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Abstract: In this study, for the first time, free and forced vibrational responses of a unimorph
nanobeam consisting of a functionally graded base, along with a dielectric layer of both piezo-
electricity and flexoelectricity, is investigated based on paradox-free local/nonlocal elasticity. The
formulation and boundary conditions are attained by utilizing the energy method Hamilton’s princi-
ple. In order to set a comparison, the formulation of a model in the framework of differential nonlocal
is first presented. An effective implementation of the generalized differential quadrature method
(GDQM) is then utilized to solve higher-order partial differential equations. This method can be
utilized to solve the complex equations whose analytic results are quite difficult to obtain. Lastly,
the impact of various parameters is studied to characterize the vibrational behavior of the system.
Additionally, the major impact of flexoelectricity compared to piezoelectricity on a small scale is
exhibited. The results show that small-scale flexoelectricity, rather than piezoelectricity, is dominant
in electromechanical coupling. One of the results that can be mentioned is that the beams with higher
nonlocality have the higher voltage and displacement under the same excitation amplitude. The
findings can be helpful for further theoretical as well as experimental studies in which dielectric
material is used in smart structures.

Keywords: flexoelectric; two-phase local/nonlocal elasticity; energy harvesting; vibration; GDQM

1. Introduction

The big data era demands developments in micro/nano-electromechanical systems
(M/NEMS) including nanosensors [1,2], nanotransistors [3], nanoharvesters [4,5], and
nanoelectronics. The electromechanical coupling in dielectric materials plays a crucial
role in ascertaining the performance of many M/NEMS devices. The electromechanical
coupling was mainly related to piezoelectricity resulting from a uniform strain of the
dielectric materials. However, recently, the coupling effect due to the nonuniform strain, i.e.,
strain gradient, has become increasingly attractive to researchers in exploring the potential
of small-scale smart structures, since the gradient of the strain becomes more predominant
with reduced sizes, especially at a sub-micron and nanoscale [6,7]. Thus, to capture the size
effect, as the classic continuum theories are insufficient, a large amount of effort has been
devoted to enriching the continuum theories by introducing an additional material length
scale. The integral nonlocal formulation accounts for the size effect [8,9], which assumes
that the strain in a particular point of a structure results not only from local forces applied
at that point but also from other forces applied to other regions of the domain. In the effort
of enhancing the conventional elastic theory, the differential form of nonlocal theory [10],
largely due to less complexity together with a reduction in computational costs compared
to the integral form, has been proposed. Based on the differential form of nonlocal elasticity,
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vibrations [11,12], critical buckling loads [13], and wave propagation [14,15] associated
with small-scaled structures have been reported. By using nonlocal elasticity together with
higher order beam theory, Pham et al. [16] presented an article studying the vibrational
response of FG curved beam made of porous materials. The beam was subjected to hygro-
thermal loading. Additionally, the vibration analysis associated with nanobeams placed on
elastic substrate were modeled via nonlocal strain gradient theory were conducted using
FEM [17]. However, it was later discovered that this theory has some inconsistencies and
was unable to yield reliable results [18]. Subsequently, a large number of investigations
have been conducted to verify this issue [19]. The main problem with this approach is
the inability to capture the softening effect by applying the nonlocality, specifically in the
nanobeams with clamped-free end conditions [20]. Later, it was found that this problem
is due to a lack of additional boundary conditions in the transformation process from the
integral form to the differential form [21]. Moreover, it should be noted that the studies on
lower-scale structures which are modeled via integral nonlocal revealed that this model has
no inconsistencies [22,23]. There have been quite a few studies conducted in order to mend
the inconsistencies of differential nonlocal, such as the stress-driven model presented by
Romano Barretta [24] and employing two-phase local/nonlocal elasticity, which basically
includes the nonlocal integral theory in addition to a classic part. The credibility of this
theory was confirmed by molecular dynamics as well as experimental studies [25]. Similar
to the nonlocal theory, the two-phase theory is more applicable provided that it is in a
differential form. In contrast to differential nonlocal, the transformation associated with
two-phase local/nonlocal elasticity, by introducing two additional boundary conditions,
has no inconsistencies in investigating the behavior of small-scale structures. Additionally,
it has been shown that the two-phase theory is capable of capturing the softening effect
due to nonlocality. Because of this reason, there are many articles in which two-phase
theory has been employed to capture the size effect, including vibration response [26]
and buckling [27] of nanobeams based on Euler–Bernoulli beam theory. Based on the
two-phase theory, Fakher et al. [28] have explored the vibration alongside the buckling of a
nanobeam. In their work, they presented the effect of size-dependency on the thermal load
as well as foundation loads. Behdad et al. [29] investigated the vibrational characteristics
related to defected nanobeams that are placed on a two-parameter type of elastic medium.
Additionally, in the framework of two-phase elasticity, the dynamic stability associated
with nanobeams made of functionally graded porous media under mechanical loading was
explored [30]. Using two-phase elasticity, Selvamani et al. [31] investigated the deformation
associated with nanobeams made of graphene oxide powder composites. The nanobeam
was under thermal and electrical loading. Additionally, Hosseini-Hashemi et al. [32]
investigated the vibration of viscoelastic Euler–Bernoulli nanobeams with considering
surface effect. Lately, by introducing a new approach of using GDQM, Naderi et al. [33]
managed to present a paper on the vibrational behavior of magneto–piezo nanobeams
which are resting on a viscoelastic foundation. To construct the C1 continuous scheme,
isogeometric analysis (IGA) has been widely applied for flexoelectric and strain gradient
effects [34–36]. However, similar to FEM, IGA is a local approximation method and it
requires a large number of control points to guarantee the result’s accuracy. GDQM, on
the other hand, is a global approximation method employing directly the hermit functions
allowing us to evaluate the strain gradient naturally without any recursion procedure to
construct higher-order shape functions. Thus, although two-phase elasticity increases the
complexity of the formulation, using this elasticity results in much more accurate results
without any paradoxes.

The flexoelectric effect, as one of the electromechanical couplings in dielectric materials
due to nonuniform strain in the structures, has been the topic of various studies. In this re-
gard, the impact of flexoelectricity on the vibrational characteristics of nanobeams was stud-
ied by Nguyen et al. [34]. There are quite a few articles that have utilized the strain gradient
effect of flexoelectric material for sensing and energy harvesting [37,38]. Jiang et al. [39]
reviewed the flexoelectricity in various materials as well as the application of flexoelectricity
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in sensors and actuators. Additionally, using the strain gradient sensing of flexoelectric
materials, a sensor for detecting crack growth was presented [7]. Further, the enhance-
ment impact of considering the flexoelectricity—resulting from nonuniform strain—on
the energy harvesting of piezo as well as non-piezo materials was investigated [40]. Yan
and Jiang [41] presented a study to show the effect of flexoelectricity on the bending of
nanobeams under electrical as well as mechanical loading. In another paper, by using
Timoshenko beam theory, they explored the flexoelectricity impacts on the dynamic and
static responses of simply supported nanobeams [42]. In addition, the nonlocal theory has
been used to capture the size effect. For instance, Sidhardh and Ray [43], by employing the
finite element method, examined the static bending of a two-layered nanobeam, including
a layer with a flexoelectric effect as an actuator. In their report, elasticity was utilized as the
size-dependent theory. Additionally, based on strain gradient theory and isotropic flexo-
electric theory, the vibration analysis of microplates considering the microscopic electrical
field, polarization gradient, and strain gradient effects were examined [44]. In these studies,
the extensive flexoelectric characteristics on the system’s dynamic and static responses
was exhibited.

In this work, the free and forced vibration, as well as the output voltage of a unimorph
nanobeam including a functionally graded (FG) base along with a piezo–flexoelectric di-
electric layer, is modeled for the first time, according to paradox-free elasticity or two-phase
local/nonlocal theory. The formulation and boundary conditions are extracted by utilizing
the energy method, i.e., Hamilton’s principle. The nonlocal differential elastic beam formu-
lations are presented and the GDQM is employed. The performance of the proposed model
is presented by studying the influence of the input material parameters, boundary condi-
tions, and structural dimensions. The obtained numerical results indicate the possibility of
our proposed approach in characterizing the vibrational behavior of the piezo–flexoelectric
bimorph nanobeam.

2. Problem Formulation

The vibration of a unimorph nanobeam energy harvesting including a dielectric layer
with the flexoelectricity and piezoelectricity as well as a functionally graded (FG) base
is examined. The Euler beam theory as well as two-phase local/nonlocal elasticity are
employed. Figure 1 exhibits the schematic view for the nanobeam with L, b, h, and hd as its
length, width, the thickness of FG base, and thickness of the dielectric layer, respectively.
Open electric circuit condition is applied, and the voltage difference between the upper
and lower dielectric layers is measured.
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Here, the electrical enthalpy for the dielectric layer with both the piezoelectricity and
flexoelectricity is as follows [45]
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H = 1
2 cijklεijεkl − 1

2 κijEiEj − 1
2 bijklEk,lEi,j

−µijklEkεij,l − eijkEiε jk + µijklEk,lεij,
(1)

in which cijkl denotes the elastic constant and the dielectric constant tensor is κkl . Addi-
tionally, µijkl , bijkl as well as ekij are flexoelectric constants, nonlocal electrical coupling,
and piezoelectric constants, respectively. In addition, El and Ek are electrical fields, and εij
represent the strain tensor of the beam.

Now, according to Euler–Bernoulli theory, the displacement field for the neutral axis
of the nanobeam is as follows [26]

Ux(x, z, t) = −z ∂w(x,t)
∂x ,

Uz(x, z, t) = w(x, t),
(2)

in which Ux and Uz are displacement fields in x and z directions. Additionally, w(x, t) and
∂w(x,t)

∂x are transverse deflection and rotation of the neutral plane of the beam. Further, the
corresponding strains of the nanobeam are [26]

εxx = −z ∂2w(x,t)
∂x2 ,

εxx,z = − ∂2w(x,t)
∂x2 ,

(3)

where εxx and εxx,z show the elastic strain and the gradient of the strain, respectively.
Here, the stress–strain relations associated with the functionally graded base is as

follows [46]
σb

xx = E(z)εxx, (4)

where E(z) is elastic modulus associated with the FG layer and σb
xx is the stress tensor

related to the base layer. Next, the following equation represents the normal and shear
stress associated with piezoelectric nanobeams with the flexoelectric effect considered [47].

σd
xx = c11εxx − e31Ez + µ1133Ez,z,

τxxz = −µ1133Ez,
(5)

where Ez = − ∂φ
∂z and φ is electrical potential, and σd

xx as well as τxxz represent the
normal and second-order stress in the dielectric layer. Additionally, superscript d shows
the dielectric layer. The dielectric nanobeam’s electrical displacement and quadrupolar
contribution are as follows [47].

Dz = κ33Ez + e31εxx + µ1133εxx,z,
Qzz = b33Ez,z − µ1133εxx.

(6)

in which Dz and Qzz are electrical displacement and quadrupolar contribution. Now, with
free electrical charges being zero, the following can be written based on Gauss’s law [48].

∂Dz

∂z
− ∂2Qzz

∂z2 = 0. (7)

Here, by using Equation (6) into Equation (7), the equation below can be yielded.

κ33Ez,z + e31εxx,z − b33Ez,zzz + 2µ1133εxx,zz = 0. (8)

In addition, by considering the following boundary conditions for electrical potential

φ

(
h
2

)
= 0 , φ

(
h
2
+ hd

)
= V, Qzz

(
h
2

)
= 0, Qzz

(
h
2
+ hd

)
= 0 (9)

Equation (8) can be solved for electrical potential as follows [48,49]
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φ(z) = 1
8

(
− 4hV

hd
+ ∂2w

∂x2
e31(−8−h(h+2hd)η

2)
b33η4

)
V z
hd
− z2e31

2κ33
∂2w
∂x2 + 1

2 z
(

e31(h+hd)
κ33

− 2µ1133
η2b33

)
∂2w
∂x2 +

e−
1
2 (h+2z)η(−1+coth[ηhd ])

4η2b33κ33

∂2w
∂x2


2
(
−1 + eηhd

)(
e2zη + eη(h+hd)

)
b33e31

−

 −((−1 + eηhd
)(

e2zη + eη(h+hd)
)

h
)

+2eηhd
(

ehη − e2zη
)

hd

κ33µ1133


(10)

where η =
√

κ33
b33

based on Equation (10), Ez and Ez,z can be obtained as follows.

Ez =
V
hd
− ze31

κ33
∂2w
∂x2 + 1

2

(
e31(h+hd)

κ33
− 2µ1133

η2b33

)
∂2w
∂x2 −

e−
1
2 (h+2z)η(−1+coth[ηhd ])

4ηb33κ33
∂2w
∂x2


2
(
−1 + eηhd

)(
3e2zη + eη(h+hd)

)
b33e31

−

 −((−1 + eηhd
)(

3e2zη + eη(h+hd)
)

h
)

+2eηhd
(

ehη − 3e2zη
)

hd

κ33µ1133



Ez,z =
e−

1
2 (h+2z)η

2(−1+e2ηhd)b33κ33


2
(

e
hη
2 − ezη

)(
−1 + eηhd

)(
−ezη + e

hη
2 +ηhd

)
b33e31

−

 −((−1 + eηhd
)(

e2zη + eη(h+hd)
)

h
)

+2eηhd
(

ehη − e2zη
)

hd

κ33µ1133

 ∂2w
∂x2

(11)

Additionally, the functionally graded material properties used in the base of the
beam are

ρ(z) = ρm + (ρcm − ρm)
(

z
h + 1

2

)n
,

E(z) = Em + (Ecm − Em)
(

z
h + 1

2

)n
,

ν(z) = νm + (νcm − νm)
(

z
h + 1

2

)n
,

(12)

in which ρcm and ρm denote the mass density related to metal and ceramic in the FG layer,
respectively, and Ecm and Em represent the ceramic and metal elastic modulus, respectively.
Additionally, νm and νcm are Poisson’s ratio of metal and ceramic, and n represents the FG
power index.

Now, the strain Πs and kinetic Πk energy of the nanobeam made of two layers,
including a dielectric layer, considering the flexoelectricity and piezoelectricity and an
elastic base are shown in the following equation.

Πs =
1
2 b
∫ L

0

∫ h/2
−h/2

(
σb

xxεxx

)
dz dx + 1

2 b
∫ L

0

∫ h/2+hd
h/2

(
σd

xxεxx + τxxzεxx,z

)
dz dx,

Πk =
1
2

∫ L
0 I1

(
∂w(x,t)

∂t

)2
dx,

(13)

where I1 =
∫ h/2
−h/2 ρ(z)dz +

∫ h/2+hd
h/2 ρddz.

Here, the energy method is utilized to attain the equations in addition to geometrical
end conditions. ∫ t

0
δ(Πs −Πk)dt = 0 (14)

The following equation, representing the governing equation associated with the
vibration of a two-layered nanobeam that contains an FG base and a dielectric layer can be
achieved using Equation (14).
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δφ :
∫
A

∂Dz
∂z dA = 0

δw : ∂2P(x,t)
∂x2 + ∂2 M(x,t)

∂x2 − ρA ∂2w(x,t)
∂t2 = 0

(15)

in which
M(x, t) = b

∫ h/2
−h/2 zσb

xxdz + b
∫ h/2+hd

h/2 zσd
xxdz,

P(x, t) = b
∫ h/2+hd

h/2 τxxzdzb.
(16)

Moreover, the end conditions are

w = 0 or V(x, t) ≡ ∂M
∂x + ∂P

∂x = 0,

∂w
∂x = 0 or M + P = 0.

φ = 0 or Qzznz = 0

(17)

Two-Phase Local/Nonlocal Theory

The stress–strain relation defined in the two-phase local/nonlocal theory is [26]

t(x) = ξ C : ε(x) + (1− ξ)
∫

V α(x, x, κ)C : ε(x) dV
where

α(x, x, κ) = 1
2 k e−

|x−x|
k ,

(18)

in which C, t(x), ε(x), x, α(x, x, κ), ξ, V, and k denote the fourth-order elasticity tensor,
Cauchy stress tensor in the two-phase state, the strain tensor, reference point, kernel
function, local phase fraction factor, domain volume, and nonlocal parameter, respectively.
Thus, two-phase elasticity can be written as follows

Q(x, t) = ξT(x, t) +
(

1− ξ

2k

)∫ L

0
e−
|x−x|

k T(x, t)dx. (19)

in which T(x, t) is a function of the local quadrupolar contribution. It should be mentioned
that by setting ξ = 0 in Equation (18), the pure nonlocal theory can be attained. Now,
by utilizing the transformation presented by Polyanin et al. [50], which was firstly used
for two-phase elasticity by Fernandez et al. [26], the integral formulation is written in the
differential format as follows

−T(x, t) + ξk2 ∂2T(x, t)
∂x2 + Q(x, t)− k2 ∂2Q(x, t)

∂x2 = 0. (20)

Here, it is vital to mention that this transformation can be used only when two
constitutive boundary conditions—CBCs—are satisfied. Therefore, the CBCs at the tips of
the nanobeam are given.

Q(x,t)
k − ∂Q(x,t)

∂x + ξ
∂T(x,t)

∂x − ξ
k T(x, t) = 0 At x = 0,

−Q(x,t)
k − ∂Q(x,t)

∂x + ξ
∂T(x,t)

∂x + ξ
k T(x, t) = 0 At x = L.

(21)

Now, the stress–strain relations and the electrical displacements can be rewritten in
two-phase form using Equation (18) [43,51].

σd
xx = ξ(c11εxx − e31Ez + µ1133Ez,z) +

(
1−ξ
2k

)∫ L
0 e−

|x−x|
k (c11εxx − e31Ez + µ1133Ez,z)dx,

σb
xx = ξ(E(z)εxx) +

(
1−ξ
2k

)∫ L
0 e−

|x−x|
k (E(z)εxx)dx,

τxxz = ξ(−µ1133Ez) +
(

1−ξ
2k

)∫ L
0 e−

|x−x|
k (−µ1133Ez)dx.

(22)
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Now—by using Equations (21)–(22)—the two-phase bending moment, two-phase higher-
order bending moment in differential form are derived and presented in Appendices A.1 and A.2.

3. Solution Procedure
Generalized Differential Quadrature Method

In this section, the solution procedure that is utilized to extract the forced and free
vibrational response of a nanobeam which is made of two layers, including an FG base
and a layer made of dielectric material considering flexoelectric and piezoelectric effects,
is introduced. The GDQM from [33] is used. Based on this method, the momentum and
higher-order momentum in addition to the deflection are the independent variables which
can be rewritten using the separation of variables as follows.

w(x, t)
M(x, t)
P(x, t)

 =


W(x)
M(x)
P(x)

 T(t) (23)

Now, by employing the fourth-order GDQM, the n-th derivative of any function such
as =(x) can be written as follows.

=(r)(xi) =
ns

∑
j=1

Λ(r)
j0 (xi)=j + Λ(r)

1 1 (xi)=
(1)
1 + Λ(r)

ns 1(xi)=
(1)
ns =

ns+2

∑
j=1

Λ(r)
ij ℘j f or i = 1, 2, 3, . . . ns− 1, ns (24)

In which Λ(r)
jl (xi) is Hermit interpolation, and ns denotes the number of sampling

points. Additionally, the location corresponded to the grid points is xi. Here, the discrete
form of the momentum, higher-order momentum, and displacement field can be given as
the following equation together with Figure 2.{

℘j
}T

= {W1, . . . , Wns+2, M1, . . . , Mns+2, P1, . . . , Pns+2}T (25)

In which Mj, Pj, Wj are the discretized form of bending moment, higher-order bending
moment, and lateral displacement.
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Where the subscripts 2 and ns + 2 are the derivative of the variables at the borders, 1
and ns + 1 are the variable values at the border points, and points 3, . . . , ns represent the
domain values of the variables.

Additionally, the distribution of grid points is selected by the following method.

xi = L

(
1− cos

(
(i−1)
(ns−1)π

))
2

f or i = 1, 2, 3, . . . ns− 1, ns. (26)

Now, the Hermit interpolation can be introduced as

Λ(r)
jl (xi) =

{
1 if i = j & l = r
0 otherwise

(27)
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where

Λj0(x) = (x−x1)(x−xns)

(xj−x1)(xj−xns)
Ej(x) f or j = 2, 3, . . . , ns− 1.

Λri(x) =
(
cri + brix + arix2)Er(x) f or r = 1, ns and i = 0, 1

(28)

where Ej(xi) are the Lagrange interpolation and the constant, ari, bri, and cri, can be found
in Appendix A.3.

Additionally, the Lagrange interpolation can be written as

E(1)
j (xi) =


Z(1)(xi)

(xi−xj)Z(1)(xj)
f or i, j = 1, 2, 3, . . . , ns; i 6= j

−
ng
∑

j=1,i 6=j
E(1)

j (xi) f or i, j = 1, 2, 3, . . . , ns

(29)

where Z(1)(xi) =
ns
∏

m=1,m 6=i
(xi − xm). Additionally, the higher-order derivative associated

with the Lagrange interpolation can be obtained in the following equation.

E(r)
j (xi) =


r

(
E(r−1)

i (xi)E(1)
j (xi)−

E(r−1)
j (xi)

(xi−xj)

)
(for i, j = 1, 2, . . . , ns, i 6= j)

−
ns
∑

j=1,i 6=j
E(r)

j (xi) (for i, j = 1, 2, . . . , ns , i = j)

(30)

Now, the discretized formulation and boundary conditions presented in Appendix A.4
can be written in a matrix format as follows.[

[Kbb]12×12 [Kbd]12×(3ns−6)
[Kdb](3ns−6)×12 [Kdd](3ns−6)×(3ns−6)

]
.
{
{Vb}
{Vd}

}

−ω2

[
[Mbb]12×12 [Mbd]12×(3ns−6)

[Mdb](3ns−6)×12 [Mdd](3ns−6)×(3ns−6)

]
.
{
{Vb}
{Vd}

}
= 0.

(31)

in which b and d show boundary and domain grid points, respectively. Additionally,
the discretized form of formulation associated with the differential form of the purely
nonlocal model is presented in Appendix A.5. Next, the forced vibration analysis results
are obtained using Newmark-beta and GIQM procedure, as explained in Ref. [1].

Additionally, the damping matrix is

Cww = β[K] + α[M] (32)

where
α = 2ξi

(
ωiωj

ωi+ωj

)
β = 2ξi

(
1

ωi+ωj

) (33)

where ξi is the damping ratio and ωi as well as ωj are the natural frequencies.
In addition, the harmonic force applied to the system for the forced vibrational results

can be defined as follows.
Fext = f 0 sin(Ωt) (34)

in which f 0 and Ω denote the amplitude and the frequency of the force.

4. Numerical Results and Discussion

This section presents the numerical results related to the vibration of a unimorph
nanobeam, which is made of a dielectric layer with consideration of flexoelectric and
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piezoelectric effects as well as an FG layer based on two-phase elasticity. It should be
mentioned that, in this study, it is supposed that the nanobeam is made of BaTiO3 with ma-
terial properties such as c11 = 167.55 (GPa), ρ = 6020

(
kg/m3), e31 = 4.43

(
C/m2) , b33 =

1.265× 10−17
(

Jm2/VC
)

, κ33 = 1.265× 10−8(C/Vm), and µ1133 = 5× 10−8(C/m) [52].
Additionally, the mechanical properties related to the FG layer are νm = 0.3, νcm = 0.2,
Em = 70(GPa), Ecm = 200(GPa), ρm = 2702

(
kg/m3), and ρcm = 5700

(
kg/m3). Addition-

ally, the damping ratio is ξi = 0.05 and b = h + hd. It should be mentioned that from [52],
the value of flexoelectric coefficient is 1–10 V, in this work we choose f 31 = 3.9526 V, and
the flexoelectric coefficient is computed as µ1133 = f31 × κ33 = 3.9526× 1.265× 10(−8) =
5× 10(−8)C/m.

Firstly, in Table 1, to verify the present formulation in the two-phase framework,
the first vibrational frequency ratio of a nanobeam with flexoelectric effect is obtained by
eliminating the FG base, and compared the results to those from [42]. In this table, the
other constants are ξ = 1 and L = 40 hd. Additionally, the frequency ratio in the reference
is defined as follows.

Fr =
Frequency of the nanobeam without flexoelectricity

Frequency of the nanobeam with flexoelectricity
(35)

Table 1. The frequency ratio of the piezoelectric nanobeam with respect to the flexoelectricity.

hd(nm)

5 10 15 20 25

Present results 0.83504 0.96573 0.98432 0.99109 0.99427
Ref. [42] * 0.83419 0.96318 0.98386 0.99092 0.99420
Error % 0.10 0.26 0.04 0.01 0.01

* It should be noted that the reference results are approximately obtained from a figure.

Next, to study the validity of the two-phase theory formulation, in Table 2, the di-
mensionless frequencies of a nanobeam with omitting the effect of piezoelectricity and
flexoelectricity are tabulated and compared with those of Ref. [26]. The other constant
which plays a role in determining the values is k = 0.05 L. The results are presented for
simply supported (SS) and clamped-free (CF) end conditions. It should be noted that the
exact results are obtained using the equations and solution procedure presented in the
reference. However, the result which is entitled from Ref. [26] is extracted approximately
from the figure presented in this article.

Table 2. The first two dimensionless frequencies of a nanobeam with omitting the piezoelectricity as
well as flexoelectricity for SS and CF end conditions, and k/L = 0.05.

Modes

1st 2nd

BCs ξ Ref. [26] * Exact [26] ** Present Error % Ref. [26] * Exact [26] ** Present Error %

SS

1.00 9.8696 9.8696 9.8696 0.00 39.4784 39.4784 39.4784 0.00
0.50 9.8192 9.8148 9.8145 0.01 38.6493 38.6502 38.6502 0.00
0.10 9.7610 9.7671 9.7671 0.00 37.8993 37.9218 37.9218 0.00
0.05 - 9.7601 9.7601 0.00 - 37.8150 37.8150 0.00
0.01 - 9.7533 9.7533 0.00 - 37.7125 37.7125 0.00

CF

1.00 3.5160 3.5160 3.5160 0.00 22.0344 22.0345 22.0345 0.00
0.50 3.4105 3.4173 3.4173 0.00 21.2628 21.2626 21.2626 0.00
0.10 3.2874 3.2908 3.2908 0.00 20.2713 20.3538 20.3538 0.00
0.05 - 3.2617 3.2617 0.00 - 20.1592 20.1592 0.00
0.01 - 3.2233 3.2233 0.00 - 19.9118 19.9118 0.00

* Ref. [26] values are attained from figures in this reference. ** The exact values are extracted by solving the
method which is given in Ref. [26].
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As can be seen from these two tables, the close agreement between the results acquired
through the presented formulation and solution method confirms the credibility of these
two in exploring the vibration behavior of a two-layered nanobeam, including an FG
base and a dielectric layer with the flexoelectricity and piezoelectricity. In addition, it
should be mentioned that two-phase theory can have good agreement with the results of
molecular dynamic models [25], making it a good tool to investigate small-sized structures.
Additionally, by setting ξ = 1 the results associated with the classic continuum are obtained,
showing the validity of the current continuum theory.

Here, the frequency ratio, which is defined below, for different nanobeam lengths and
boundary conditions are tabulated in Table 3. The other constants used in this table are
k = 0.05 L, ξ = 0.1, n = 0, and hd = 0.005 L .

Fr =
Frequency of the nanobeam with flexoelectricity

Frequency of the nanobeam without flexoelectricity
(36)

Table 3. The frequency ratio of the piezoelectric nanobeam with considering the flexoelectricity.

BC
L (nm)

20 50 100 200 500 1000

S-S 1.19167 1.03937 1.01247 1.00438 1.0013 1.00058
C-F 1.19167 1.03937 1.01247 1.00438 1.0013 1.00058

It can be understood from this table that the impact of flexoelectricity on the vibrational
frequency of a unimorph system can be intensified by reducing the length of the nanobeam,
so much so that the highest frequency ratio, regardless of the boundary condition, occurs
in the cases with the lowest length.

Now, the impact of slenderness related to the FG base of the two-layered nanobeam
with an FG layer and a dielectric layer on its frequency ratio is examined for various FG
index numbers in Figure 3. Additionally, other constants are k = 0.05 L, ξ = 0.1, and
hd = 0.005 L .
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Figure 3 exhibits that intensifying the base layer’s thickness ratio diminishes the value
of the frequency ratio of the nanobeam. In other words, the thicker base causes the effect
of flexoelectricity to reduce. Additionally, it is worth noting that the cases with a higher
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FG index can possess a higher frequency ratio, which means that the flexoelectricity is
higher if the FG power index is higher. Further, the higher the FG power index is, the
higher the metal phase’s contribution in the base is. It can be seen that the frequency ratio
is dominated by the base plate and thickness ratio of the beam rather than end conditions.

Next, the impact of considering flexoelectricity in the current model, specifically small-
scale, on the vibration response of the system, is shown in Figure 4. In this figure, the non-
dimensional vibration frequency of the beam is plotted against the value of the thickness
ratio of the base for three models which consider flexoelectricity and piezoelectricity, only
flexoelectricity, and only piezoelectricity. Additionally, the non-dimensional vibration
frequency is obtained through the following equation.

ω = ωL2

√
I1

/
EIe f f

EIe f f = −b
h
2∫
− h

2

Ecm z2dz− b
h
2 +hd∫

h
2

(
c11z2)dz

I1 = b
h/2∫
−h/2

ρcmdz + b
h/2+hd∫

h/2
ρddz

(37)
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Similar to the previous figure, it can be seen that the effect of flexoelectricity rises
with reducing the thickness of the nanobeam. Additionally, it can be concluded that, as
the model with flexoelectricity and piezoelectricity yields a similar frequency to the one
that only considers flexoelectricity, and hence, flexoelectricity is considered the dominant
electromechanical coupling on small scales.

Here, Figure 5 deals with the impact of the thickness ratio of the dielectric layer
with respect to the base layer’s thickness on the vibrational frequency of the system.
Additionally, other constants in this figure are k = 0.05 L, ξ = 0.1, and h = 0.01 L . The
quite interesting results indicate that increasing the dielectric layer’s thickness causes the
system’s vibrational frequency to increase with a high slope when the thickness ratio is far
from 0.5. By increasing the value, the increment rate diminishes to a point in which the
vibration frequency slightly decreases.
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Now, the effect of two-phase elasticity parameters is investigated on the non-dimensional
vibration of a two-layered nanobeam, including an FG base and a dielectric layer. To
this aim, in Figures 6 and 7, respectively, the influence of ξ and k/L on the fundamental
vibration frequency of the two-layered system was analyzed for different end conditions
and values for the FG index. Additionally, the other parameters that can affect the results
are L = 50 (nm), hd = 0.005 L , and h = 0.01 L . Additionally, in Figure 6, the arrowheads
show the dimensionless vibration frequency obtained by the differential form of purely
nonlocal. Further, in Figure 8, the non-dimensional frequencies are obtained according to
the differential form of purely nonlocal and are plotted against various nonlocality.

In addition, it can be understood that escalating ξ can cause the vibrational frequency
of the nanobeam to increase, which is more observable in C-C and C-F end conditions. This
means that the frequency of the unimorph is lower in the cases that nonlocal forces have
bigger impacts and lower values of ξ. Additionally, as previously stated, the nanobeam
in which the FG base has a higher index value can have a higher frequency, despite the
boundary conditions and ξ values. FG index shows the function based on which the
FG between two surface layers of ceramic and metal forms. Furthermore, it should be
mentioned that, according to the purely nonlocal model, by decreasing the value of ξ
toward 0, the vibration frequency of the system in the two-phase framework should lead to
the values obtained by the differential form of purely nonlocal. Thus, as it can be seen in this
figure, except for the cases with SS end conditions, the results of the two-phase model are
significantly different from those attained via differential form of purely nonlocal elasticity,
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showing the inconsistency of this model due to the lack of additional end condition in the
transformation from integral to differential model. In addition, it should be mentioned that
studies have shown that not all of the forces between the particle of small-scale structures
are purely nonlocal, and it is more a combination of local and nonlocal forces [53]. Thus, the
two-phase theory is a more reliable mathematical model in order to investigate small-scale
structures. Further, the value of ξ depends on the various geometrical parameters of the
structure, which should be determined in every case specifically.
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Figure 6. Variation of fundamental vibration frequency of two-layered nanobeams against ξ for
(a) C-C, (b) C-F, (c) C-S, and (d) SS boundary conditions.

Interesting results of Figure 7 show the importance of using two-phase elasticity
in order to study the small-scale structures with consideration to the piezoelectric and
flexoelectric coupling, as by increasing the nonlocality of nanobeam, the value of frequency
diminishes. In other words, by comparing the results of Figures 7 and 8, decreasing
frequency shows the softening effect which the nonlocal integral elasticity proposed and
differential form of purely nonlocal theory is insufficient to capture, specifically in the C-F
end condition. Additionally, similar to the previous figure, this softening effect can be more
observable in C-F, C-C, and C-S end conditions compared to S-S one. The only end condition
for which differential form of purely nonlocal can produce a comparatively accurate result
is S-S, as the effect of additional boundary conditions is the least in this condition.



Materials 2023, 16, 3485 14 of 25Materials 2023, 16, x FOR PEER REVIEW 17 of 31 
 

 

 
(a) (b) 

 
(c) (d) 

Figure 7. Variation of fundamental vibration frequency of two-layered nanobeams against /k L  
for (a) C-C, (b) C-F, (c) C-S, and (d) SS boundary conditions. 

Interesting results of Figure 7 show the importance of using two-phase elasticity in 
order to study the small-scale structures with consideration to the piezoelectric and flex-
oelectric coupling, as by increasing the nonlocality of nanobeam, the value of frequency 
diminishes. In other words, by comparing the results of Figures 7 and 8, decreasing fre-
quency shows the softening effect which the nonlocal integral elasticity proposed and dif-
ferential form of purely nonlocal theory is insufficient to capture, specifically in the C-F 
end condition. Additionally, similar to the previous figure, this softening effect can be 
more observable in C-F, C-C, and C-S end conditions compared to S-S one. The only end 
condition for which differential form of purely nonlocal can produce a comparatively ac-
curate result is S-S, as the effect of additional boundary conditions is the least in this con-
dition. 

0.02 0.04 0.06 0.08 0.1
k/L

44

48

52

56

60

64

68

ω

n=3
n=1
n=0.5
n=0.3
n=0

Frequency (C-C)

0.02 0.04 0.06 0.08 0.1
k/L

8

8.4

8.8

9.2

9.6

10

10.4

10.8
n=3
n=1
n=0.5
n=0.3
n=0

Frequency (C-F)
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Figure 8. Variation of fundamental vibration frequency of two-layered nanobeams obtained via
differential nonlocal against k/L for (a) C-C and (b) C-F boundary conditions.

Here, in Figure 9, the impact of the flexoelectric coefficient on the vibrational fre-
quencies of a unimorph system containing an FG base in addition to a dielectric layer is
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examined. In these figures, the variation of vibration frequencies of the system is plotted
against various values for the flexoelectric coefficient for different nonlocality values. Addi-
tionally, the other constants in this figure are ξ = 0.1, n = 1, L = 50 (nm), hd = 0.005 L ,
and h = 0.01 L .
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Figure 9. Variation of fundamental vibration frequency of two-layered nanobeams against µ31 for
(a) C-C, (b) C-F, (c) C-S, and (d) SS boundary conditions.

The results from this figure indicate that the vibrational frequency of the unimorph
system is higher, provided that the flexoelectric coefficient associated with the dielectric
layer possesses a higher positive or negative value. Additionally, the softening effect due
to nonlocality can be observed in this figure, as the vibrational frequency is lower, despite
the value of µ31, for beams with higher nonlocality.

Now, by putting a harmonic load with an excitation frequency of 0.85 f1 to 1.15 f1—in
which f1 represents the fundamental vibration frequency of the system—the displacement
response and output voltage of the system are obtained. Additionally, f 0 = 2× 10−9 N

m
in a condition that L = 50 (nm), hd = 0.005 L , and h = 0.01 L . Additionally, it should
be noted that the deflection FRFs are presented for the endpoint in CF and the middle
point for the CC boundary conditions. Next, the impact of different parameters on the
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frequency response function (FRF) associated with nanobeam’s deflection and output
voltage are investigated.

Firstly, the deflection FRF for two types of boundary conditions for three different
models are presented in Figure 10. The three models used are the beams considering only
piezoelectric coupling, flexoelectric coupling, and a combination of both electromechanical
couplings. It can be seen that flexoelectricity is the dominant form of electromechanical
coupling, as the result related to the case that considers both of the couplings has a similar
outcome to the one only considering the flexoelectricity. Also, as previously shown, the
vibrational frequency of the system with flexoelectricity has a higher resonant frequency
than the one in which piezoelectricity is the only considered form of electromechanical
coupling. Therefore, these results indicate that in order to reach a better model for dielectric
materials on a small scale, flexoelectric coupling must be considered the dominant form of
electromechanical coupling.
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Figure 10. Displacement FRF for different beam types and (a) C-C and (b) C-F boundary conditions.

Additionally, in Figures 11 and 12, respectively, the impact of the base’s slenderness on
the displacement and voltage FRF of the unimorph system with two boundary conditions
is examined. The interesting results in these figures indicate that intensifying h/L of the
nanobeam can cause the deflection of the beam in addition to the output voltage to diminish,
regardless of the boundary condition. However, the deflection and output voltage are
higher provided that the softer end condition is utilized. The other notable result is that the
output voltage and displacement peak occur in higher frequencies by decreasing h/L.

Next, in Figures 13 and 14, the displacement and voltage FRFs are plotted for different
nonlocality and boundary conditions. In addition, other constants are equal to ξ = 0.1,
n = 1, L = 50 (nm), hd = 0.005 L , and h = 0.01 L . It can be seen that the peaks related to
deflection FRF and voltage FRF are moving towards lower frequencies due to softening
effect of nonlocality. Therefore, as the cases with a higher nonlocality are softer, their
deflection corresponding to these cases is higher, meaning they possess higher energy
and can produce higher voltages. Similar to the previous figure, the output voltage and
deflection are higher in softer boundary conditions.

Lastly, the displacement and voltage FRFs for different ξ are plotted in Figures 15 and 16.
In addition, the other constants are as follows k/L = 0.05, n = 1, L = 50 (nm), hd = 0.005 L ,
and h = 0.01 L . As expected, increasing the value leads to increasing the system’s natural
frequency, moving the deflection and voltage peak in FRFs towards higher frequencies.
Consequently, as the system is less nonlocal by intensifying ξ, the system is stiffer and
produces less voltage, regardless of the boundary conditions.
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Figure 11. Displacement FRF for different values of h/L and (a) C-C and (b) C-F boundary conditions.
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Figure 12. Voltage FRF for different values of h/L and (a) C-C and (b) C-F boundary conditions.
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Figure 13. Displacement FRF for different values of κ/L and (a) C-C and (b) C-F boundary conditions.
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Figure 14. Voltage FRF for different values of κ/L and (a) C-C and (b) C-F boundary conditions.
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Figure 15. Displacement FRF for different values ξ of h/L and (a) C-C and (b) C-F boundary
conditions.
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5. Conclusions

This research presents a study on the frequency response of a nanobeam made of a FG
base along with a dielectric layer considering both flexoelectric and piezoelectric couplings.
The effect of the small size is considered by means of a paradox-free elasticity named
two-phase local/nonlocal theory. Then, the equations of motions and end conditions are
extracted using the Euler–Bernoulli beam theory, variational energy method, and GDQM.
The results of this study are validated by employing other published articles. Finally, a
parametric investigation is presented, the most important results of which are:

The smaller the nanobeams are, the dominant effect of flexoelectricity over piezoelctricty
can be observed more clearly.

The lower values of ξ the system are closer to being purely nonlocal, causing the
frequency to diminish. On the other hand, increasing ξ and h/L leads to a reduction in the
peak values of voltage and displacement FRFs.

By intensifying the FG index, the vibrational frequency as well as the flexoelectric
effect of the dielectric layer can be increased.

The higher the nonlocality, the higher the voltage and displacement FRFs peaks.
The two phase instead of differential nonlocal possess no paradoxes, making a reliable

model by which the behavior of MEMS and NEMS can be studied. These findings sug-
gest promising applications in nanoenergy transduction, nanogenerator, nanosensing and
nanoactuation.
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Nomenclature

L, b, h, and hd Nanobeam’s length and width,
the thickness of FG base beam,
and thickness of the dielectric layer

cijkl Elastic constant
κkl The dielectric constant tensor
µijkl , bijkl and ekij Flexoelectric constant, nonlocal electrical

coupling, and piezoelectric constant
El and Ek Electrical field
εij Strain tensor
Ux and Uz Displacement in x and z directions.
w(x, t) and ∂w(x,t)

∂x Transverse deflection and rotation
of the neutral plane of the beam

E(z) Elastic modulus associated with the FG layer
σb

xx The stress tensor related to the base layer
φ Electrical potential
σd

xx as well as τxxz Normal and second order stress in the dielectric layer
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Dz and Qzz Electrical displacement and quadrupolar contribution
ρcm and ρm Mass density related to metal and ceramic
Ecm and Em The ceramic and metal elastic modulus
νm and νcm Poisson’s ratio of metal and ceramic
N FG power index
Πs and Πk Strain and kinetic energy of the nanobeam
C, t(x), ε(x), x, α(x, x, κ), The fourth-order elasticity tensor, Cauchy stress
ξ, V, and k tensor in the two-phase state, the strain tensor, reference

point, kernel function, local phase fraction factor, domain
volume, as well as nonlocal parameter, respectively

Λ(r)
jl (xi) Hermit interpolation

xi The location corresponded to the grid points
Mj, Pj, Wj Discretized form of bending moment,

higher-order bending moment, and lateral displacement
Ej(xi) Lagrange interpolation
f 0 and Ω The amplitude and the frequency of the force
ξi Damping ratio
C-C, C-F, C-S, and S-S Clamped–Clamped, Clamped-Free, Clamped–Simply,

and Simply–Simply boundary conditions

Appendix A

Appendix A.1. Differential Two-Phase Bending Moment

Equation (20). should be employed in order to obtain the differential form of the two-
phase bending moment, the first part of Equation (22). Therefore, the following is proposed.

Q(x, t) = M(x, t) ;
T(x, t) = b

∫ h/2
−h/2 z(E(z)εxx)dz + b

∫ h/2+hd
h/2 z(c11εxx − e31Ez + µ1133Ez,z)dz

(A1)

Now, the second part of Equation (A1) is rewritten as follows.

T(x, t) = EIe f f
∂2w(x,t)

∂x2 in which

EIe f f = −b
∫ h/2
−h/2 E(z)z2dz =

−b
∫ h/2+hd

h/2 (c11z2+.

+z2



V
hd
− ze31

κ33
∂2w
∂x2 + 1

2

(
e31(h+hd)

κ33
− 2µ1133

η2b33

)
∂2w
∂x2 −

e−
1
2 (h+2z)η(−1+coth[ηhd ])

4ηb33κ33
∂2w
∂x2


2
(
−1 + eηhd

)(
3e2zη + eη(h+hd)

)
b33e31

−

 −((−1 + eηhd
)(

3e2zη + eη(h+hd)
)

h
)

+2eηhd
(

ehη − 3e2zη
)

hd

κ33µ1133



)dz

(A2)

Now, by substituting Equations (A1) and (A2), into Equation (20), the differential form
of the two-phase bending moment can be attained.

M(x, t)− k2 ∂2M(x, t)
∂x2 −

(
1− ξk2 ∂2

∂x2

)(
EIe f f

∂2w(x, t)
∂x2

)
= 0 (A3)

Additionally, by using Equations (A1) and (A2) in Equation (21), the CBCs related to
the two-phase bending moment can be achieved.

∂M(x,t)
∂x − M(x,t)

k −
(

ξ ∂
∂x −

ξ
k

)(
EIe f f

∂2w(x,t)
∂x2

)
= 0 At x = 0

∂M(x,t)
∂x + M(x,t)

k −
(

ξ ∂
∂x + ξ

k

)(
EIe f f

∂2w(x,t)
∂x2

)
= 0 At x = L

(A4)
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Appendix A.2. Differential Two-Phase Higher-Order Bending Moment

Equation (20) should be employed in order to obtain the differential format of two-
phase higher-order bending moment, P(x, t), Equation (22). Therefore, the following
is proposed.

Q(x, t) = P(x, t); T(x, t) = b
∫ h/2+hd

h/2
τxxz dz = b

∫ h/2+hd

h/2
−µ1133Ez dz (A5)

Before writing the differential form of this parameter, T(x, t) in Equation (A5) can be
given as

T(x, t) = Ae f f
∂2w(x,t)

∂x2 in which
Ae f f =

b
∫ h/2+hd

h/2 −µ1133



V
hd
− ze31

κ33
∂2w
∂x2 + 1

2

(
e31(h+hd)

κ33
− 2µ1133

η2b33

)
∂2w
∂x2 −

e−
1
2 (h+2z)η(−1+coth[ηhd ])

4ηb33κ33
∂2w
∂x2


2
(
−1 + eηhd

)(
3e2zη + eη(h+hd)

)
b33e31

−

 −
((
−1 + eηhd

)( 3e2zη

+eη(h+hd)

)
h
)

+2eηhd
(

ehη − 3e2zη
)

hd

κ33µ1133




dz.

(A6)

Now, by substituting Equations (A5) and (A6) in Equation (20), the differential two-
phase higher-order bending moment can be attained.

−
(

1− ξk2 ∂2

∂x2

)(
Ae f f

∂2w(x, t)
∂x2

)
+ P(x, t) − k2 ∂2P(x, t)

∂x2 = 0 (A7)

Additionally, by employing Equations (A5) and (A6) into Equation (21), the CBCs
related to the two-phase higher-order bending moment:

−
(
− ξ

k + ξ ∂
∂x

)(
Ae f f

∂2w(x,t)
∂x2

)
+ ∂P(x,t)

∂x − P(x,t)
k = 0 At x = 0

−
(

ξ
k + ξ ∂

∂x

)(
Ae f f

∂2w(x,t)
∂x2

)
+ ∂P(x,t)

∂x + P(x,t)
k = 0 At x = L

(A8)

Additionally, in order to present a comparative investigation between the current
model and the differential nonlocal model used in the previous articles, the equations are
attained as follows. The purely nonlocal model in differential form can be acquired by
setting ξ = 0 in Equations (15), (A3), and (A7). It is worth noting that, in this model, the
higher-order boundary conditions—CBCs—are not utilized as the order of the equation
is four. The equations are presented below. Notably, the integral nonlocal model can be
attained by setting ξ = 0 in Equation (19)

∂2M(x, t)
∂x2 +

∂2P(x, t)
∂x2 − ρA

∂2w(x, t)
∂t2 = 0 (A9)

−
(

Ae f f
∂2w(x, t)

∂x2

)
+ P(x, t) − k2 ∂2P(x, t)

∂x2 = 0 (A10)

−
(

EIe f f
∂2w(x, t)

∂x2

)
+ M(x, t)− k1

2 ∂2M(x, t)
∂x2 = 0 (A11)
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Appendix A.3. Constants Used for GDQM

a10 = −1
(x1−xns)

2 +
−E(1)

1 (x1)
(x1−xns)

, ans0 = −1
(x1−xns)

2 +
−E(1)

ng (xns)

(x1−xns)

b10 = 1
(x1−xns)

− a10(x1 + xns) , bns0 = −1
(x1−xns)

− ans0(x1 + xns)

c10 = 1− a10x2
1 − b10x1 , cns0 = 1− ans0x2

ns − bns0xns

a11 = 1
(x1−xns)

, b11 = −(x1+xns)
(x1−xns)

, c11 = x1xns
(x1−xns)

ans1 = −1
(x1−xns)

, bns1 = (x1+xns)
(x1−xns)

, cns1 = −x1xns
(x1−xns)

(A12)

Appendix A.4. The Discretized Formulation and Boundary Conditions

Now, by utilizing Equations (24) and (25), the discretized form of the formulation
and the end conditions can be attained. First, by utilizing Equation (15), the discretized
equation of motion can be given as follows

ns+2

∑
j=1

MjΛ
(2)
ij +

ns+2

∑
j=1

PjΛ
(2)
ij + ω2ρAWi+1 = 0 f or i, 2, 3, . . . , ns− 1 (A13)

Additionally, the discretized form of bending moment in the framework of two phase is

EIe f f

(
ns+2
∑

j=1
WjΛ

(2)
1j − ξ1k1

2
ns+2
∑

j=1
WjΛ

(4)
1j

)
+ M1 − k1

2
ns+2
∑

j=1
MjΛ

(2)
1j = 0 f or i = 1

EIe f f

(
ns+2
∑

j=1
WjΛ

(2)
ij − ξ1k1

2
ns+2
∑

j=1
WjΛ

(4)
ij

)
+ M1+i − k1

2
ns+2
∑

j=1
MjΛ

(2)
ij = 0 f or i = 2, 3, . . . , ns− 1

EIe f f

(
ns+2
∑

j=1
WjΛ

(2)
ns j − ξ1k1

2
ns+2
∑

j=1
WjΛ

(4)
ns j

)
+ Mns+1 − k1

2
ns+2
∑

j=1
MjΛ

(2)
ns j = 0 f or i = ns

(A14)

Additionally, the higher-order bending moment can be rewritten

P1 − k2
ns+2
∑

j=1
PjΛ

(2)
1 j + Ae f f

(
ns+2
∑

j=1
WjΛ

(2)
1 j − ξk2

ns+2
∑

j=1
WjΛ

(4)
1 j

)
= 0 f or i = 1

P1+i − k2
ns+2
∑

j=1
PjΛ

(2)
ij + Ae f f

(
ns+2
∑

j=1
WjΛ

(2)
ij − ξk2

ns+2
∑

j=1
WjΛ

(4)
ij

)
= 0 f or i = 2, 3, . . . , ns− 1

Pns+1 − k2
ns+2
∑

j=1
PjΛ

(2)
ns j + Ae f f

(
ns+2
∑

j=1
WjΛ

(2)
ns j − ξk2

ns+2
∑

j=1
WjΛ

(4)
ns j

)
= 0 f or i = ns

(A15)

Additionally, the geometrical boundary conditions, Equation (17), are discretized
as follows

At x = 0
{

W2 = 0 or M1 + P1 = 0
W1 = 0 or V(x, t) ≡ M2 + P2 = 0

At x = L
{

Wns+2 = 0 or Mns+1 + Pns+1 = 0
Wns+1 = 0 or V(x, t) ≡ Mns+2 + Pns+2 = 0

(A16)

Now, by employing Equations (A4), (24), and (25), the CBCs related to the bending
moment can be written(

k M2 −M1
)
+ EIe f f ξ

(
k

ns+2
∑

i=1
WiΛ

(3)
1 j −

ns+2
∑

i=1
WiΛ

(2)
1 j

)
= 0 At x = 0.(

k Mns+2 + Mns+1
)
+ EIe f f ξ

(
k

ns+2
∑

i=1
WiΛ

(3)
ns j +

ns+2
∑

i=1
WiΛ

(2)
ns j

)
= 0 At x = L.

(A17)
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Lastly, the discretized form of CBCs associated with the higher-order bending moment
can be achieved(

k P2 − P1
)
+ Ae f f ξ

(
k

ns+2
∑

i=1
WiΛ

(3)
1 j −

ns+2
∑

i=1
WiΛ

(2)
1 j

)
= 0 At x = 0.(

k Pns+2 + Pns+1
)
+ Ae f f ξ

(
k

ns+2
∑

i=1
WiΛ

(3)
ns j +

ns+2
∑

i=1
WiΛ

(2)
ns j

)
= 0 At x = L.

(A18)

Appendix A.5. The Discretized Formulation of the Purely Nonlocal

ns

∑
j=1

MjE
(2)
ij +

ns

∑
j=1

PjE
(2)
ij + ω2ρAWi = 0 f or i = 2, 3, . . . , ns− 1 (A19)

Additionally, the discretized form of bending moment in the framework of two phase is

Mi − k1
2

ns

∑
j=1

MjE
(2)
ij + EIe f f

(
ns

∑
j=1

WjE
(2)
ij

)
= 0 f or i = 2, 3, . . . , ns− 1 (A20)

Additionally, the higher-order bending moment can be rewritten

P1 − k2
ns
∑

j=1
PjE

(2)
1 j + Ae f f

(
ns
∑

j=1
WjE

(2)
1 j

)
= 0 f or i = 1

Pi − k2
ns
∑

j=1
PjE

(2)
ij + Ae f f

(
ns
∑

j=1
WjE

(2)
ij

)
= 0 f or i = 2, 3, . . . , ns− 1

Pns − k2
ns
∑

j=1
PjE

(2)
ns j + Ae f f

(
ns
∑

j=1
WjE

(2)
ns j

)
= 0 f or i = ns

(A21)

Additionally, the geometrical boundary conditions, Equation (17), are discretized
as follows

At x = 0


ns
∑

j=1
WjE

(2)
1 j = 0 or M1 + P1 = 0

W1 = 0 or V(x, t) ≡
ns
∑

j=1
MjE

(2)
1 j +

ns
∑

j=1
PjE

(2)
1 j = 0

At x = L


ns
∑

j=1
Wjl

(2)
ns j = 0 or Mns + Pns = 0

Wns = 0 or V(x, t) ≡
ns
∑

j=1
MjE

(2)
ns j +

ns
∑

j=1
PjE

(2)
ns j = 0

(A22)
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