspect for the case of local
stress concentrations, where the possibility of superposing multiple layers of refinement can
be exploited to achieve accurate stress predictions with reduced effort. For 2D laminated
structures, advanced refinement can be of interest even in case of global responses, such as
for the eigenanalysis of highly anisotropic plates. Indeed, owing to complex elastic cou-
plings, the ability to capture local effects can have a drastic influence also on the predictions
at a global level. For these problems, conventional methods based on high−order global
approximations can be unsuitable if refined predictions are of concern. Among the different
combinations of p− and s−refinements considered in the various test cases, no optimal
choice can be established ex ante. The choice is, in general, problem−dependent.

The inherently hierarchical nature of the proposed tool suggests its use at different
stages of the design process of composite shells. In the early design phases, simplified
models with one or few macro elements with high−order interpolation can be the most
suitable way for obtaining quick estimates. In more advanced phases, when increased
detail is needed, the models can be easily improved by exploiting the local refinement
capabilities to maximize the ratio between accuracy and number of degrees of freedom.
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Appendix A

The components of the vectors of generalized strains ε0, k and γ0 are:
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