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Abstract: Creep deformation is an important aspect of magnesium phosphate cement (MPC) used as
a structural material. In this study, the shrinkage and creep deformation behaviors of three different
MPC concretes were observed for 550 days. The mechanical properties, phase composition, pore
structure, and microstructure of MPC concretes after shrinkage and creep tests were investigated.
The results showed that the shrinkage and creep strains of MPC concretes stabilized in the ranges of
−140 to −170 µε and −200 to −240 µε, respectively. The low water-to-binder ratio and the formation
of crystalline struvite were responsible for such low deformation. The creep strain had almost no
effect on the phase composition; however, it increased the crystal size of struvite and reduced the
porosity, especially the volume of pores with diameters <20 nm and >200 nm. The modification of
struvite and densification of microstructure led to an improvement in both compressive strength and
splitting tensile strength.

Keywords: magnesium phosphate cement concrete; shrinkage; creep; mechanical properties;
microstructure

1. Introduction

Magnesium phosphate cement (MPC) is a kind of clinker-free cement, also known as
chemically bonded magnesium phosphate ceramic, which is prepared mainly by blending
dead-burned magnesia (MgO) with acid phosphate [1]. Ammonium dihydrogen phosphate
(NH4H2PO4) [2,3] and potassium dihydrogen phosphate (KH2PO4) [4–9] are the most
commonly used acid phosphates for fabricating MPC. The acid-base neutralization reaction
between MgO and phosphate to form struvite or k-struvite is the principal driving force of
MPC’s microstructure and performance development [5,10–12]. Generally, the principal
hydration and hardening reaction of MPC can be described using Equations (1) or (2):

MgO + NH4H2PO4+5H2O → NH4MgPO4·6H2O (struvite) (1)

MgO + KH2PO4+5H2O → KMgPO4·6H2O (k-struvite) (2)

Struvite or k-struvite provides cementitious properties for the MPC system. When
compared with ordinary Portland cement (OPC) and other inorganic binders, MPC shows
an array of merits because of its unique reaction mechanisms and microstructural charac-
teristics. These include rapid setting [13,14], low alkalinity [15], high early and long-term
strength [3,13], low drying shrinkage [3,16], excellent bonding properties [17], good salt cor-
rosion resistance [18], and fire resistance [19]. Due to these properties, MPC becomes very
attractive in a wide range of applications, including (but not limited to) rapid repairing and
reinforcement of existing concrete structures (e.g., bridges, buildings) [14,20–22], coating
materials for steel and concrete [19–21], and potential binders for conditioning and encap-
sulating nuclear wastes [20,21,23]. Recent research also involved its use in biomaterials due
to its good biocompatibility and antibacterial properties [24].

Despite the recognition of MPC, it still has several important properties that have not
been studied adequately, for instance, shrinkage and creep behaviors. Some experimental
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studies have been conducted on the free shrinkage of MPC materials. MPC develops very
low shrinkage at an early age when compared to OPC, as shown by several studies [15,16].
Li [25] reported that the 28-day drying shrinkage of MPC mortar only corresponded to
10–25% of that of OPC concrete. These investigations mainly focused on the short-term
shrinkage of MPC pastes or mortars (within 1 year). However, for massive structures
applications, the study of long-term shrinkage of MPC concrete is equally essential.

In addition to shrinkage, creep is also a particularly important aspect of MPC used
as a structural material. Creep is the deformation of concrete under sustained loading,
which may lead to an excessive deflection of the concrete structure and even cause severe
serviceability problems [26,27]. MPC concrete generally exhibits much higher strength
than OPC concrete at an early age [14]. This allows MPC concrete to have an earlier
loading time in structural applications, such as prefabricated buildings and prestressed
engineering. In the case of prestressed concrete structures, creep must be known in advance
since creep is used to calculate the prestressing losses, which is important for the safety of
concrete structures [28]. In addition, creep loading can significantly affect the long-term
characteristics of concrete [29]. However, scarce information is available on the creep
performance of MPC concrete and its influence on long-term microstructure and properties.

In this context, this paper focuses on studying the long-term deformation of MPC
concretes, where three MPC concretes with different contents and gradations of coarse
aggregates were designed, and their drying shrinkage and creep were monitored for
550 days under natural (indoor) curing conditions. The mechanical strengths, phase
composition, pore structure and microstructure of MPC concretes after shrinkage and
creep test were investigated to evaluate the influence of creep strain on the mechanical and
microstructural properties. This work may be the first experimental study on the creep of
MPC concrete, which will provide preliminary knowledge of the long-term deformation of
MPC concrete under sustained stress.

2. Materials and Methods
2.1. Raw Materials

Commercial MPC was supplied by Guizhou Linmei Materials Co., Ltd., Guiyang,
China. The main components of this cement were dead-burned MgO, ammonium dihydro-
gen phosphate (NH4H2PO4), and borax decahydrate (Na2B4O7·10H2O). F-class fly ash (FA)
obtained from a local coal-fired thermal power station, with a surface area of 3850 cm2/g
and a density of 2.80 g/cm3, was incorporated into the binder. The chemical compositions
of MPC and FA are shown in Table 1. The aggregates used in this study were natural sand
with a specific gravity of 2.58 and fine/coarse gravel with a specific gravity of 2.61. The
maximum particle size of natural sand, fine gravel, and coarse gravel were 4.75, 9.5, and
26.5 mm, respectively. The cumulative sieve residue curves of natural sand and gravel are
shown in Figure 1.
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Table 1. Chemical compositions of MPC and FA (wt.%).

Compound MgO P2O5 SiO2 Al2O3 Fe2O3 CaO TiO2 Na2O SO3 K2O MnO

MPC 57.85 17.01 11.80 6.36 2.20 1.26 1.04 0.78 0.45 0.26 0.18
FA 1.32 - 50.30 27.78 6.08 5.01 1.99 - 1.05 - -

2.2. Concrete Mixture and Sample Preparation

The mix proportions of MPC concrete are shown in Table 2. Three MPC concrete mixes
designated as M1, M2, and M3 were fabricated. In all the mixes, the FA replacement level
in MPC was 10 wt.%, the water-to-binder (w/b) ratio of all formulations was fixed at 0.17,
and the ratio of sand to gravel was kept at 0.5. M2 had higher binder content and lower
aggregate content in comparison to M1. In the production of M3, the amount of coarse
gravel was reduced, and the content of fine gravel was increased in comparison to M2.

Table 2. The mix of MPC concrete per unit volume (kg/m3).

Sample MPC FA Sand Coarse Gravel Fine Gravel Water

M1 585 65 600 1200 0 110
M2 630 70 580 1160 0 119
M3 630 70 580 780 380 119

The ingredients were weighed in designated proportions and then thoroughly mixed
for 3 min in a single horizontal-axis-forced concrete mixer after adding water. The fresh
mix was poured into specific molds and then vibrated for 30 s on the vibration table. After
3 h of casting, the specimens were demolded and further cured in a laboratory (indoor
environment) until the testing age.

2.3. Test Methods

Three identical prismatic specimens with dimensions of 100 mm × 100 mm × 515 mm
were prepared for each mix and used to measure unrestrained shrinkage following GB/T
50082-2009 [30]. These shrinkage specimens are also referred to as “unloaded” specimens
or as MX-S series (where MX represents M1, M2, or M3). Prepared shrinkage specimens
were vertically placed in the shrinkage test frame and a dial gauge was mounted on the top
of each prism, as shown in Figure 2a. The first dial gauge readings were recorded 3 days
after molding. Thereafter, specimen lengths were periodically measured for 550 days. The
shrinkage test was performed in a laboratory room. The shrinkage strains over time were
calculated by using Equation (3). The final shrinkage strain value of each mix reported was
averaged from three specimens.

εst= (L 0 − Lt)/Lb (3)

where εst represents shrinkage strain at the age of t (day), Lb = 500 mm represents the
effective length of the specimen that eliminates the embedded length of the copper head
in the top end, L0 represents the initial length of the specimen (mm) and Lt represents the
length measured at the age of t (day) (mm).

The prism strength of concrete is essential for investigating compressive creep under
a certain stress–strength ratio. The compressive strength was measured from 100 mm ×
100 mm × 300 mm prisms, as per GB/T 50081-2019 [31]. The creep was determined on
100 mm × 100 mm × 400 mm prisms 3 days after molding, according to GB/T 50082-
2009 [30]. The applied compressive stress corresponded to 40% of the average 3-day
prismatic compressive strength. These creep specimens are also referred to as “loaded”
specimens or as MX-C series (where MX represents M1, M2, or M3). For each creep
test, two specimens were stacked in the creep test frame for simultaneous and sustained
loading, as shown in Figure 2b. Longitudinal strains were simultaneously recorded on
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two sides of each prism using deformation gauges with a gauge length of 100 mm.
The creep measurement continued for a period of 550 days under natural conditions.
Equation (4) was used to determine the creep strain at a certain time.

εct = (∆Lt − ∆L0)/Lcb − εst (4)

where εct represents the creep strain of concrete at the age of t (day), ∆Lt represents total
deformation value at the age of t (day) (mm), ∆L0 represents initial deformation (mm), Lcb
represents the gauge length (mm) and εst is unrestrained shrinkage strain measured from
unloaded companion specimens at the age of t (day).
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Figure 2. Test for (a) shrinkage and (b) creep of MPC concrete.

After the shrinkage and creep tests, the prismatic specimens were cut into 10 cm cubes
for mechanical tests according to GB/T 50081-2019 [31]. The loading rate was 1 MPa/s for
the compressive strength test, and 0.25 MPa/s for splitting tensile strength measurement.

Fractured samples were collected from the core of the specimens after the mechanical
tests. They were soaked in absolute ethanol for 24 h to stop hydration, and then vacuum
dried at 40 ◦C for another 24 h. Subsequently, the samples were ground and sieved to less
than 75 µm before X-ray diffraction (XRD) and thermogravimetric (TG) analysis. Block
samples with a size of 3–5 mm were selected for scanning electron microscopy (SEM) and
mercury intrusion porosimetry (MIP) tests.

The XRD test was performed with a Panalytical X-Pert Pro X-ray diffractometer
(Netherlands). The continuous scanning mode of 3◦/min was used in the 2θ range of
10–80◦. The TG test was carried out in a nitrogen atmosphere using a Netzsch TG 209 F3
analyzer (Germany) at a heating rate of 5 ◦C/min up to 600 ◦C. The pore structure was
characterized by using a Micromeritics’ Autopore IV 9500 instrument (United States). The
test pressure was in the range of 0.518 to 32,923.57 psi, corresponding to the pore size range
of 348.63 µm to 5.5 nm. The morphology of the fracture surface of selected samples was
observed by using ZEISS Gemini 300 scanning electron microscope (Germany). Before the
test, the sample was sprayed with gold by Quorum SC7620 sputtering coating instrument
(United Kingdom) under vacuum.

3. Results and Discussion
3.1. Shrinkage

MPC concrete specimens were placed in a laboratory without constant temperature
and relative humidity. The changes in temperature and relative humidity during the test
period are shown in Figure 3. At the beginning of the test (before 75 days), the temperature
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was maintained at 15± 2 ◦C and the relative humidity of interior air was stabilized between
74–76%. Afterward, the temperature and relative humidity changed with the seasons. The
maximum temperature was nearly 30 ◦C in summer and the minimum was approximately
6 ◦C in winter. The relative humidity of indoor air increased as the temperature dropped,
and exceeded 80% when the temperature was lower than 10 ◦C. The deformation behaviors
of MPC concrete could be affected by ambient temperature and relative humidity.
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Figure 3. Changes in ambient temperature and relative humidity during the test period.

Measured strains from unloaded specimens with different aggregate contents and
gradation are shown in Figure 4. In general, all samples revealed a similar trend of strain
development, regardless of the mix proportions. The measured strains from unloaded
specimens are shrinkage strains. The shrinkage strain increased firstly and reached −185
to −200 µε after around 150 days, and then decreased to −40 to −55 µε after around
280 days. Afterward, it continued to increase from −200 to −220 µε at the end of the
test. The significant fluctuation of measured strains was consistent with the variation of
temperature with the seasons. This suggested that the measured strains from unloaded
MPC concrete specimens contained unignorable thermal strains.
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The strains measured from unloaded specimens included thermal strain, which is
attributable to the significant change in temperature. The thermal strain can be calculated
using Equation (5).

εtt= αc(T t − T0) (5)

where εtt is the thermal strain at the age of t(day), αc = 8.4 × 10–6/◦C = 8.4 µε/◦C is the
coefficient of thermal expansion of MPC concrete according to the previous literature [16],
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Tt is the daytime temperature at the age of t(day) (◦C), and T0 = 15 ◦C is the initial
temperature value. After removing the thermal strain, the shrinkage strain corresponds to
the one measured at T0.

Figure 5 shows the temperature-corrected shrinkage strains of unloaded specimens.
The shrinkage strains showed a continuous increase at the beginning of the test and reached
−120 to −135 µε after around 65 days. It was estimated that the shrinkage strain was
mainly due to the decreased content of free water as a result of its participation in reaction
in the early stage and migration or evaporation in the late stage [6]. After 65 days, the
shrinkage strain continuously fluctuated (probably due to changes in relative humidity)
and tended to be stable until the end of the test. The final temperature-corrected shrinkage
of MPC concrete reached −140 to −170 µε, which corresponded to one-third of that of
Portland cement [32]. M2 had a slightly higher shrinkage strain than M1 or M2 due to its
higher cement content. The w/b ratio of MPC concrete in this study was only 0.17, which
was much lower than that of Portland cement concrete with the same strength grade [33,34].
Excess water in concrete exists in the form of free water. When free water is lost, capillary
pressure increases and shrinkage occurs; therefore, the more free water there is, the greater
the drying shrinkage is.
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3.2. Creep

Creep strains of MPC concretes with different mix proportions under sustained com-
pression are presented in Figure 6. They were obtained by subtracting elastic and shrinkage
deformation values from the measured total strains. In general, similar trends were ob-
served for all samples. The creep strains increased rapidly during the early test period and
reached −180 to −200 µε after 65 days. Within this test period, ambient temperature and
relative humidity remained relatively stable (see Figure 3). This implies that the measured
strains from loaded specimens did not contain thermal strain. Creep strains began to
gently fluctuate after 65 days and the fluctuation tended to be stable at the end of the test,
indicating that creep strains did not change much when temperature and relative humidity
varied significantly between day 65 and 550.

The final creep strains of MPC concretes stabilized between −200 and −240 µε after
550 days. However, the creep strain of OPC concrete with the same strength level generally
reaches around −500 µε [35], which is more than twice the value of MPC concrete. This
may be due to the fact that the major binding phase of Portland cement is calcium silicate
hydrate (C-S-H) gel [36], while the principal hydration products of MPC are crystalline
struvite. The water-facilitated and time-dependent natures of the texture development of
crosslinked C-A-S-H provide new insights into the mechanism of creep in cement-based
materials. The gradual preferential re-orientation of C-A-S-H nano-crystallites induced by
sustained stress could account for the creep development, while portlandite and ettringite
with a limited degree of texture formation would contribute less to the creep of cement-
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based materials [37]. Struvite in MPC concrete generally showed a smooth texture [38]
and high crystallization grade, which can be considered positive for an enhancement of
creep deformation.
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Creep is the result of plastic deformation between hardened cement paste and ag-
gregates, which is introduced by the viscoelasticity of cement paste in concrete and the
interlayer slip of hydrated phases [39]. The role of aggregates is to restrain the deformation
of hydrated cement paste; therefore, the more hydration products, the greater the creep [40].
The cement content of M2 was higher than in M1, leading to the higher creep value of M2.
M3 exhibited a lower creep than M2, suggesting that the creep can be reduced when the
aggregate gradation is optimized.

3.3. Mechanical Properties

The mechanical properties of MPC concrete specimens, which had been loaded for
550 days, and of unloaded specimens are shown in Figure 7. The loaded specimens revealed
higher mechanical properties than the unloaded specimens. The compressive strength
and splitting tensile strength of the creep specimens were increased by 24.0–25.3% and
16.9–23.1%, respectively. The increase in compressive strength was also reported for loaded
conventional concrete at a loading level of 40% [41], and alkali-activated slag concrete at
loading levels of 35% and 50% [42]. However, the results published by Liniers [43] showed
that tensile strength drop occurs after a compressive load above 40% of the compressive
strength since micro-cracking takes place under such load. It is believed that the effect of
creep on the mechanical properties of concrete strongly depends on several conditions,
including loading levels, loading age, and loading direction [29]. In this work, the load was
applied after 3 days with a loading level of 40%. The positive effect of creep may be related
to the modification of the hydration product and/or the densification of microstructures [43]
under moderate compressive loads. This will be further discussed in the following sections.
In addition, the creep can change the internal stress distribution [44], thus making the stress
of concrete more uniform and reasonable and reducing the risks of stress concentration
when encountering failure load.

It could be observed that the content and graduation of coarse aggregate have a slight
influence on the strength. The order of the compressive strength values of shrinkage
and creep specimens with different contents and graduation of coarse aggregate was
M1 < M2 < M3 (Figure 7a). The splitting tensile strength shown in Figure 7b had a
similar trend to the compressive strength of MPC concretes during the sustained loading
or unconstrained shrinking. M1 had a relatively lower strength than M2 due to its lower
cement content. At the same cement content, the aggregate gradation of M3 was better than
in M2, which can explain the higher strength of the former. Increasing the amount of cement
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can improve strength but increase shrinkage and creep. The optimization of aggregate
gradation enhanced both mechanical properties and shrinkage and creep deformation.
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3.4. Microstructure Analysis
3.4.1. XRD Analysis

The XRD patterns of MPC samples after shrinkage and creep tests are shown in
Figure 8. Comparison of these patterns shows that the crystalline phases of the samples
were consistent after the creep and shrinkage tests, mainly including unreacted periclase
(MgO), quartz (SiO2), struvite (NH4MgPO4·6H2O), and dittmarite (NH4MgPO4·H2O).
Unreacted periclase, identified as MgO, was generally added in excess to ensure the
complete reaction of all phosphates; it could act as micro-aggregates and thus restrain the
deformation of hydration products. Struvite was founded to be the main crystalline product
of MPC, which has cementitious properties and provides excellent mechanical properties
for MPC concrete. The minor presence of dittmarite could be from the reaction between
MgO and NH4H2PO4 or the dehydration of struvite at a peak hydration temperature
higher than 70 ◦C [13]. These results indicate that the sustained loading did not change the
type of hydration products. However, the sustained compressive stress could change the
grain size of struvite. The crystal size of struvite [021] is calculated using Equation (6) as
recommended by [45], and the results are presented in Figure 9. The calculations are based
on the assumption that the broadened width of the diffraction peak is only caused by the
size of the crystal structure, which is uniform. It is shown that the crystal size of struvite
was increased after 550 days of sustained loading. The increase in crystal size of struvite
may change the internal stress distribution and improve the mechanical properties of
MPC concrete.

D = Kλ/β cos θ (6)

where D is the crystal size (nm), K = 0.89 is Scherrer constant; λ represents the wave-
length of X-ray (nm); β is the half-width of the diffraction peak (rad); θ is the diffraction
angle (rad).

3.4.2. Thermal Analysis

The TG curves and differential (DTG) curves of MPC samples after shrinkage and
creep tests are shown in Figure 10. Only one weight loss event between 50 and 200 ◦C
was observed in the curves, which was associated with the decomposition of struvite [46].
This result further confirms that creep strains do not affect the type of hydration products.
When compared with shrinkage samples, creep samples revealed higher weight losses
observed up to 200 ◦C. For example, the weight losses below 200 ◦C were 10.9% and 11.8%
for M3-S and M3-C, respectively. This strongly suggests that sustained stress can promote
the formation of struvite, which has a positive effect on mechanical strengths. A similar
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result was confirmed by Liu [47], who highlighted that compression load would help
cement-based material, especially at an early age, to promote hydration.
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Figure 9. The crystal size of struvite [021] of MPC concrete specimens.
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Figure 10. TD-DTG curves of MPC concrete samples after 550 days of shrinkage and creep tests.
(a) M1, (b) M2, and (c) M3.

3.4.3. Analysis of Pore Structure

Figure 11 and Table 3 show the pore size distribution and the total porosity of different
MPC concrete samples after 550 days of shrinkage and creep tests. As shown in Figure 11,
the cumulative mercury intake of M2 and M3 was slightly higher than in M1. This is because
M2 and M3 had higher cement content and thus higher reaction degrees between cement
components and water, which generates more pores. The sustained stress can reduce the
cumulative amount of mercury, implying that the reduction of porosity is a key factor in
the generation of creep strain under long-term load pressure. In general, the porosity of
cement-based materials is inversely proportional to their strength. Compared with the
shrinkage specimens, the creep specimens exhibited a slightly denser microstructure with
a smaller porosity and thus higher compressive strength and splitting tensile strength.

To further clarify the differences in pore structure between shrinkage and creep spec-
imens, the pore size was divided into four categories according to previous studies [48],
i.e., harmless pores (<20 nm), less harmful pores (20–100 nm), harmful pores (100–200 nm)
and more harmful pores (>200 nm). The creep strain will reduce the volume of harmful and
more harmful pores, to improve the strength. On the other hand, the amount of harmless
and less harmful pores was significantly reduced as well after creep testing. This may be
related to the increase in the crystal size of struvite, as described in XRD results. Although
creep reduced the total porosity, it improved the median pore and average pore diameter.
The increase in median pore and average pore size was closely related to the decreased
volume of harmless pores. In addition, creep samples exhibited higher tortuous complexity
of pore structure in comparison to shrinkage samples. Higher complexity of concrete pore
structure generally leads to a higher strength, which partially explains the improvement of
compressive strength and splitting tensile strength in creep specimens.
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Table 3. Total porosity and pore size distribution of different MPC concrete samples.

Sample Total Porosity (%)

Pore Size Distribution (%)
Average Pore

Diameter (nm)
Median Pore

Diameter (nm) TortuosityHarmless
Pores

(<20 nm)

Less Harmful
Pores

(20–100 nm)

Harmful
Pores

(100–200 nm)

More Harmful
Pores

(>200 nm)

M1-S 18.77 0.28 2.68 1.03 14.79 133.9 8.9 67.78
M1-C 17.06 0.91 1.85 0.77 13.53 179.4 35.7 88.10
M2-S 21.23 4.80 1.06 0.74 14.63 38.1 8.3 9.70
M2-C 20.35 1.30 2.45 0.86 15.73 128.4 16.5 14.81
M3-S 24.53 0.69 3.69 0.95 19.20 41.5 8.1 15.95
M3-C 20.94 0.13 1.84 1.05 17.92 251.3 34.5 26.88
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3.4.4. SEM Microstructure Analysis

Typical microstructures of fracture surfaces of selected samples after creep and shrink-
age tests are shown in Figure 12. Some particles with round shapes were observed in
the samples due to the incorporation of FA. Abundant struvite crystals with less regular
morphology were formed, constructing a dense microstructure. It is reported that a loose
interface transition zone between aggregate and hardened MPC paste was observed at
an early age due to wall effect [49]. However, it can be seen from Figure 12 that the inter-
face between aggregate and hydrated cement paste was closely combined after shrinkage
and creep tests. By comparing these figures, no obvious differences can be found in the
microstructures of the fracture surface of shrinkage and creep samples.
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4. Conclusions

This study investigated the shrinkage and creep deformation behaviors of MPC
concretes under natural curing conditions, as well as their mechanical properties and
microstructural changes after shrinkage and creep tests. The following conclusions can
be drawn:

(1) Under natural conditions, temperature changes affected significantly the free shrink-
age strain but had less effect on the compressive creep strain. The shrinkage and creep
strains of MPC concretes stabilized in the ranges of −140 to −170 µε and −200 to
−240 µε after 550 days, respectively, highlighting the good volume stability of MPC
concrete. This can be attributed to the low water-to-cement ratio and the formation of
crystalline struvite;

(2) The creep strain had almost no effect on the type of hydration products but increased
the crystal size and the quantity of hydration product struvite. The microstructure of
MPC concrete can be densified under sustained loading, characterized by reduced
porosity, particularly in the volume of pores smaller than 20 nm and larger than
200 nm;
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(3) Compared to shrinkage specimens, the compressive strength and splitting tensile
strength of creep specimens were increased by 24.0–25.3% and 16.9–23.1%, respectively.
The positive effect of creep on the mechanical strengths of MPC concrete could be due
to the modification of the hydration products and densification of the microstructure.
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