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Abstract: The deep groove ball bearing is one of the most important components of the rotary motion
system and is the research subject in this paper. After factory assembly, new ball bearings need
to pass quality control. The conventional approach relies on measuring the vibration amplitudes
for each unit and sorting them into classes according to the vibration level. In this paper, based on
experimental research, models are created to predict the vibration class and analyze the dynamic
behavior of new ball bearings. The models are based on artificial neural networks. A feedforward
multilayer perceptron (MLP) was applied, and a backpropagation learning algorithm was used. A
specific method of training groups of artificial neural networks was applied, where each network
provided an answer to the input within the group, and the final answer was the mean value of the
answers of all networks in the group. The models achieved a prediction accuracy of over 90%. The
main aim of the research was to construct models that are able to predict the vibration class of a new
ball bearing based on the geometric parameters of the bearing rings. The models are also applied
to analyze the influence of surface roughness of the raceways and the internal radial clearance on
bearing vibrations.

Keywords: bearing; neural network; surface roughness; clearance; vibration

1. Introduction

Deep groove ball bearings are one of the most important components of rotary motion
systems, and the vibrations generated by the bearing have a significant influence on the
dynamic behavior of the system. When designing complex rotary motion systems, whose
integral parts are deep groove ball bearings, it is very important to know the dependence
of vibrations and the many factors that affect them. The vibration measurement method is
prescribed by the ISO 15242-2 standard. New ball bearings need to pass quality control
after assembly in the factory. The conventional approach involves measuring the vibration
amplitudes for each unit and sorting them into classes according to the vibration level.
Mathematical models are used to describe the dynamic and static behavior of bearings [1–4].
One of the first studies of the influence of the surface roughness of raceways on bearing
vibrations was conducted by Kanai et al. [5]. They developed a method for determining the
surface roughness of a bearing’s raceway based on an analysis of the bearing’s vibration
signal. Yunlong et al. [6] developed a dynamic model to determine the dynamic behavior
and movement of the rolling elements of the bearing based on the surface roughness at
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the point contact of the ball and the raceway. Zmarzly [7] investigated the effect of surface
roughness and raceway waviness on bearing vibrations. Using linear regression, the author
approximated the dependence of bearing vibration amplitudes on the surface roughness
and raceway waviness.

Artificial neural networks have been used for a long time for the vibration analysis
of deep groove ball bearings. Their basic application is to determine the cause of bearing
faults. Today, there are solutions that are practically applied for bearing fault diagnosis. A
review on the application of convolutional neural networks in bearing fault diagnosis is
provided in [8], and an overview of applied artificial intelligence techniques for bearing
analysis and fault diagnosis was presented by Liu et al. [9]. The application of artificial
neural networks for predicting vibration amplitudes of deep groove ball bearings based on
technological parameters and lubrication is presented in [10]. Artificial neural networks
have been successfully applied to predict the size of the internal radial clearance in deep
groove ball bearings, as presented in reference [11]. Different examples of the application
of artificial intelligence to detect fault in bearings are presented in [12–17]. The authors
in [18–22] use artificial neural networks to predict the remaining useful life of the bearing
(RUL).

In [23], the authors apply artificial deep learning neural networks to predict the
surface roughness in metal processing. The signals were transformed using FFT (fast
Fourier transformation) into a form suitable for training artificial neural networks. Lin
et al. [24] analyzed metal processing parameters using artificial neural network models to
predict the surface roughness of the processed surface.

Predictive maintenance is an important strategy in rotating machinery to ensure high
reliability of the system. Today, there are a number of different methods that help to
improve the reliability of rotary systems. The most used is analysis of measured vibration
signals with different artificial intelligence tools. In [25], the authors reviewed methods
used in prediction of the maintenance requirements of gearboxes, bearings and generators
of wind turbines. Lalik and Watorek [26] presented a neural control algorithm for defect
detection of wind turbine rotary systems. They used artificial intelligence to determine the
technical condition and predict possible failure in the system.

The main aim of this research was to construct models able to predict the vibration
class of a new ball bearing based on the geometric parameters of the bearing rings. The
models were also applied to analyze the influence of surface roughness of the raceways
and internal radial clearance on bearing vibrations. Based on experimentally obtained data,
groups of artificial neural networks were trained and were used to predict the vibration
amplitude of deep groove ball bearings depending on the geometric characteristics of the
raceway and internal radial clearance. The axial load was constant for this experimental
research and was not considered as an influential factor. In the available literature, no such
approach to the investigation of the dynamic behavior of ball bearings was found. To date,
this is the first study to utilize artificial neural networks to predict the vibration class of new
ball bearings based on the geometric parameters of the bearing rings and to investigate the
dependence of surface roughness and vibrations, as well as clearances and vibrations in
the bearing.

2. Materials and Methods

The test sample consisted of 30 deep groove ball bearings marked 6006. The experi-
ment involved measuring the geometric deviations and surface roughness of the raceway of
the inner and outer rings, the internal radial clearance, as well as the vibration amplitudes
of the ball bearings. Geometric deviations were measured using the Taylor-Hobson Form
Talysurf 112/1849 device as shown in Figure 1. The statistical features of the geometric
deviations and internal radial clearance are presented in Table 1. These include the internal
radial clearance (Gr), raceway radius ratio (Ri/Re), surface roughness of the raceway of the
outer ring (Rae), raceway waviness of the outer ring (Wte max), deviation from the circularity
of the raceway of the outer ring (Wte), surface roughness of the raceway of the inner ring
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(Rai), raceway waviness of the inner ring (Wti max), and deviation from the circularity of the
raceway of the inner ring (Wti).
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Table 1. Main statistical characteristics of analyzed bearing parameters.

Bearing
Characteristics

Minimum Value
xmin

Maximum Value
xmax

Mean Value
¯
x

Standard Deviation
s

Gr, [µm] 6 51 24.03 14.54

Ri/Re 0.95 0.98 0.96 0.01

Rae, [µm] 0.07 0.28 0.13 0.04

Rai, [µm] 0.07 0.56 0.26 0.1

Wte max, [µm] 0.1 1.97 0.8 0.32

Wti max, [µm] 0.25 0.66 0.39 0.13

Wte, [µm] 1.5 17.82 5.01 2.86

Wti, [µm] 0.4 2.63 0.92 0.41

The geometric deviation parameters of the raceways for the inner and outer rings
are independent since each ring is made independently of the others. When selecting
the inner and outer rings for mounting the bearing, it is possible that the geometrical
parameters are completely different. To eliminate the influence of different parameters,
equivalent parameters were introduced, and their value was calculated using the following
expressions:

The equivalent surface roughness of the raceway (Ra ekv):

Ra ekv =
Rae · Rai

Rae + Rai
, (1)
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The equivalent amplitude of raceway waviness (Wt max ekv):

Wt max ekv =
Wtemax ·Wtimax

Wtemax + Wtimax
, (2)

The equivalent amplitude of deviation from the circularity of raceway (Wt ekv):

Wt ekv =
Wte ·Wti

Wte + Wti
. (3)

Table 2 shows the main statistical characteristics of equivalent bearing parameters.

Table 2. Main statistical characteristics of equivalent bearing parameters.

Bearing
Characteristics

Minimum Value
xmin

Maximum Value
xmax

Mean Value
¯
x

Standard Deviation
s

Ra ekv 0.04 0.14 0.08 0.02

Wt max ekv 0.16 0.47 0.25 0.06

Wt ekv 0.36 1.78 0.74 0.26

The measurement of vibration velocity amplitudes was carried out using a device
for measuring and analyzing bearing vibrations. Figure 2 shows the experimental device
consisting of a test table on which there is a spindle mounted with hydrodynamic bearings,
a pneumatic cylinder for axial loading of the bearing, a drive motor and a control cabinet
(control unit). The bearing is placed over the inner ring on the measuring mandrel, which
is connected to the spindle by means of a cone and a threaded connection. During the
measurement, the spindle rotates at a constant number of revolutions (n = 1800 RPM)
with a permissible deviation of +1% and −2%, according to ISO 15242-1. The outer
ring is stationary and loaded with an axial force via a pneumatic cylinder, as standard
ISO 15242-21 recommends. The basic element in the vibration measurement chain is
the electrodynamics pickup (Figure 3) that generates a voltage at its output, and whose
amplitude and frequency is proportional to the velocity of the vibrations generated by the
ball bearing. The electrodynamic pickup is connected to a computer by a USB cable, which
controls the measurement process and stores the measured signals. The measurement takes
5 s from the moment the bearing reaches a constant rotation velocity. Since the amplitude
of the signal obtained by the electrodynamic pickup used is small, the signal is amplified
by an amplifier for digital processing and display.
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Figure 3. Schematic view of the vibrations measuring principle using the electrodynamic pickup.

A block diagram illustrating the measurement and control system for the vibration
testing of ball bearings is shown in Figure 4. The elements responsible for analogue
signal processing are the amplifier and the bandwidth filter. The amplifier has the task
of amplifying the signal level from the electrodynamic velocity sensor to a level suitable
for digital processing and display. An amplifier with a gain of 1500 was used, providing
sufficient signal amplitude for digital processing. The frequency band of the signal that is
of interest for vibration testing of ball bearings is from 50 Hz to 10 kHz. The filter functions
to limit the spectrum of the signal received from the amplifier to the mentioned band. The
designed filter introduces a relatively small attenuation of wave oscillations in one or more
frequency bands and a relatively large attenuation for oscillations of other frequencies
(below 50 Hz and above 10 kHz) according to the ISO 15242-1 standard. The bandwidth of
the filter is also defined based on the mentioned standard. Signal digitization is performed
using the NI DAQ USB-6009 measurement acquisition system. The sampling frequency
is 48 kHz, while the resolution of the internal A/D converter is 13 bits. In this way, the
quality preparation of the signal obtained using the electrodynamic velocity sensor and its
digitization for further computer processing is ensured.
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Figure 4. Block diagram of the measurement and control system.

The signal recorded in the time domain is transformed into the frequency domain for
further analysis using fast Fourier transformation. The standard requires the analysis of
vibrations in three characteristic frequency bands, namely, low frequencies (50 ÷ 300 Hz),
medium frequencies (300 ÷ 1800 Hz), and high frequencies (1800 ÷ 10,000 Hz).

2.1. Analysis of Measured Data

The measurements of the geometric characteristics of the bearing raceway and the
amplitude of the vibration velocity were analyzed to find mutual dependencies. The
analysis was performed by calculating the coefficients of linear correlation between the
characteristic parameters of the bearing and the amplitude of the vibration velocity in the
frequency bands. In this analysis, the input parameters were the geometric characteristics
of the bearing raceway, and the output velocities of vibrations in characteristic areas. The
analyzed cases were those when the geometric characteristics of the bearing raceway were
observed for each ring separately and when equivalent parameters were used. Figure 5
shows the values of the linear correlation coefficient of the characteristic bearing parameters
where the technological parameters are observed for the outer and inner ring separately
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according to the characteristic frequency bands. The linear correlation coefficients of the
bearing parameters for the low-frequency band are shown in Figure 5a. The highest corre-
lation coefficient was found for the deviation from circularity of the outer ring, followed by
waviness and surface roughness of the outer ring. The next most important influencing
parameter was the surface roughness of the inner ring, followed by the ratio of the radius
of the raceway, the radial clearance, the deviation from the circularity and the waviness of
the inner ring.
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Figure 5b shows the linear correlation coefficients of the bearing parameters for the
medium-frequency band. The surface roughness of the outer ring has the highest influence,
followed by the deviation from the circularity of the outer ring, the ratio of the radius of
the raceway, the waviness of the outer ring, the radial clearance, and further parameters
of the inner ring of the bearing. The correlation coefficients are lower compared with the
correlation coefficients in the low-frequency band.

The linear correlation coefficients of the bearing parameters for the high-frequency
band are shown in Figure 5c. The values of the coefficients are significantly lower compared
with the low and medium frequency bands. The surface roughness of the inner ring, the
deviation from the circularity of the outer ring and the radial clearance have the highest
influence. Parameters with low influence are the surface roughness of the outer ring, the
ratio of the radius of the raceway, the waviness of both rings and the deviation from the
circularity of the inner ring.

Figure 6 shows the linear correlation coefficients of the characteristic bearing parame-
ters and equivalent technological parameters in the three frequency bands. Figure 6a shows
the linear correlation coefficients of the bearing parameters for the low-frequency band. The
highest correlation coefficient was observed for the equivalent surface roughness, followed
by the ratio of the radius of the raceways. Equivalent waviness and equivalent deviation
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from roundness were the next two influencing parameters. Radial clearance had the least
influence in the low-frequency band.
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Figure 6b shows the linear correlation coefficients of the bearing parameters for the
medium-frequency band. The equivalent surface roughness has the highest influence,
followed by the ratio of the radius of the raceways and the radial clearance. The less
influential parameters were equivalent waviness and deviation from circularity.

The linear correlation coefficients of the bearing parameters for the high-frequency
band are shown in Figure 6c. The values of the coefficients were also significantly lower
compared with those for the low and medium-frequency bands. The equivalent surface
roughness had the highest influence, which affects the reduction of the vibration velocity
amplitudes. Radial clearance was the next most important influencing parameter. The
parameters with lower influence were the equivalent deviation from circularity, the ratio of
the radius of the raceways and the equivalent waviness.

2.2. Application of the Neural Network

Artificial neural networks are used in this paper to investigate the influence of the
surface roughness of the raceways and the clearance in the bearing on the vibration velocity
amplitudes. The paper applies a multilayer perceptron (MLP), where a feedforward signal
and a learning algorithm with error backpropagation are used. The neural network has one
hidden layer with d inputs, k neurons in the hidden layer, and one output, and the total
ratio of inputs to outputs in this case is a function of f : Rd → R which maps the input
vector x ∈ Rd into a scalar output using the following equation [27]:
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x → fv,w(x) :=
k

∑
l=1

vlφ((wl , x)) (4)

Vectors wl ∈ Rd contain weighting coefficients between the inputs and l-th hidden
node, and vl ∈ Rd is the weight coefficient of the l-th hidden node and the output. Finally,
φ : R→ R denotes the activation function applied to each hidden node.

2.3. Organization of Data Set

The results of the experimental research are divided into groups of I/O parameters
for the application of the artificial neural network. The input parameters are the geometric
characteristics of the bearing and external load, and the output results are the vibration
measurements of the bearing as shown in Figure 7. Figure 8 shows the I/O parameters
when the technological parameters of the bearing are considered as equivalent.
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2.4. Data Pre-Processing and Defining Datasets for Training, Validation and Testing

Prior to starting the work with neural networks, experimental data are often pre-
processed which consists of linear scaling of the input data. Scaling the input parameters
improves the training conditions of the networks in terms of achieving the optimal set of
weight coefficients in the network. Linear scaling of the output parameters can establish a
balance between outputs whose intensities are very different. Linear scaling of the output
parameters was performed in the interval from 0.5 to 0.8 according to Equation (5). This
scaled data were further divided into sets and used to train artificial neural networks.

xskal = xmin +
x− xmin

xmax − xmin
· (xmax − xmin) (5)

The data were then divided into the training set, validation set and test set. In general,
the most common data distribution ratio is 70% for the training set, 15% for the validation
set, and 15% for the test set. These relations can be changed to obtain a better-quality model.
In this paper, for the purpose of analyzing the dynamic behavior of bearings, sets were
formed according to the number of bearings in a certain set. The total number of bearings
was 30 with 2 sets allocated to post-training testing and network performance evaluation,
as shown in Figure 9. The remaining 28 bearings were divided into 20 for training, 4 for
validation and 4 for testing.
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The evaluation of the model predictions is based on Pearson’s correlation coefficient
(R), the determination coefficient (R2) and the average prediction error expressed as a
percentage. The evaluation was calculated for each band separately. The overall evaluation
was calculated as the cumulative value of the Pearson’s correlation coefficient and the
separate coefficients of determination, and the prediction fault was calculated as the mean
value for all three bands. If the model is absolutely correct, then the values of the coefficients
will be 1 in each band, that is, their cumulative value will be 3, and the mean value of
the prediction fault will be zero. The model whose cumulative values of the coefficients
are closest to the maximum, and at the same time, has a minimum mean value of the
prediction fault, is considered the best. When selecting the model to be used for the analysis
of the dynamic behavior of the bearing, the priority in the evaluation is assigned to the
networks that have the smallest average prediction fault, and as a secondary evaluation,
the cumulative values of the coefficients are used.

2.5. Analyzed Models of Artificial Neural Networks

There are various architectures of neural networks from those with a single hidden
layer with several neurons to networks with multiple hidden layers. The training was
conducted with three different training algorithms: Levenberg–Marquardt (LM), Bayesian
Regularization (BR), and Scaled Conjugate Gradient (SCG). Table 3 shows the analyzed
artificial neural network models. The technological parameters of the bearing raceways
were analyzed separately using equivalent values.
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Table 3. Overview of analyzed models of artificial neural networks.

Analyzed Artificial Neural Network Models

Technological Parameters Separately Technological Parameters Equivalent

Training algorithm Training algorithm
Levenberg–
Marquardt

Bayesian
Regularization

Scaled Conjugate
Gradient

Levenberg–
Marquardt

Bayesian
Regularization

Scaled Conjugate
Gradient

ANN architecture ANN architecture
One hidden layer

(Number of neurons from 1 to 30)
One hidden layer

(Number of neurons from 1 to 30)
Two hidden layers

(Number of neurons from 1 to 30)
Two hidden layers

(Number of neurons from 1 to 30)
Three hidden layers

(Number of neurons from 1 to 30)
Three hidden layers

(Number of neurons from 1 to 30)

2.6. Method of Training Artificial Neural Networks

The training process of the artificial neural networks was carried out for each training
configuration, which includes the training algorithm, the number of hidden layers, and the
number of neurons in the hidden layer. A special training algorithm was created to enable
automation of the training process.

2.7. Description of the Training Algorithm

One way to improve the performance of neural networks is to train a set of neural
networks on the same data. This method is used to improve the generalization of artificial
neural networks when noise is present and when a small amount of data is available. For
this purpose, an algorithm was written to enable the training process to be repeated n times
for a certain configuration (Figure 10). By executing the code, a set of neural networks is
generated so that out of 28 bearings, the data for one are extracted for testing after training,
and training is carried out with the remaining 27 bearings. The procedure is repeated until
passing a cycle where all 28 bearings are separated. In this way, a set of 28 networks is
obtained, and together they form one training cycle. The number of cycle repetitions can
be set freely. In this paper, the maximum adopted number of repetitions is 10. Adopting
more than 10 cycles requires more time for training networks, especially for multi-layered
networks with 20 or more neurons in each layer. The training process was carried out
according to the order listed in Table 3. Based on the number of repetitions, the results
of training can range from one group of 28 networks to 10 groups of 28 networks. All of
groups are tested and the best one is adopted.
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The process carried out in order to form a group of neural networks is shown schemat-
ically in Figure 11.
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2.8. Selection of Artificial Neural Network Models

One set consists of 28 networks that are tested on two previously separated bearings.
The adopted result is the mean value of the predicted vibration velocity amplitude in all
three bands for all 28 networks. The separate average values of the prediction fault for
all three bands, and the cumulative values of the Pearson’s correlation coefficient and
the coefficient of determination are calculated for all 10 sets. Based on the calculated
parameters, the sets are evaluated, and the set with the smallest fault and the highest values
of Pearson’s correlation coefficient and coefficient of determination is adopted.

After calculating the parameters for evaluating the prediction quality of the artificial
neural network, the model with the best prediction was selected. The model with the
lowest prediction fault had one hidden layer with 11 neurons, and the scaled conjugate
gradient (SCG) training algorithm was then applied. With this model, the technological
parameters of the bearing were observed separately. The average prediction fault of the
selected model was 8.1% in each frequency band. The adopted model was further used
for the purpose of predicting the quality class of a new ball bearing and analyzing the
influence of the surface roughness of the raceway and the internal radial clearance on the
bearing vibrations.

The best performing model, where technological parameters were considered to-
gether (equivalent), had 3 hidden layers with 15 neurons in each layer, used a Levenberg–
Marquardt training algorithm and achieved a prediction fault of 8.9%.

3. Results and Discussion

The results given in this section apply to a constant axial load of 200 N. The other
parameters for bearing geometrics are taken from bearings in the training process.
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3.1. Prediction of Quality Classes of Bearing

Table 4 presents the allowed vibration velocities of new ball bearing 6006 for low,
medium and high-frequency bands. Class Q5 includes the best quality bearings, while Q7
corresponds to the lowest quality. It can be seen that there is large difference in vibration
velocities between classes, and adopted models with prediction errors of less than 9% can
fulfill the task and make an appropriate prediction.

Table 4. Allowed vibration velocity for bearing 6006.

Bearing 6006 RMS of Vibration Velocity, µm/s
Class Q7

RMS of Vibration Velocity, µm/s
Class Q6

RMS of Vibration Velocity, µm/s
Class Q5

Low-frequency band 224 112 71
Medium-frequency band 160 80 80

High-frequency band 450 224 112

3.2. Influence of the Surface Roughness of the Outer Ring

The analysis of the influence of the surface roughness of the outer ring was performed
on one of two separate bearings, whereby the value of the surface roughness of the outer
ring was adjusted at intervals from the minimum to the maximum value while the other
parameters remained constant. Figure 12 shows the dependence of the RMS value of the
vibration velocity for the three frequency bands on the amplitude of the surface roughness
of the outer ring obtained by model 1. An increase in the amplitude of the surface roughness
of the outer ring causes an increase in the RMS value of the vibration velocity in the low-
frequency band, and the same trend is observed in the medium-frequency band. In the band
of high frequencies, the opposite trend occurs, and there is a slight decrease in the amplitude
of the vibration velocity. The obtained dependencies correspond to the experimentally
obtained values. In the analysis model applied, the technological parameters of the bearing
were observed separately.
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Figure 12. Dependence of the RMS value of the vibration velocity on the surface roughness of the
raceway of the outer ring.

Table 5 shows the RMS vibration velocities obtained by experimental measurement and
the data obtained by the model predictions. For each value, the quality class is determined
according to Table 4. The results are presented for bearings with different surface roughness
values of the outer ring raceway. The comparison of measured and predicted class quality
of the testing samples shows high model accuracy. In the low-frequency band, all the
predictions are correct. In the medium- and high-frequency bands there are two misses,
where the model predicted one class better quality because of the measured RMS vibration
velocity was close to the boundary value. According to the rule of determination of bearing
quality class, the worst class in the all the frequency bands must be adopted. For test
sample 1, this is Q6, even though it reached Q5 in the medium-frequency band. For some
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predictions, there are significant differences between the predicted and measured values,
but in these cases, the model still reached the correct prediction of bearing quality, which is
the main aim of this research.

Table 5. Experimental and predicted RMS values of vibration velocity for testing samples, measured
quality class and predicted quality class based on surface roughness of the outer ring raceway.

Test Sample 1
Rae 0.09 µm

Test Sample 2
Rae 0.072 µm

Test Sample 3
Rae 0.125 µm

Test Sample 4
Rae 0.168 µm

Measured
RMS of

Vibration
Velocity, µm/s,
Class Quality

Predicted
RMS of

Vibration
Velocity, µm/s,
Class Quality

Measured
RMS of

Vibration
Velocity, µm/s,
Class Quality

Predicted
RMS of

Vibration
Velocity, µm/s,
Class Quality

Measured
RMS of

Vibration
Velocity, µm/s,
Class Quality

Predicted
RMS of

Vibration
Velocity, µm/s,
Class Quality

Measured
RMS of

Vibration
Velocity, µm/s,
Class Quality

Predicted
RMS of

Vibration
Velocity, µm/s,
Class Quality

Low-
frequency

band

80
Q6

105
Q6

60
Q6

103
Q6

73
Q6

108
Q6

97
Q6

83
Q6

Medium-
frequency

band

56
Q5

62
Q5

57
Q5

61
Q5

83
Q6

77
Q5

82
Q6

110
Q6

High-
frequency

band

121
Q6

119
Q6

107
Q5

118
Q6

115
Q6

118
Q6

132
Q6

117
Q6

3.3. Influence of the Surface Roughness of the Inner Ring

The analysis of the influence of the surface roughness of the inner ring was performed
on one of two separate bearings, where the value of the surface roughness of the inner ring
was adjusted at intervals from the minimum to the maximum value. The RMS values of the
vibration velocity depending on the surface roughness of the inner ring raceway are shown
in Figure 13. The increase in the amplitude of the surface roughness of the inner ring causes
a slight increase in the amplitude of the vibration velocity in the bands of low and high
frequencies. The amplitudes of the vibration velocity in the medium-frequency band have
a slightly more significant growth with increasing surface roughness. In the analysis model
applied, the technological parameters of the bearing were observed separately.
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of the surface roughness of the raceway of the inner ring.

Table 6 shows the values of RMS vibration velocity obtained by experimental measure-
ment and the values predicted by the model. For each value, the quality class is determined
according to Table 4. The results are presented for bearings with different levels of surface
roughness of the inner ring raceway. The comparison of measured and predicted class
quality of the testing samples demonstrates the model’s high accuracy.
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Table 6. Experimental and predicted RMS values of vibration velocity for testing samples, measured
quality class and predicted quality class based on the surface roughness of the inner ring raceway.

Test Sample 1
Rai 0.073 µm

Test Sample 2
Rai 0.157 µm

Test Sample 3
Rai 0.179 µm

Test Sample 4
Rai 0.271 µm

Measured
RMS of

Vibration
Velocity, µm/s,
Class Quality

Predicted
RMS of

Vibration
Velocity, µm/s,
Class Quality

Measured
RMS of

Vibration
Velocity, µm/s,
Class Quality

Predicted
RMS of

Vibration
Velocity, µm/s,
Class Quality

Measured
RMS of

Vibration
Velocity, µm/s,
Class Quality

Predicted
RMS of

Vibration
Velocity, µm/s,
Class Quality

Measured
RMS of

Vibration
Velocity, µm/s,
Class Quality

Predicted
RMS of

Vibration
Velocity, µm/s,
Class Quality

Low-
frequency

band

80
Q6

105
Q6

60
Q6

110
Q6

73
Q6

111
Q6

97
Q6

111
Q6

Medium-
frequency

band

56
Q5

71
Q5

57
Q5

71
Q5

83
Q6

78
Q5

82
Q6

84
Q6

High-
frequency

band

121
Q6

113
Q6

107
Q5

115
Q6

115
Q6

116
Q6

132
Q6

117
Q6

3.4. The Influence of Equivalent Surface Roughness and Radial Clearance

For the analysis of the influence of equivalent surface roughness and radial clear-
ance in the bearing, in the applied model, the technological parameters of the bearing
were considered as equivalent. The influence of equivalent surface roughness and radial
clearance was analyzed on one of two separate bearings, where the value of the specified
parameters was adjusted at intervals from the minimum to the maximum value while the
other parameters remained constant.

The mutual influence of the radial clearance and the equivalent roughness amplitude
on the RMS value of the vibration velocity amplitude is shown in Figure 14. The minimum
vibration velocity in the low- and medium-frequency bands was ensured when the radial
clearance was approximately 20 µm. The minimum vibration velocity in all frequency
bands was achieved at an equivalent roughness amplitude of 0.1 µm.
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rameters was adjusted at intervals from the minimum to the maximum value while the 

other parameters remained constant. 

The mutual influence of the radial clearance and the equivalent roughness amplitude 

on the RMS value of the vibration velocity amplitude is shown in Figure 14. The minimum 

vibration velocity in the low- and medium-frequency bands was ensured when the radial 

clearance was approximately 20 µm. The minimum vibration velocity in all frequency 

bands was achieved at an equivalent roughness amplitude of 0.1 µm. 
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Figure 14. Cont.
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4. Conclusions

Based on the overall analysis of the results obtained using the neural network models,
the following conclusions can be drawn:

• The adopted models are capable of predicting the quality class for new ball bearings
and can reduce time required for quality control in bearing production;

• The increase in roughness on the outer raceway causes a significant increase in the
vibration level in the medium-frequency band (300–1800 Hz) and a moderate increase
in the low-frequency band (50–300 Hz), whereas the change in vibration level in the
high-frequency band is negligibly small;

• An increase in surface roughness on the raceway of the inner ring has a negligible
effect on the amplitude of the vibration velocity in the low-frequency band, and
causes a moderate increase in the medium and high band. The growth in the newly
introduced parameter of the equivalent roughness of the raceway affects the moderate
growth in the amplitudes of the vibration velocity in the low-frequency band. In the
medium-frequency band, the model predicts global minimum vibration velocities at
an equivalent roughness amplitude of 0.1 µm. In the high-frequency band, there is a
slight decrease in the velocity of vibrations with an increase in the amplitude of the
equivalent roughness;
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• The neural network model predicted that the minimum vibration level is obtained
in all frequency bands if the radial clearance has amplitude of around 20 µm and the
equivalent roughness has an amplitude of around 0.05 µm.

The research in this paper indicates the possibility of applying artificial neural net-
works for the analysis of the dynamic behavior of ball bearings, which has not been shown
in the literature to date.
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11. Knežević, I.; Živković, A.; Rackov, M.; Kanović, Ž.; Buljević, A.; Bojanić, Š.M.; Navalušić, S. Prediction of radial clearance based
on bearing vibration using artificial neural network. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1009, 010028. [CrossRef]

12. Choudhary, A.; Mian, T.; Fatima, S. Convolutional neural network based bearing fault diagnosis of rotating machine using
thermal images. Measurement 2021, 176, 109196. [CrossRef]

13. El Idrissi, A.; Derouich, A.; Mahfoud, S.; El Ouanjli, N.; Chantoufi, A.; Al-Sumaiti, S.A.; Mossa, A.M. Bearing Fault Diagnosis for
an Induction Motor Controlled by an Artificial Neural Network—Direct Torque Control Using the Hilbert Transform. Mathematics
2022, 10, 4258. [CrossRef]

14. Hasan, M.J.; Kim, J.M. Bearing fault diagnosis under variable rotational speeds using stockwell transform-based vibration
imaging and transfer learning. Appl. Sci. 2018, 8, 2357. [CrossRef]

15. Meserkhani, A.; Jafari, S.M.; Rahi, A. Experimental comparison of acoustic emission sensors in the detection of outer race defect
of angular contact ball bearings by artificial neural network. Measurement 2021, 168, 108198. [CrossRef]

16. Toma, R.N.; Prosvirin, A.E.; Kim, J.M. Bearing fault diagnosis of induction motors using a genetic algorithm and machine learning
classifiers. Sensors 2020, 20, 1884. [CrossRef]

https://doi.org/10.1016/j.jsv.2017.03.007
https://doi.org/10.1016/j.ymssp.2014.04.014
https://doi.org/10.1250/ast.7.343
https://doi.org/10.1016/j.mechmachtheory.2017.10.016
https://doi.org/10.1016/j.ymssp.2018.02.016
https://doi.org/10.1088/1757-899X/1009/1/012028
https://doi.org/10.1016/j.measurement.2021.109196
https://doi.org/10.3390/math10224258
https://doi.org/10.3390/app8122357
https://doi.org/10.1016/j.measurement.2020.108198
https://doi.org/10.3390/s20071884


Materials 2023, 16, 3529 17 of 17

17. Xu, Y.; Deng, Y.; Ma, C.; Zhang, K. The Enfigram: A robust method for extracting repetitive transients in rolling bearing fault
diagnosis. Mech. Syst. Signal Process. 2021, 158, 107779. [CrossRef]

18. Chen, Y.; Gaoliang, P.; Zhiyu, Z.; Sijue, L. A Novel Deep Learning Method Based on Attention Mechanism for Bearing Remaining
Useful Life Prediction. J. Appl. Soft Comput. 2020, 86, 105919–105930. [CrossRef]

19. Cheng, C.; Guijun, M.; Yong, Z.; Mingyang, S.; Fei, T.; Han, D.; Ye, Y. A Deep Learning-Based Remaining Useful Life Prediction
Approach for Bearings. J. IEEE/ASME Trans. Mechatron. 2020, 25, 1243–1254. [CrossRef]

20. Ren, L.; Sun, Y.; Wang, H.; Zhang, L. Prediction of bearing remaining useful life with deep convolution neural network. IEEE
Access 2018, 6, 13041–13049. [CrossRef]

21. Wang, B.; Lei, Y.; Yan, T.; Li, N.; Guo, L. Recurrent convolutional neural network: A new framework for remaining useful life
prediction of machinery. Neurocomputing 2020, 379, 117–129. [CrossRef]

22. Zhu, J.; Chen, N.; Peng, W. Estimation of bearing remaining useful life based on multiscale convolutional neural network. IEEE
Trans. Ind. Electron. 2018, 66, 3208–3216. [CrossRef]

23. Lin, W.-J.; Lo, H.-S.; Young, T.-H.; Hung, L.-C. Evaluation of deep learning neural networks for surface roughness prediction
using vibration signal analysis. Appl. Sci. 2019, 9, 1462. [CrossRef]

24. Lin, Y.-C.; Wu, K.-D.; Shih, W.-C.; Hsu, K.-P.; Hung, P.-J. Prediction of surface roughness based on cutting parameters and
machining vibration in end milling using regression method and artificial neural network. Appl. Sci. 2020, 10, 3941. [CrossRef]

25. Pandit, R.K.; Astolfi, D.; Durazo Cardenas, I. A Review of Predictive Techniques Used to Support Decision Making for Maintenance
Operations of Wind Turbines. Energies 2023, 16, 1654. [CrossRef]

26. Lalik, K.; Watorek, F. Predictive Maintenance Neural Control Algorithm for Defect Detection of the Power Plants Rotating
Machines Using Augmented Reality Goggles. Energies 2021, 14, 7632. [CrossRef]

27. Soltanolkotabi, M.; Javanmard, A.; Lee, J.D. Theoretical insights into the optimization landscape of over-parameterized shallow
neural networks. IEEE Trans. Inf. Theory 2018, 65, 742–769. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.ymssp.2021.107779
https://doi.org/10.1016/j.asoc.2019.105919
https://doi.org/10.1109/TMECH.2020.2971503
https://doi.org/10.1109/ACCESS.2018.2804930
https://doi.org/10.1016/j.neucom.2019.10.064
https://doi.org/10.1109/TIE.2018.2844856
https://doi.org/10.3390/app9071462
https://doi.org/10.3390/app10113941
https://doi.org/10.3390/en16041654
https://doi.org/10.3390/en14227632
https://doi.org/10.1109/TIT.2018.2854560

	Introduction 
	Materials and Methods 
	Analysis of Measured Data 
	Application of the Neural Network 
	Organization of Data Set 
	Data Pre-Processing and Defining Datasets for Training, Validation and Testing 
	Analyzed Models of Artificial Neural Networks 
	Method of Training Artificial Neural Networks 
	Description of the Training Algorithm 
	Selection of Artificial Neural Network Models 

	Results and Discussion 
	Prediction of Quality Classes of Bearing 
	Influence of the Surface Roughness of the Outer Ring 
	Influence of the Surface Roughness of the Inner Ring 
	The Influence of Equivalent Surface Roughness and Radial Clearance 

	Conclusions 
	References

