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Abstract: Rapid industrialization has led to huge amounts of organic pollutants and toxic heavy
metals into aquatic environment. Among the different strategies explored, adsorption remains
until the most convenient process for water remediation. In the present work, novel cross-linked
chitosan-based membranes were elaborated as potential adsorbents of Cu2+ ions, using as cross-
linking agent a random water-soluble copolymer P(DMAM-co-GMA) of glycidyl methacrylate (GMA)
and N,N-dimethylacrylamide (DMAM). Cross-linked polymeric membranes were prepared through
casting aqueous solutions of mixtures of P(DMAM-co-GMA) and chitosan hydrochloride, followed by
thermal treatment at 120 ◦C. After deprotonation, the membranes were further explored as potential
adsorbents of Cu2+ ions from aqueous CuSO4 solution. The successful complexation of copper ions
with unprotonated chitosan was verified visually through the color change of the membranes and
quantified through UV-vis spectroscopy. Cross-linked membranes based on unprotonated chitosan
adsorb Cu2+ ions efficiently and decrease the concentration of Cu2+ ions in water to a few ppm. In
addition, they can act as simple visual sensors for the detection of Cu2+ ions at low concentrations
(~0.2 mM). The adsorption kinetics were well-described by a pseudo-second order and intraparticle
diffusion model, while the adsorption isotherms followed the Langmuir model, revealing maximum
adsorption capacities in the range of 66–130 mg/g. Finally, it was shown that the membranes can be
effectively regenerated using aqueous H2SO4 solution and reused.

Keywords: chitosan; copolymers; glycidyl methacrylate; chemical cross-linking; polymeric membranes;
copper sulfate; adsorption capacity

1. Introduction

The biopolymer family mainly consists of polyesters, proteins, lipids, and polysaccha-
rides. The most utilized carbonaceous materials worldwide of the latter category, owing to
their natural abundance and chemical reactivity, are cellulose and chitin [1,2]. Chitin is a
linear aminopolysaccharide with high crystallization ability and poor solubility in water.
By chemical or biological hydrolysis of chitin, deacetylation takes place. Usually, when the
degree of deacetylation, DD, is higher than 60%, the product is called chitosan. Chitosan
mainly consists of D-glucosamine, and due to the partial deacetylation of chitin also con-
tains N-acetyl-D-glucosamine (Figure S1). Its physicochemical properties, such as solubility,
are strongly dependent on DD and other factors, such as acidity, molar mass, temperature,
and ionic strength [1,2]. It is widely used in the pharmaceutical and biomedicine industries,
due to biological properties such as antimicrobial/antifungal action and biocompatibil-
ity [3–7]. Moreover, chitosan finds applications in several technological fields [8–14], e.g.,
in the food and textile industries.

Concerning technological applications, the contribution of chitosan-based materials
in quality environmental assurance has attracted intensive research interest. Specifically,
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in the case of air pollution, a characteristic is the utilization of chitosan-based fibers as
antibacterial air filters with highly efficient moisture resistance [15]. Moreover, numerous
works are related to the use of chitosan in the field of water purification for the adsorption
of dyes [16–20] and heavy metals, such as Cu(II), Ni(II), Pb(II), Cd(II), Zn(II), Co(II), Hg(II),
Cr(VI), As(V), U(VI) and other rare earth elements [16,17,19–22]. Water purification through
adsorption is often preferable compared to other highly effective techniques, such as degra-
dation and chemical precipitation, due to the low cost of adsorbent materials and speedy
results. As far as adsorption of metal ions is concerned, intramolecular and intermolecular
chelation between the ions and functional groups of chitosan (mostly amine groups, and
possibly hydroxyl groups) takes place (Figure S2). For large-scale applications, chitosan is
used as powder, fibers, flakes, nanoparticles and membranes. Chemical cross-linking is
often applied, and chitosan-based materials with higher mechanical stability are obtained
through the reaction with reagents containing functional groups, such as carboxylic groups,
aldehydes, epoxides or others [17].

Aiming at novel biocidal materials, in our laboratory, we have developed a methodol-
ogy for the preparation of cross-linked membranes and coatings through the reaction of
glycidyl methacrylate (GMA)-containing copolymers with supplementary polymers con-
taining functional groups such as carboxylic or amine groups [23–26]. In the present work,
this methodology is extended, and we explore the reaction of such GMA-containing copoly-
mers with chitosan. Thus, a water-soluble copolymer of GMA and N,N-dimethylacrylamide
(DMAM), P(DMAM-co-GMA) was synthesized and mixed in aqueous solution with chi-
tosan hydrochloride (Ch-NH3

+Cl−) to obtain cross-linked chitosan membranes through
solution casting and subsequent thermal treatment at high temperature (Figure 1). The
potential application of these membranes as adsorbents for metal ions, such as Cu2+ ions
from aqueous CuSO4 solutions, was investigated after membrane deprotonation through
immersion in aqueous alkaline solution.
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Figure 1. Schematic representation of the chemical synthesis of (a) P(DMAM-co-GMA) copolymer
and (b) cross-linked chitosan-based membranes.

2. Materials and Methods

Materials: Chitosan (Ch-NH2) (DD > 75% and MW = 310–375 kDa), the monomers
N,N-dimethylacrylamide (DMAM) and glycidyl methacrylate (GMA), the initiator azobi-
sisobutyronitrile (AIBN) as well as sulfuric acid (H2SO4) 99%w/w and the solvents N,N-
dimethylformamide (DMF), tetrahydrofuran (THF), dimethylacetamide (DMA) and hexane
were purchased from Sigma Aldrich. The solvents dimethyl sulfoxide (DMSO), chloro-
form (CHCl3), ethanol and methanol were purchased from Fischer. Anhydrous copper
sulphate (CuSO4) powder was purchased from Merck, while sodium chloride (NaCl) and
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micropearls of sodium hydroxide (NaOH) were purchased from Honeywell and Lach-Ner,
respectively. Ultrapure water was obtained by means of an SG water purification unit.

Preparation of chitosan hydrochloride, Ch-NH3
+Cl−: Firstly, 10 g of chitosan (Ch-

NH2) was added to a solution of HCl 1 M (150 mL) and the mixture was magnetically
stirred at room temperature for 24 h. The initial turbid/phase-separated mixture turned
gradually to transparent when purified through dialysis. The product was finally recovered
through freeze-drying.

Synthesis of P(DMAM-co-GMA) copolymer: A P(DMAM-co-GMA) copolymer with a
molar feed composition of 30% (mol/mol) was synthesized through free radical polymer-
ization of 6.11 g (43 mmol) GMA and 10 g (100 mmol) DMAM, dissolved in 55 mL THF
(total monomer concentration 5%w/v). The solution was deaerated and 16.5 mg (1 mmol) of
the initiator AIBN (0.1% mol/mol over the total monomer concentration) was added. The
reaction was left to proceed under magnetic stirring at 65 ◦C under N2 for 24 h. The final
product was precipitated in hexane, washed with hexane and dried at 40 ◦C. For reasons of
comparison, the two homopolymers, namely poly(N.N-dimethylacrylamide) (PDMAM)
and poly(glycidyl methacrylate) (PGMA), were similarly synthesized.

Preparation of cross-linked chitosan-based membranes with P(DMAM-co-GMA): As
an example, for the preparation of the membrane Ch-NH3

+Cl−/P(DMAM-co-GMA) 7/3
with a feed mass content 70% (w/w) of protonated chitosan, 0.21 g Ch-NH3

+Cl− and
0.09 g P(DMAM-co-GMA) were dissolved in 4.2 mL and 1.8 mL water, respectively. After
complete dissolution, the two solutions were mixed and magnetically stirred at room
temperature for 30 min. The cross-linked membrane was obtained through casting at
60 ◦C or 120 ◦C for 24 h. The membranes Ch-NH3

+Cl−/P(DMAM-co-GMA) 8/2, Ch-
NH3

+Cl−/P(DMAM-co-GMA) 9/1 and Ch-NH3
+Cl−/P(DMAM-co-GMA) 5/5 were also

prepared following a similar procedure.
The unprotonated cross-linked chitosan-based membranes, Ch-NH2/P(DMAM-co-

GMA), were prepared after immersion in aqueous NaOH 0.1 M solution at room tempera-
ture for 24 h without agitation. The final membranes were purified with ultrapure water
and dried at 80 ◦C.

Adsorption studies: The adsorption capacity of cross-linked chitosan-based mem-
branes was studied through batch experiments. Specifically, a piece of Ch-NH2/P(DMAM-
co-GMA) membrane (m = 5–50 mg) was immersed in 5 mL of aqueous solution of copper
sulfate (concentration range 0.1 mM–20 mM) at room temperature with or without magnetic
stirring for various immersion times (t = 0–2 days).

The color of the membranes gradually turned to blue. The water uptake of the mem-
branes was determined gravimetrically after removal from the solution and drying at 80 ◦C,
while the concentration of CuSO4 solution was determined through UV-vis spectroscopy.

Desorption Studies: The regeneration of the Ch-NH2/P(DMAM-co-GMA) membrane
was carried out through the immersion of the membrane in aqueous H2SO4 solution
c = 2.5 mM. The successful desorption of copper ions was perceivable from the change
in membrane color (blue to brown) and was confirmed by UV-vis spectroscopy. The
adsorption–desorption study was repeated for three cycles.

Characterization Techniques: The samples were characterized through attenuated total
reflectance—Fourier-transform infrared spectroscopy (ATR-FTIR), Bruker Optics GmbH,
in the wavenumber range 300–3800 cm−1 and nuclear magnetic resonance (1H NMR)
using D2O and CDCl3 as solvent. Molecular weight and polydispersity of the copolymer
were determined through size-exclusion chromatography (SEC). For scanning electron
microscopy (SEM), a JSM-6300 Jeol scanning microscope was used, in combination with
energy-dispersive X-ray spectroscopy (EDS). Finally, UV-vis spectra were recorded on a
Hitachi UV 1800 UV-vis spectrophotometer in the 190–1100 nm range at 25 ◦C, equipped
with quartz cell with an optical path length of 1 cm.

Method of Bathocuproine: This method is based on bathocuproine, a reagent that
forms complexes with Cu+, exhibiting a strong absorbance at 400–600 nm. Hydroxylamine



Materials 2023, 16, 1926 4 of 20

is used as reducing agent of copper ions (Cu2+ to Cu+). In this work, absorbance at 480 nm
was measured by LCK 329 copper of HACH LANGE GMBH.

Determination of Water Uptake and Soluble Content: A sample (10 mg) of the cross-
linked chitosan-based membranes was immersed in pure water for 24 h at room tempera-
ture without agitation. Water uptake was determined by the equation:

Water Uptake% =
Wwet −Wo

Wo
% (1)

where Wo (mg) is the initial mass of the membrane and Wwet (mg) is the final mass of the
membrane after immersion in water.

The soluble content was calculated after drying the swelled samples at 80 ◦C for 24 h
by the following equation:

Soluble Content% =
Wo −Wdry

Wo
% (2)

where Wo (mg) is the initial mass of the membrane before immersion in the aqueous
solution and Wdry (mg) is the mass of the membrane after immersion and drying at 80 ◦C.

3. Results and Discussion
3.1. Synthesis and Characterization of Cross-Linked Chitosan-Based Membranes

For the preparation of the membranes through solvent casting, soluble chitosan deriva-
tives are a prerequisite. As expected [1], the solubility of chitosan was insignificant after
immersion in organic solvents (DMA, THF, DMF, DMSO, CHCl3) and H2O, at room or
high temperature, owing to the high level of crystallinity of this biopolymer. The solubility
limitation can be overcome through modification of its functional groups or protonation
of amine groups by a strong inorganic acid (e.g., HCl) or organic acid (e.g., formic acid)
to attain a pH value lower than pKa. In this work, the solubility of chitosan was achieved
through protonation, namely the preparation of the hydrochloric derivative, Ch-NH3

+Cl−,
as depicted in Figure S3. This derivative is soluble in pure water and low-concentration
salt solutions. In fact, from the 1H NMR spectrum in D2O (Figure S4) both D-glucosamine
and N-acetyl-D-glucosamine units were identified and the deacetylation degree, DD, of the
product was determined to be 85%.

For the chemical cross-linking, the reaction of the amine groups of chitosan with
the epoxide ring of glycidyl methacrylate (GMA) was explored (Figure 1b). Since GMA
(and the respective homopolymer) is not water-soluble, copolymerization of GMA with
the highly hydrophilic monomer N,N-dimethylacrylamide (DMAM) was performed, as
depicted in Figure 1a. To ensure water-solubility, a feed composition with a relatively
low GMA content, namely 30% mol/mol, was chosen. The copolymer was characterized
through ATR-FTIR and 1H NMR spectroscopy. The number average, Mn, weight average,
and Mw, molar mass, of the copolymer were found Mw = 8600 and Mn = 4600, respectively,
through size-exclusion chromatography (SEC).

Figure 2 presents the 1H NMR spectrum of P(DMAM-co-GMA) copolymer in CDCl3 in
comparison with the spectra of the two homopolymers PDMAM and PGMA. Based on the
1H NMR structural analysis, the -CH2- groups (e) of GMA appear at 3.8 ppm and 4.3 ppm,
while the -CH- group (f) is observed at around 3.2 ppm. The asymmetric double peak
(h) observed in the range 3.1–2.8 ppm in the spectrum of PDMAM is characteristic of the
different stereochemical configurations of -CH3 groups of the homopolymer PDMAM [27].
More specifically, the -CH3trans is shown at 3.1 ppm and the -CH3trans/cis is observed at
2.8–3 ppm [27]. This range is also associated with the -CH2- group (g) of epoxide ring, found
at 2.6 and 2.8 ppm [28]. In the spectrum of the copolymer, the latter peak is overlapping
with the peak attributed to the -CH- group (b) of PDMAM backbone. The -CH2- groups
(a, c) of the copolymer backbone are identified in the range 2.1–1.2 ppm as multiple peaks.
Specifically, the different stereochemical configurations of -CH- group of GMA are seen
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at 1.6–1.4 ppm (HmmrII, HrmrII, HmrmI, HmrrI and HrrI, as shown in Figure S5). Finally,
the resonance signals of the a-CH3 group (d) of GMA are split into three peaks appearing
at 0.9 ppm (-CH3rr/rri), 1.1 ppm (-CH3rm/mrii) and 1.3 ppm (-CH3 mm/mmiii) due to
different stereoisomerization [28–30]. Most of the aforementioned peaks of both structural
units are detectable in the spectrum of the P(DMAM-co-GMA) copolymer. The chemical
composition of the copolymer was determined from the integrals of the peaks b, g, h, f and
e. It is found that the copolymer contains 33% mol/mol GMA units, in good agreement
with the feed composition.
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The ATR-FTIR spectrum of P(DMAM-co-GMA) copolymer in the 500–2500 cm−1

region is presented in Figure 3, together with the spectra of the two homopolymers PDMAM
and PGMA. The characteristic peak of the -N-H group of DMAM appears as a broad peak
at ~3469 cm−1, while the peak at 2926 cm−1 is attributed to the -CH group of both DMAM
and GMA units [31] (Figure S6). The carbonyl stretching of the ester group (-C=O) of GMA
unit is observed in Figure 3 at 1731 cm−1 [28,31] and of DMAM unit at 1618 cm−1 [31].
The bending vibrations of methyl group are shown at 1493 cm−1 and 1400 cm−1 for
both homopolymers. The -C-N group of DMAM unit is observed at 1351 cm−1 and the
bending vibrations of epoxide ring of GMA unit are shown at 907 cm−1 and 842 cm−1.
All characteristic peaks of GMA and DMAM units are detectable at the spectrum of the
copolymer P(DMAM-co-GMA). As expected, the intensity of the peaks attributed to GMA
units is low as a consequence of the rather low GMA content of the copolymer.

Through adequate mixing of aqueous solution of P(DMAM-co-GMA) and chitosan
hydrochloride (Ch-NH3

+Cl−), followed by casting at room temperature and further thermal
treatment at 60 ◦C or 120 ◦C, flexible and transparent membranes (slightly brown when
thermal treatment takes place at 120 ◦C) are obtained. Under these slightly acidic conditions,
amine groups act as nucleophilic reagents and possibly attack the epoxide ring at the most
substituted carbon (Figure 1b) [32].

The cross-linked chitosan-based membranes, after thermal treatment at 60 ◦C and
120 ◦C, were characterized through ATR-FTIR. As an example, the spectrum of the mem-
brane Ch-NH3

+Cl−/P(DMAM-GMA) 9:1 in the 500–2500 cm−1 region is shown in Figure 4.
The functional groups of chitosan, -NH and -OH, including their intramolecular and inter-
molecular hydrogen bonding, appear at 3313 cm−1 (Figure S7). Furthermore, the stretching
peak band at 2884 cm−1, associated with asymmetric bending vibration of -CH- group
of chitosan, is also seen in Figure S7. The peak at 1630 cm−1 is associated with amide I
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(-C=O) of chitin, while amide II (-NH) and amide III (-C-N) are identified at 1520 cm−1

and 1376 cm−1, respectively, in the spectrum of chitosan hydrochloride. In addition, the
peaks in the range 1190–842 cm−1 correspond to stretching vibrations of -C-O-C- (glycidyl
bond) of the polysaccharide backbone and the peak at 564 cm−1 is associated with -CH3
groups of the remaining acetyl group of chitin. The peak of copolymer P(DMAM-co-GMA)
at 2894 cm−1 corresponds to the bending vibration of -CH group. The bending vibration at
1728 cm−1 and 1630 cm−1, which are characteristic of ester and amide groups of DMAM and
GMA units, respectively, are also shown in the spectrum of P(DMAM-co-GMA) copolymer.
Moreover, the bending vibrations of methyl group of GMA and DMAM units are observed
at 1394 cm−1 and 1494 cm−1. All the aforementioned peaks are observed in both spectra
of thermal-casted membranes Ch-NH3

+Cl−/P(DMAM-GMA) 9:1. However, the peaks
at 904 cm−1 and 844 cm−1, characteristic of epoxide ring of GMA, are now not observed,
an indication that the thermal cross-linking between P(DMAM-co-GMA) copolymer and
Ch-NH3

+Cl− takes place through the opening of the epoxide ring of GMA unit.
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The water uptake of the membranes in aqueous solutions depends strongly on the
form of chitosan and the ionic strength. The results are shown in Figure 5. For the
ionic Ch-NH3

+Cl−/P(DMAM-co-GMA) membranes, the water uptake in pure water is
high and increases substantially, reaching values of 2500% for the membrane with the
higher chitosan content, as a consequence of the polyelectrolyte character of chitosan
hydrochloride. Under these conditions, the membranes are highly swollen and smooth,
as shown in the inset of Figure 5. In the case of immersion in aqueous 1 M NaCl solution,
water uptake decreases significantly and values comparable to organic solvent uptake are
determined, as a result of screening of charged groups of chitosan and the decrease of
the internal osmotic pressure due to the addition of salt. The membranes now are just
slightly swollen while retaining their flexibility (see inset of Figure 5). The membranes were
also turned into the unprotonated uncharged form Ch-NH2/P(DMAM-co-GMA) through
immersion in aqueous 1 M NaOH solutions (Figure S8). Due to the low water-solubility
of Ch-NH2 and the absence of polyelectrolyte character of the membranes, water uptake
in pure water is now very low. As a general remark, the water uptake of the membranes
thermally treated at 120 ◦C is lower than that of those treated at 60 ◦C, as a consequence of
the enhancement of the cross-linking reaction with temperature.
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Figure 5. Water uptake of Ch-NH3
+Cl−/P(DMAM-co-GMA) membranes with different molar ratio

of Ch-NH3
+Cl−, which were thermally treated at 60 ◦C and 120 ◦C. The appearance of the membranes

with the highest Ch-NH3
+Cl− content after immersion in the solvents is shown in the inset.

After the water uptake studies, all membranes were washed and dried, in order to
determine the soluble content from the mass change according to Equation (2). The soluble
content was limited (10–20%), due to the efficient thermal cross-linking between chitosan
and P(DMAM-co-GMA) copolymer.
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3.2. Adsorption Studies

The main goal of the present study was the potential application of the thus prepared
cross-linked chitosan-based membranes as adsorbents of metal ions. To explore this possibil-
ity, Cu2+ ions were chosen as a typical example. As a first test, the Ch-NH3

+Cl−/P(DMAM-
co-GMA) 8:2 and Ch-NH2/P(DMAM-co-GMA) 8:2 membranes thermally treated at 120 ◦C
were immersed into aqueous 1 mM CuSO4 solution for 24 h. Figure 6 shows the ap-
pearance of the membranes before and after this treatment. As seen, the protonated
Ch-NH3

+Cl−/P(DMAM-co-GMA) 8:2 membrane swells without any significant color
change. In contrast, the unprotonated Ch-NH2/P(DMAM-co-GMA) 8:2 membrane turns
strongly blue, indicating that the membrane adsorbs Cu2+ ions, apparently through com-
plexation with the amine groups of Ch-NH2. A sample of a membrane before and after
Cu2+ adsorption was characterized through SEM. As seen, the surface of the membrane is
rather homogeneous, while the presence of copper is verified through EDS characterization
(Figure S9).
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Figure 6. Representative images of the adsorption of copper ions by the membrane (Ch-NH2/P(DMAM-
co-GMA) 8:2) compared to the appearance of the protonated Ch-NH3

+Cl−/P(DMAM-co-GMA) 8:2
membrane, after immersion in aqueous 1 mM CuSO4 solution for 24 h.

Taking into account these preliminary results, the UV-vis spectrum of the aqueous
1 mM CuSO4 solution, before and after the immersion of the membranes, was recorded
(Figure 7). As the molarity of the aqueous CuSO4 solution is very low, the solutions are
practically clear and the characteristic peak of d9 electrons of copper at ~800 nm is hardly de-
tected. On the contrary, the other characteristic peak of copper ions at about 200 nm is strong
and decreases substantially after the immersion of the unprotonated Ch-NH2/P(DMAM-
co-GMA) 8:2 membrane. In the case of the protonated Ch-NH3

+Cl−/P(DMAM-co-GMA)
8:2 membrane, on the other hand, the peak has higher values, while simultaneously new
peaks appear at 255 nm, 270 nm and 283 nm. These absorption bands probably correspond
to complexes of copper ions with Cl− anions, namely [CuCl]+, [CuCl2] and [CuCl3]− [33].

Having in mind the results for the unprotonated membrane, we checked the validity of
the Beer–Lambert law at 200 nm. The UV-vis spectra recorded for aqueous CuSO4 solutions
of known low concentrations are given in Figure S10. The variation of the absorbance at
200 nm with the molarity of Cu2+ ions is linear with a correlation coefficient (R2) of 0.9994
(Figure S11). To further verify the reliability of this detection methodology, samples of
known concentration were characterized both through the aforementioned method and the
method of bathocuproine. The results obtained from the two methods, as represented in
Figure S12, practically coincide, especially for concentration lower than 0.3 mM, which is
close to the upper limit of validity of the bathocuproine method [34].
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3.2.1. Adsorption Kinetics

The kinetics of Cu2+ ion adsorption were studied using the Ch-NH2/P(DMAM-co-
GMA) 9:1 membrane. The membrane was immersed in an aqueous 1.5 mM CuSO4 solution
and the UV-vis spectra were recorded as a function of contact time (Figure 8). As seen,
the absorption band at 200 nm decreases with contact time and eventually disappears,
indicating the effective removal of Cu2+ ions from the aqueous solution. In fact, our
results are encouraging, since Cu2+ concentration is decreased to the detection limits of
this method, namely below ~0.1–0.2 mM (Figure S9). Moreover, adsorption can be visually
detected, since the membrane turns gradually to blue. This color is observed already after
a contact time of 60 min and gets deeper as the contact time increases (see inserted photos
in Figure 8). Simultaneously, the membrane swells to reach a water uptake close to that
observed in pure water for longer immersion periods (Figure S13).
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To quantify the adsorption efficiency of Ch-NH2/P(DMAM-co-GMA) membranes the
adsorption capacity (Qt, mg/g) was estimated as a function of contact time as:

Qt =
(C0 − Ct) V

m
(3)

where C0 (mM) and Ct (mM) are the initial concentration and the concentration at time t
(days) of Cu2+ ions, V (mL) is the volume of the solution and m (mg) is the initial mass of
the membrane.

Initially, the influence of agitation conditions on adsorption was investigated. The
dependence of Qt on immersion time is depicted in Figure 9 for the Ch-NH2/P(DMAM-co-
GMA) 9:1 membrane under conditions with and without magnetic stirring. As seen, the
influence of magnetic stirring is rather marginal and just slightly higher Cu2+ ion removal
is observed under stirring. For this reason, all other adsorption studies were performed
without stirring. As a general observation in Figure 9, the adsorption capacity in all studies
performed increases strongly within the first 1–2 days and tends to a plateau value for longer
contact times. In addition, the influence of the membrane composition is also presented in
Figure 9, where the adsorption capacity of the membranes Ch-NH2/P(DMAM-co-GMA) 9:1
and Ch-NH2/P(DMAM-co-GMA) 8:2 without magnetic stirring is compared. As observed,
the Qt values obtained for the first membrane are substantially higher than those for the
second one, apparently reflecting the lower chitosan content of the Ch-NH2/P(DMAM-co-
GMA) 8:2 membrane.

The results of Figure 9a were fitted to the most usual kinetics models [35], namely
the pseudo-second order model, the Elovich model and the Weber–Morris intraparticle
diffusion model, in Figure 9b, 9c and 9d, respectively.

The pseudo-second order model is based on the hypothesis that the adsorption process
follows a second-order chemisorption mechanism, and it is described by the equation:

t
Qt

=
1

Ki Q2
e
+

t
Qe

(4)

where Qe (mmol/mg) is the amount of adsorbed metal ions at equilibrium and Ki (mg/(g·day))
is the pseudo second-order adsorption rate constant.

The Elovich model is used to describe the chemical adsorption on heterogeneous
adsorbents and is described by the equation:

Qt =
1
b

ln(a b) +
1
b

lnt (5)

where a (mg/(g·min)) is the initial sorption rate and b (g/mg) is a parameter correlated
with the degree of surface coverage and activation energy of chemisorption.

The Weber–Morris intraparticle diffusion mechanism is suggested when the intraparti-
cle diffusion is the slowest stage of chemisorption and it is described by the equation:

Qt = Ki
√

t + c (6)

where c (mmol/mg) is a constant related to the boundary layer thickness and Ki (mg/(g·min0.5))
represents the intraparticle diffusion rate constant. The curve of this model is usually divided
in two parts: the first linear part represents the boundary layer diffusion, followed by another
linear part which is associated with the intraparticle diffusion.

From Table 1, where the fitting results are summarized, it is seen that the pseudo-
second order (Figure 9b) is the best-fitted for all studied membranes, whereas the results
cannot be well fitted using the Elovich model (Figure 9c). It should be noted that the pseudo-
second order kinetics is usually adopted for the adsorption of metal ions by chitosan-based
materials (see [16,17,19–22] and references therein), suggesting that the rate-determining
step is chemisorption involving valence forces through sharing or exchange of electrons
between adsorbent and sorbate. In fact, from the first model (Figure 9a), a Qe value about
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8 × 10−4 mmol/g and 5.1 × 10−4 mmol/g is found for the Ch-NH2/P(DMAM-co-GMA)
9:1 and Ch-NH2/P(DMAM-co-GMA) 8:2 membranes, respectively.
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Figure 9. (a) Effect of contact time on adsorption capacity of the membranes Ch-NH2/P(DMAM-co-
GMA) 9:1 and 8:2 in aqueous 1 mM CuSO4 solution, with or without magnetic stirring. Fitting of the
experimental data with the (b) pseudo-second order, (c) Elovich and (d) Weber–Morris intraparticle
diffusion model.

Adsorption kinetics are also well described using the intraparticle diffusion model,
enabling us to understand the nature of the diffusion process. All curves show an initial
linear portion, attributed to intraparticle diffusion. The Ki values for this portion fit rather
well with the literature, i.e., they are similar or somewhat higher to those reported for the
adsorption of Cu2+ ions by chitosan beads [36] or chitosan–clinoptilolite composite [37],
respectively. Moreover, in our systems, these initial linear portions practically pass through
the origin, suggesting that intraparticle diffusion is the major rate-limiting step.

3.2.2. Adsorption Isotherms

For the investigation of the adsorption isotherms, samples of Ch-NH2/P(DMAM-co-
GMA) membranes (m = 10 mg) were immersed in a series of aqueous CuSO4 solutions
(5 mL) with concentration 0.01–5 mM at room temperature. To ascertain that equilibrium
adsorption conditions were achieved, the samples were let to adsorb Cu2+ ions for 2 days,
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according to the kinetic findings. Three Ch-NH2/P(DMAM-co-GMA) membranes with
compositions 9:1, 8:2, and 5:5 were studied.

Table 1. Kinetic parameters for pseudo-second order, Elovich and intraparticle diffusion (Weber–
Morris) models for membranes Ch-NH2/P(DMAM-co-GMA) 9:1 and Ch-NH2/P(DMAM-co-GMA)
8:2, with or without magnetic stirring.

Kinetic Models

Kinetic Parameters of Membranes
Ch-NH2/P(DMAM-co-GMA)

9:1 with
Magnetic Stirring

9:1 without
Magnetic Stirring

8:2 without
Magnetic Stirring

Pseudo-second order
Qe (mmol/mg)

Qe = 8.01 × 10−4

R2 = 0.999
Qe = 7.84 × 10−4

R2 = 0.993
Qe = 5.11 × 10−4

R2 = 0.98

Elovich
a (mg/(g·day))

b (g/mg)

a = 144.7 × 10−4

b = 8980
R2 = 0.96

a = 89.13 × 10−4

b = 8693
R2 = 0.95

a = 0.643 × 10−4

b = 10,624
R2 = 0.99

Intraparticle
Diffusion

(Weber & Morris)
Ki1, Ki2

(mg/(g·min0.5))

Ki1 = 0.64
Ki2 = 4.2 × 10−2

R1
2 = 0.98

R2
2 = 0.996

Ki1 = 0.69
Ki2 = 4.6 × 10−2

R1
2 = 0.98

R2
2 = 0.98

Ki1 = 0.68
Ki2 = 0.18
R1

2 = 0.96
R2

2 = 0.9996

As an example, the UV-vis spectra of the solutions, before and after adsorption of Cu2+

ions by the Ch-NH2/P(DMAM-co-GMA) 9:1 membrane, are shown in Figure 10. It should
be mentioned that for the most concentrated solutions (C0 > 1 mM), all other solutions
were diluted to a final concentration C0 = 1 mM, in order to be within the validity limits
of the calibration curve (Figure S11). In these cases, the solutions after adsorptions were
respectively diluted, in order to be directly comparable to the mother solutions. From the
UV-vis spectra of aqueous CuSO4 solutions, before and after immersion, it is evidenced
that the adsorption of Cu2+ ions is highly efficient. Moreover, the binding of copper ions on
active sites of Ch-NH2/P(DMAM-co-GMA) 9:1 membrane is visually detectable, already
for C0 = 0.2 mM, from the appearance of the characteristic blue, which becomes more
intense as the concentration of the solution increases.

The equilibrium adsorption capacity (Qe, mg/g) is determined as:

Qe =
(C0 − Ce) V

m
(7)

where C0 (mM) and Ce (mM) are the initial and equilibrium concentration of Cu2+ ions, as
found from the absorbance at 200 nm of the UV-vis spectrum or the bathocuproine method.

The adsorption isotherms for the three membranes investigated are shown in Figure 11,
while the fittings to linearized Langmuir and Freundlich models are presented in Figure 12.
It is reminded that the linearized forms of these two models are, respectively:

Ce

Qe
=

1
KL Qm

+
Ce

Qm
(8)

and
logQe = log Kf +

1
n

log Ce (9)

where Qm (mg/g) represents the maximum adsorption capacity, KL (L/mg) is the Lang-
muir constant, Kf (L/mg) is the Freundlich constant, and 1/n is related to the adsorption
intensity [38].
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Figure 11. Adsorption isotherms of Cu2+ ions for membranes Ch-NH2/P(DMAM-co-GMA) 9:1 (green
squares), 8:2 (magenta circles) and 5:5 (orange triangles), immersed in aqueous CuSO4 solutions for
2 days, without magnetic stirring. The results derived using the bathocuproine method are shown as
semifilled symbols.
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As shown in Figure 12 and Table 2, the best-fitted model for the membranes seems to be
the Langmuir model with R2 = 0.99, indicating that the functional groups of the material are
uniformly occupied by the metal ions through a monolayer adsorption mechanism. Note
that results obtained through different methods (adsorption at 200 nm and bathocuproine
method) complement each other in these fittings. The determined Qm values decrease as the
chitosan content of the membrane decreases. In addition, the Qm values are compared in
Table 3 with respective values for Cu2+ ions adsorption of several chitosan-based materials.
As seen, the results of the present study compare well with those of other cross-linked
chitosan materials, indicating the potential of the present membranes for Cu2+ ion removal
from aqueous solution for wastewater remediation processes.

Table 2. Parameters for Langmuir and Freundlich models for the adsorption of Cu2+ ions by the
Ch-NH2/P(DMAM-co-GMA) membranes with different contents of chitosan hydrochloride.

Isothermal Model
Composition of Membranes

9:1 5:5 8:2

Langmuir
KL (L/mg),
Qm (mg/g)

KL = 1.1
Qm = 130
R2 = 0.99

KL = 3.5
Qm = 66
R2 = 0.99

KL = 0.5
Qm = 90
R2 = 0.94

Freundlich
Kf (L/mg)

Kf = 7.5 × 10−4

n = 1.5
R2 = 0.89

Kf = 7.9 × 10−4

N = 1.7
R2 = 0.88

Kf = 4.9 × 10−4

N = 1.8
R2 = 0.95

Table 3. Comparison of the maximum adsorption capacity based on Langmuir model of this study
with other chitosan-based adsorbents.

Chitosan-Based Adsorbents Qm (mg/g) Reference

Chitosan/cotton fiber 25 [39]

Chitosan/cellulose 53.2, 26.5 [40,41]

Chitosan or cross-linked chitosan 46–81, 35.5 [42,43]

Xanthate-modified magnetic chitosan 34.5 [44]

Chitosan/thiourea 66.7 [36]

Chitosan/alginate 67.7 [45]

Composite chitosan-based nanofibrous mats 79 [46]

Chitosan/ceramic alumina 86 [47]
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Table 3. Cont.

Chitosan-Based Adsorbents Qm (mg/g) Reference

Chitosan/activated carbon 90.9 [48]

Chitosan/glutaraldehyde microcapsules 100 [49]

Chitosan/EDTA 135 [50]

Carboxymethyl chitosan/graphene oxide 146 [51]

Chitosan-coated perlite beads 156 [52]

Chitosan/poly(acrylic acid) cross-linked 163 [53]

Chitosan/maleic anhydride 166 [54]

Chitosan/4-aminobenzoic acid 183 [55]

Magnetic chitosan/activated carbon composite 216.6 [56]

Chitosan/sulfydryl-functionalized graphene oxide 425 [57]

Cross-linked chitosan/waste active sludge char 490 [58]

Chitosan/linoptilolite 574, 719 [37,59]

Chitosan/P(MAM-co-GMA) membranes 66–130 This study

3.2.3. Regeneration and Reusability of Adsorbent

To check the possibility of recovery of adsorbed Cu2+ ions and reusability of adsorbent,
adsorption–desorption studies were performed. Usually, the desorption of metal ions and
regeneration of different chitosan-based adsorbents take place by addition of acids (HCl),
bases (NaOH) or chelating agents as ethylenediaminetetraacetic acid (EDTA) [60]. Here,
the Ch-NH2/P(DMAM-GMA) 8:2 membrane was used for adsorption–desorption studies
and an aqueous 2.5 mM H2SO4 solution was used as desorption agent. The performance
of the membrane for three cycles was tested (Figure 13). After each cycle, the membrane
was turned into the uncharged form through immersion in a NaOH solution, rinsing and
drying. The pretreated membrane was initially immersed in an aqueous 1.2 mM CuSO4
solution, leading to an effective adsorption of Cu2+ ions, as verified by the blue color of the
membrane and the substantial decrease of the adsorption band at 200 nm. The immersion
of this membrane into the aqueous H2SO4 solution led to the successful desorption of
copper ions, as confirmed by the decolorization of the membrane and through UV-vis
spectroscopy of the solution.
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Figure 13. UV-vis spectra of adsorption–desorption studies of membrane Ch-NH2/P(DMAM-GMA)
8:2 for (a) first, (b) second and (c) third cycle.

Since equal volumes of adsorption and desorption solution were used, the afore-
mentioned results can be better quantified through the remaining equilibrium Cu2+ ion
concentration, Ce, after each step (Figure 14). Thus, as seen, the value of Ce after each
adsorption step is roughly 0.2 mM, indicating that a quantity of Cu2+ ions ~1 mM had been
practically quantitively desorbed after each cycle. This behavior is rather identical for three
cycles, suggesting that the process is quite reproducible, and the synthesized membranes
can be indeed regenerated, at least for some adsorption–desorption cycles.
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4. Conclusions

In this work, cross-linked chitosan-based membranes were successfully synthesized
by taking advantage of the reaction of amine groups of chitosan with the epoxide group of
GMA during casting of aqueous chitosan hydrochloride/P(DMAM-co-GMA) solutions and
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subsequent thermal treatment. The protonated membranes were highly swollen in water, in
contrast to the low swelling exhibited by the unprotonated membranes. The unprotonated
membranes are effective adsorbents of Cu2+ ions, as confirmed by UV-vis spectroscopy
of the adsorbate solutions. In fact, the kinetics of adsorption seems well adapted to the
pseudo-second order and the intraparticle adsorption isotherms. The maximum adsorption
capacity of the membranes is quite high (Qm = 66–130 mg/g) and roughly decreases with
the decrease of chitosan content. In fact, the Qm values obtained are well comparable with
those of other chitosan-based adsorbents. Moreover, it is shown that these materials can
decrease the concentration of Cu2+ ions in water to a few ppm, while they can act as simple
visual sensors for the detection of Cu2+ ions at concentration of about 0.2 mM.

Finally, it is shown that the membranes can successfully be regenerated in acidic
solutions and reused for the adsorption of Cu2+ ions from water, at least for three cycles.
Overall, the adsorption characteristics of the developed membranes (integrity, high Qm,
easy regeneration) make these functional materials promising candidates for visual Cu2+

detection or effective removal of metal ions for water remediation applications.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/ma16051926/s1. Figure S1. The chemical structure of chitosan.
Figure S2. Schematic representation of intramolecular and intermolecular chelation of Cu2+ ions
with chitosan units. Figure S3. Preparation of chitosan hydrochloride, Ch-NH3

+Cl−. Figure S4. 1H
NMR spectrum of chitosan hydrochloride, Ch-NH3

+Cl−. Figure S5. Schematic representation of
stereochemical configurations of GMA units in PGMA, with respect to -H (left) και a-CH3 (right),
along the methacrylate polymer chain. (The more shielded -H or a-CH3 is symbolized by “i” and
the less shielded ones by “iii”). Figure S6. ATR-FTIR spectrum in the 2000–4000 cm−1 region of
the copolymer P(DMAM-co-GMA), in comparison with the spectra of the homopolymers PDMAM
and PGMA. Figure S7. ATR-FTIR spectra in the 2000–4000 cm−1 region of P(DMAM-co-GMA),
ChNH3

+Cl− and the membrane Ch-NH3
+Cl−/P(DMAM- GMA) 9:1 after thermal treatment at 60 ◦C

and 120 ◦C. Figure S8. Schematic representation of deprotonation of Ch-NH3+Cl−/P(DMAM-co-
GMA) membranes after immersion in aqueous 0.1 M NaOH solution for 24 h at room temperature.
The appearance of the Ch-NH3+Cl−/P(DMAM-co-GMA) 8:2 membrane is shown, as example.
Figure S9. Surface morphology and EDS characterization of the Ch-NH2/P(DMAM-co-GMA) 7:3
membrane (a) after preparation and thermal crosslinking at 120 ◦C (scale bar: 20 µm), and (b) after
adsorption of Cu2+ ions (scale bar: 30 µm). Figure S10. UV-Vis spectra of aqueous CuSO4 solutions in
the concentration range 0.25–1.5 mM. Figure S11. Calibration curve of the absorbance of aqueous
CuSO4 solutions at 200 nm. Figure S12. Comparative results of measured and nominal concentrations
of aqueous CuSO4 solutions, using the Bathocuproine method and the method of absorbance at
200 nm. Figure S13. Water Uptake% of Ch-NH2/P(DMAM-co-GMA) 8:2 and 9:1 membranes as a
function of immersion time in aqueous 1.5 mM CuSO4.
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