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Abstract: The main aim of this work is to provide a brief overview of the analytical solutions available
to describe the in-plane and out-of-plane stress fields in orthotropic solids with radiused notches.
To this end, initially, a brief summary on the bases of complex potentials for orthotropic elasticity is
presented, with reference to plane stress or strain and antiplane shear problems. Subsequently, the
attention is moved to the relevant expressions for the notch stress fields, considering elliptical holes,
symmetric hyperbolic notches, parabolic notches (blunt cracks), and radiused V-notches. Eventually,
examples of applications are presented, comparing the presented analytical solutions with the results
from numerical analyses carried out on relevant cases.

Keywords: stress fields; analytical solutions; radiused notches; orthotropic solid

1. Introduction

Accounting for the effects of geometrical variations is an essential step in the design
process of a mechanical component. Stress raisers, indeed, may severely hamper the
static and fatigue strength of mechanical parts, and designers are often required to accu-
rately assess the local stress fields in the stress concentration regions, either numerically
or analytically.

Over the last 100 years and more, scientists and engineers devoted significant efforts
to determining the stress fields around holes, notches, and cutouts, and the first steps
in this direction can be dated back to the late 19th century or early 20th century [1-4].
Fundamental contributions in the field of linear elastic fracture and notch mechanics are
those due to Williams [5], who described the stress field near sharp V-notches, and Irwin [6],
who provided his renowned equation describing the stress fields near a sharp crack.

Moving the attention to radiused notches, namely notches with a finite tip radius,
worth mentioning is the paper by Creager and Paris [7] and the thorough work by Neu-
ber [8], who provided the stress concentration factors for a large variety of notch problems.

Many years later, Lazzarin and Tovo [9] provided a general expression for the mode 1
and 2 stress fields around blunt notches, demonstrating that Irwin, Williams, Creager and
Paris, and Neuber’s solutions could be obtained as particular cases of their more general
solution. From the previously-mentioned works, several analytical solutions have been
developed and are available to designers for predicting the stress fields of components
where different stress raisers are present [10-12].

A large variety of mode 3 notch problems was addressed by Zappalorto and co-
workers (see among the others, [12-14] and references reported therein).

All the above-mentioned solutions are valid for isotropic materials and, accordingly,
cannot be used when dealing with materials characterized by an orthotropic or rectilin-
early anisotropic elastic behavior, such as, for example, fiber-reinforced polymers, wood,
or crystals.

Within the context of stress concentrations provoked by holes in bodies obeying
an anisotropic elastic behavior, the contributions by Savin [15] and Lekhnitskii [16] are
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of fundamental importance and are usually regarded as milestones. Starting from the
previously mentioned publications, Sih et al. [17] in 1965 provided the general equations
for the stress fields at a crack tip in a rectilinearly anisotropic body making use of a complex
variable approach, whereas the pointed V-notch case in an anisotropic plate was addressed,
later, by many authors [18-24].

Ukadgaonker and Rao, instead, [25] provided the solutions for an orthotropic plate
with triangular holes, and later extended the analysis to holes of irregular shapes [26,27].

Zappalorto and Carraro [28] proposed a theory for thick anisotropic plates weakened
by sharp notches where the 3D governing equations of elasticity were reformulated to
provide two uncoupled equations in the two-dimensional space. Hasebe [29] investigated
the problem related to an orthotropic elastic half-plane weakened by an oblique edge-crack,
and provided a general solution for an orthotropic elastic plane problem of an infinite plate
weakened by a hole using a mapping function based on Lekhnitskii formalism [30].

Fil'shtyns’kyi et al. [31] targeted a specific application: the case of piezoceramic plates
with parabolic or rectilinear cracks in the frame of magnetoelasticity. They studied the
cross-dependencies of the SIF and the magnetic-induction intensity factor, providing the
formulas for both.

Moving the attention to holes and radiused notches, worth a mention are the works by
Bonora et al. [32,33], who reported a closed-form solution for composite laminates weak-
ened by circular holes and subjected to in-plane stresses, whereas Chiang [34] addressed
for the first time the plane problem of blunt cracks in anisotropic solids, providing an
approximate solution.

Wang [35] studied the case of boreholes drilled in the rock for petroleum engineer-
ing, deriving an analytical solution for the stress distribution around the borehole. The
problem was regarded as a circular hole enveloped in an isotropic case, made of metal and
surrounded by cement, embedded in an orthotropic matrix under plane strain conditions.

Hsieh and Wu [36] provided the full field solutions for an anisotropic elastic plate
weakened by a hole, where its shape was obtained from the case of an elliptical hole by
means of conformal mapping. In more detail, the authors used Stroh formalism and applied
uniform loading at infinity, eventually claiming that their solutions are “the first verified
correct full-field analytical solution published in the literature”.

Nguyen-Hoang and Becker [37] provided the solutions for the stress field in a compos-
ite orthotropic finite laminate under uniform tension weakened by an open-hole. They used
complex potential formulations and validated the results with FE analyses. Eventually,
they carried out a failure analysis by means of the Theory of Critical Distances and Finite
Fracture Mechanics.

Khechai et al. [38] investigated stress concentrations in composite laminates weakened
by holes under in-plane loadings. In particular, an extension of Greszczuk’s analytical
solution for multilayer laminates was provided and validated with the Digital Image
Correlation technique, considering several parameters such as fiber orientation, stacking
sequence, type of load, and anisotropic ratio.

Huang et al. [39] studied the case of an anisotropic matrix containing an elliptic
inhomogeneity with an interface that is imperfect, meaning an interface where normal or
tangential displacements are discontinuous across the interface. In particular, the authors
presented an explicit solution for the stresses in the case of remote plane tension and/or
eigenstrain in the inhomogeneity by means of a complex series expansion, of which they
determined the coefficients. By their approach, the solution of the stress fields in the case of
perfect interface or debonded interface (i.e., hole) is obtained.

In 2016, Kazberuk et al. [40] presented the eigensolution of the quasi-orthotropic
wedge problem, whilst Savruk and Kazberuk [41] presented the boundary value solution
of sharp and rounded V-notches in a quasi-orthotropic plane.

Chen [42] proposed an analytical approach for determining stress fields in the case
of anisotropic plates weakened by a notch and subjected to bending. The solutions are
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based on Stroh formalism and account for the notch opening angle, material orientation,
and magnitude of anisotropic behavior.

Savruk et al. [43] investigated the maximum stresses on the boundary of parabolic
notches while varying the material orientation under the assumption of an infinite anisotropic
plane. They provided the solutions for three different loading conditions: symmetric ten-
sion, transverse shear, and longitudinal shear.

The exact solution for anisotropic plates with blunt cracks and radiused slits was
derived by Zappalorto and Carraro [44] using the Lekhnitskii approach. The same au-
thors [45] later derived an approximate analytical solution for the two-dimensional stress
distributions in orthotropic plates with blunt V-notches. An improved version of this
last-mentioned solution is due to Pastrello et al. [46], whereas the extensions to mode 2 and
mode 3 are due to Pastrello et al. [47] and Zappalorto and Salviato [48], respectively.

The main aim of the present work is to present a brief overview of the above-mentioned
analytical solutions, also providing some examples of application and a discussion on their
accuracy degree. In particular, the paper presents the following structure:

e In Section 2, the fundamentals of complex potentials for orthotropic elasticity are
discussed, with reference to plane stress or strain and antiplane shear problems.

e  Sections 3 to 6 present the analytical expressions for the mode 1, 2, and 3 stress
fields related to different notch geometries, i.e., elliptical hole (Section 3), hyperbolic
lateral notches (Section 4), parabolic notches, i.e., blunt cracks, (Section 5), and lateral
radiused V-notches (Section 6).

e  Eventually, Section 7 reports some examples of application, comparing the presented
analytical solutions to the results from numerical analyses related to relevant cases.

2. Fundamentals of Complex Potential for Orthotropic Elasticity
2.1. Plane Stress or Plane Strain Problems

Consider a body obeying an orthotropic elastic behavior, according to which the
elastic stress—strain relationships under plane stress can be formulated on the basis of four
independent elastic constants:

€x St Sz 0] ox
&y = 512 522 0 Oy (1)
Yxy 0 0 Ses Txy

Stress fields in the considered orthotropic body can be written in terms of two complex
functions as follows [16]:

Oxx= Re{”%(pl(zl) + H%‘Pz(zz)}
oyy=Re{ @(z1) + @5(2,) } )
Ty = —Re{ 1 01(21) + 1,0,(2,) }

or, equivalently, invoking stresses in polar coordinates:

Opr = 2Re{(sin6 — 11 c0s0)%@(z1) + (sin B — py cos G)Z(p’z(zz)}
Ogo = ZRe{(cosﬂ + py sin 9)2([)’1 (z1) + (cos 6 + py sin e)z(pg(zz)} @)
Tro = 2Re{(sin 6 — 11y cos 0)(cos 6 + py sin0) @] (z1) + (sin 6 — py cos 0) (cos O + p, sin 0) @5 (22) }

Under the condition that (2T1; + T66)2 > 4T11 Ty, w3 = £iP; and py 4 = *if, are
the conjugate roots of the following equation [27]:

Tip* + (2T12 + Te)u? + Top = 0 4)
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namely:

2T1p + Tee & \/ (2T1z + Tes)” — 4T11 oo
P12 = ©)

2T

In Equations (4) and (5), Tjj equates the terms of the compliance matrix, Sy, for plane
stress. In this case, invoking the engineering elastic constants, one obtains:

T11 =511 = 1/Ex Toa =52 = 1/Ey ©)
T12 = S12 = —Vxy/Ex Te6 = Se6 = 1/Gxy

where Ey and Ey are the elastic moduli along the x and y directions, respectively, Gyy is the
elastic modulus under shear, and vyy is the Poisson’s ratio. Accordingly, under plane stress
conditions, Equation (7) can be re-written as:

Ex Ex \* [E«
=]~ e - =) - (& 7
[31,2 \J Vxy + ZGXy + \/( Vxy + ZGXy) <Ey) ( )

Differently, in the case of plane strain conditions, Tjj equates B;;, defined as [28]:

S11 S33—S2 S12 S313—S13 S
Ti1 =By = = Tip = Byp = =522 ®)

S S33—S3
B8 Tee = Bge = See

Ty =By =~

where S33 = 1/E,.
Equation (3) can also be conveniently re-written as [28]:

Oy = 2Re{(k11 + iklz)(p/l (21) + (1(21 + ikzz)(p/Z(ZQ)}
oo = 2Re{(mq1 +imy) @] (z1) + (ma; +ima)@5(22)} ©9)
Trg = 2Re{(n11 +ing2) @] (z1) + (n21 +inz) @5(22) }

where the auxiliary angular functions introduced, kij, mjj, and njj, read as follows:

ki1 = sin® @ — (B cos 9)2 kip = —2B¢sin O cos O (10)
ko1 = sin® @ — (B, cos 6)2 koo = —2B, cos0sin 6 (11)
my; = cos? 0 — (B sin 9)2 ko = —2B, cos0sin® (12)
my; = cos> 0 — (B, sin 9)2 my; = 2fB,sin0cos O (13)
ny = %sin29 (1 n ﬁ%) Ny = — By cos20 (14)
Ny = %sin29 (1 + [5%) nyy; = —f,cos20 (15)

2.2. Antiplane Shear Deformation Problems

Consider again a body obeying an orthotropic elastic behavior; under the hypothesis
of pure antiplane deformation, the only non-vanishing stresses are Ty, and Tyz, linked to
the corresponding shear strains by the following relationships:

Tz = GxzYyy  Tyz = Gyzsz (16)
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In the antiplane shear model, out-of-plane shear strains and stresses depend only on
the x and y coordinates, so that the equilibrium and compatibility equations guarantee that
the out-of-plane displacement, w, satisfies the following expression:

*w w

GXZW + Gyzﬁ - 0 (17)

The characteristic equation associated to Equation (17) is [16]:

. . GXZ
Hy = £if3 = +i, | G (19)
yZ

Under these conditions, the following expressions are valid for the out-of-plane shear
stresses [28]:

with roots:

Tox = Re{1303(23) ) Toy = —Re{@3(z3)} (20)

or in polar components:

T,0 = —2Re{(cos 0 +iB3sin0)p5(z3)} 1)
Ty = 2Re{(—sin® +i B3 cos0)@4(z3) }

where @3 is a proper complex function to be chosen depending on the specific notch
geometry under consideration.

3. Stress Fields for an Infinite Orthotropic Plate with an Elliptical Hole
3.1. Mode 1 Loadings

Consider an infinite plate with an elliptical hole with major axis a and minor axis
b (see Figure 1). The in-plane stress fields can be determined according to the solution
proposed by Savin [15]. In particular, rearranging Savin’s solution, the mode 1 problem
(far applied tension) can be tackled using the following complex potentials:

8
_ _ OyyBo a(a+bB1)(B1—B2)
P1= S5 p, ., > +21B2
1= P2 Z1+1/z1%—a*+b" 37 (22)

8
— %P1 ) a(atbBy)(B1—PB2) , ,
P2 2(31*|32)2 Zz+\/Z227a2+b2[3% + 2[31

where z; = x + 11y, Zo =X + Hpy, and (r§y is the far applied tension in y direction.

_/ _ﬂ-’

Figure 1. Elliptic hole in an infinite solid and reference system used for Equation (23).
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Substituting Equation (22) into Equation (2) results in the following expressions for
the stress components:

(o

o bB1 B2 {a(a+b61>ﬁzﬁ%ol a(a+bf32)f51f5%02}

X T TaBy+B1atbBy)} | n(B1-F201 (BP0

____oy/bBibs { _ a(atbBy)Br0 +a(a+bf32)f3102} (23)
YY 7 {aBa+Bi(atbBy)} r1(B1—B2)0; 1(B1—B2)02

S o bB1B2 _{a(a+bf31)f51f521\1 _ a(at+bBr)PBy le\z}
XY 7 {aBy+B1(atbBr)} 11(B1—B2)O1 1(B1—B2)O2

o

where O‘;l;;p = {1+ (B + By)2} o}y is the maximum stress occurring at the notch tip,

whereas:
2
o foerst (@ ()8 o
0; = Arg{ {(x2 —a?) —p? <y2 —bz)} + i[72xyﬁi]}
O; = x>+ 1.2 +y2B2 + 21y (xcos % 1 yB;sin %)
Aj = xsin % + 13 8in 0; + yp; cos % (25)

O; = xcos% + ri cos 6; —y[Sisin%

3.2. Mode 2 Loadings

Different from before, the pure mode 2 problem (plate subjected to in-plane shear),
can be tackled by taking advantage of the following complex functions:

01 = — ity (a+bp1)(a+bBy)
2<21+\/212—62+b26%>(Bl—ﬁz) (26)
B iT§y{ By (a\/zzz—a2+b2[3§—bzz [32>+|31 [azz+bf32 (\/zzz—az—kaB%—ZZz)] }
02== 2(B1—B2)B2(a BBy

where z; = x + W1y, z2 = X + My, and T§y is the far applied shear stress.
Substituting Equation (26) into Equation (2) gives the stress fields in the form:

O (a+bB)(a+bBy) (11 B3A201 —12 BIA1O;)

Oxx = v ' 1112(B1—B2)0102
P Ty (a+bB1)(atbBr)(r2A1@2—11A20,) 27)
vy w r112(B1—B2)O102

TMax

Xy

{1 + (a+bﬁl)(a+b[52)(r2[51®1027r1[328201)}

T- =
Xy w 1112(B1—B2)0102

where 13, 0;, ©;, A, and (); are defined in Equations (24) and (25), and Tﬂ/}[,ax is the maximum
shear stress occurring along the hole bisector line at a certain distance, Xpjax-a, from the
notch tip. Moreover:

?261(a+bﬁ1)(a+bﬁz)6162 + ?161{?2(61 - 32)62 —|(a +b[31)f32(a+b[52)62] }
w = — — (28)
r112(B1 — P2)010;

Ti =1 XMax 0] O = Oixmaw 0] Qi = O [xmax, 0] (29)

3.3. Mode 3 Loadings

Eventually, the pure mode 3 problem (out-of-plane stress fields) can be derived by
taking advantage of the following complex function [48]:

g

©3(z3) = —k_[;;(}i_k){k\m_ B3(1— k)z3} (30)
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where k = a/(a+b), and the case of k tending to 1 represents the sharp crack case of
length 2a, whereas for k tending to 0.5, a circular hole notch can be obtained.

Accordingly, substituting Equation (30) into Equation (20) allows the stress compo-
nents to be written as:

g = —Re{hls5)} = g fe B cos(y - BE02) ) @
i Tk Ve L2 ’
BaThy { r3 : ( 031 + 932) }
T, = Re h(z3)) = k- sin| 63 — =———% 32
where:
73 = X + 1(53}7 — r3eie3 Z% _ a2 + B%bz = Z% — 62 = (Z3 — é)(Z:J, + é) (33)
(z3 —¢) = 13193 (z3+¢) = r3pel®% (34)

Stress components can also be re-written, invoking the maximum shear stress at the
oo LP 8 1 /a).
notch tip, T,y = 7y (1 + Bs \/%)

_ _tip B3/ B 13 031103 P
Tzy = Tzy 17[3%7 a1 Tan Ccos 63 — 5 — B:,’ 5

o [0l

e}

(35)

a
a2
T, — Top BIVE 3 gin(0, — 931102
zx 7Y 1-p282 | Va1 T2 3 2

where p = b?/a.
Along the notch bisector line, Equation (35) simplifies to give:

b
sz tip B3\/: g . [33\/3 (36)
2—1—'—[3%% a

= Tzy 2p
1-B33

(3)

4. Stress Fields for an Orthotropic Finite Plate with Two Symmetric
Hyperbolic Notches

4.1. Mode 1 Loadings
Consider a plate weakened by two symmetrical hyperbolic notches (Figure 2), which
can be obtained by invoking the following complex mapping [49]:

z = c-cosh§ (37)

where z = x + iy, £ = u + iv(, and c is a constant. The case v = 0 represents the deep crack
case whereas, more generally, such a mapping allows two symmetric hyperbolic notches
with foci at x = £c to be described, with h = ¢ - sinvg and p = ¢ - cot vy - cos vy.

! h \

Figure 2. Symmetric hyperbolic notches in an infinite solid and reference system used for
Equations (40) and (45).
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The pure mode 1 stress problem (tension applied to the plate) can be determined using
the following complex functions [16,45]:

g
9,(z1) = —%% X Ln{zl +4/23 +b? — u%hz}

ot h 2 2 (38)
©,(22) = g X Ln{zZ + /25 +b* — 12h }
where: h n
g = BlArctanﬁlg - BZArctan[SQE b=+p-h (39)

0®, is the nominal stress on the net ligament, and p is the root radius at the notch tip.
Substituting Equation (38) into Equation (2) results in:

. - - .
Oxx —GXISB‘Z/T;Z{ %pl 1/zcos [52 1mcos%}
ti N .
Oyy = Oy B\Z/T(;z {p 172 005 %2 e - 172 cos & } (40)
“ .
Txy = 0—x1>}<) [5\2/7(32 {[3 [M2sin G ﬁzpz Zsin 72}
where:
bj=\/%+y? b= Arg{)?j + iy].} 41)
% =" — B7y” + ph+ h*p7 §; = 2Bjxy (42)
Moreover:

%—a%'%g%v: (3)

is the maximum normal stress at the notch tip (x =0, y = h).
Along the notch bisector line, x = 0, so that }A]j = @j =0 and:

= By’ +ph + 1B} =% = —Bfy* +ph+h’p} (44)

Accordingly, the normal stresses become:

S 3 o

Bi-B2 | \/B3(woy?)+oh  \/B3(K—y?) oh (45)
ny_G;l)}() ﬁ !

BT-B3 \/B3(r2—y?) +oh \/rs 2) +ph

4.2. Mode 2 Loadings
The mode 2 problem can be addressed by taking advantage of the following complex

potentials:
9,(z1) =iA- BZLH{Zl +4/Z3 +b? — u%hz}
©,(z2) = —iA - Ban{zz + /25 +b?— p%h2}

(46)
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Substituting Equation (46) into Equation (2) gives

oxx = A-Re iB26] iB152
\/z§+ph+ B2 \/Z+ph+p3h?
Oyy = A-Re - —1B 47
yy \/ +ph+[52h2 \/z%+ph+[5§h2 (47)
B2 B1B
Txy = A-Re L - 2
v VA+ohtBIh?  \/ZB+oh+p3n
where parameter A can be linked to the nominal shear stress on the net section, Ty, using
the following expression:
h
/ Tydy = T h 48)
0
2, where:

Substituting Equation (47) into Equation (48) allows one to obtain A = Txy 5

5= { %2 arg[i2p1v/ormo+ (o/n— 63)] - Gargfizpov/o/m+ (o g3)] | o)

Eventually, stresses can be re-written taking advantage of the following variables
7?0 = Arg{% +if;} (50)

b= /% + 7]
& = x* = Bfy? + ph + 1B} §; = 2Bjxy (51)
providing;:
oo = Ty { B2BTp 7 sin G — B3,/ sin G |
Oyy —T>(<y g 1 P2P1 [2sin G - By 921/2 72} (52)
2 0 1/2 %}

1
Txy Txy ~61[32{p1 /2 cos 5

4.3. Mode 3 Loadings
Whenever the plate is subjected to antiplane shear, the following complex function

(53)

guarantees that the required boundary conditions are satisfied

¢3(z3) = —iA- Ln{z3 +y/ZZ+p-h+ thz}

Invoking the following auxiliary variables
7+ p-h+ p3h? = (3 = Bly> + p-h+ B3h?) +i(2Baxy) = Bse'® (54)

and substituting Equation (53) into Equation (20) allows the shear stress components to be

determined in closed form as a function of the nominal shear stress on the net section:

2hTy, ~—1/2 G
Tzx = 235 - I3 - COS »5*
Arctany (M)
p/h*ﬁ?’ . (55)
— Zthx ~—1/2 o O3
Tzy = — ey 13 -sin 5
Arctan2< Bsve 5 )

p/h—B3
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At the notch tip (x = 0 and y = h), the shear stress results to be:

2hth B

T | = zX 3 (56)
Tx=0 Arctan, | 2Bave/h) v p-h
y=h 2\ o/h-p2

Accordingly, the theoretical stress concentration factor is:

(57)

28, \/ﬂ
Kin = -
Arctany <263\/p7h) e

p/h—p3

One should note that in the case of sharply curved notches (p/h small), Equation (57)

simplifies into:

2 h
K = 53\/7
w3\ p

tip

n
Tzx = zthn-
ti . 0
Tox = Tyt - 1/ pfsh -cos%
tip A
__=z ph . 63
T —_ — =ZX . - - SN =2
zy B3 f3 2

5. Stress Fields for Orthotropic Plate with a Deep Parabolic Notch
5.1. Mode 1 Problem

(58)

The shear stress components can also be re-written as a function of the notch tip stress,

(59)

The problem of an orthotropic plate weakened by a parabolic notch (Figure 3) can be

addressed by taking advantage of the mapping function [8]:
zZ = E,z

where z = x + iy and § = ug + iv.

(60)

Figure 3. Parabolic notch in an infinite solid and reference system used for Equations (65) and (70).

The notch apex is at a distance equal to p/2 from the origin of the coordinate system,

where p is the curvature radius at the tip (v = 0).

The mode 1 problem can be addressed using the following complex potentials:

1

Hp 72
My —Hy 71

Hq -

Hi—Hy Zz

@(z1) = A

Nl

©y(22) = —

(61)
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In Equation (61), A is a real quantity, while z; are complex variables defined as:
zj = & +1in; = 1je'”) (62)

where: 0
& =x"+ EB]Z nj = Bjy’ (63)

= /& +n? 6 = Arg(& +imy) (64)

In Equations (63) and (64), X' and y’ are the distances from the notch tip in the x and y
directions, respectively. Substituting Equation (61) into Equation (2) gives:

Moreover:

Oxx th 0 Ay COS % o Agyy €COS %
Oyy oy —| Apycos 35 | =/ —| AgycosF (65)
T AVrl g gne 2\ _B,, sin &
xy 1xy SIN 5 2xy 5
where O';,i}l:,) is the maximum notch tip stress and:
~ Ay A BiB BB
A= \fz Yy _ YY} Ay = — 1P2 Agyy = — 201 (66)
{ B1 B2 (B1—B2) 7% (B1— B2)
B2 B1 B1B2
Aq Ay Bixy = Boxy = (67)
W BB T (Bi-By) Y Y BB
Along the notch bisector line (y = 0, x’ > 0):
_ 2P _
Ej—X+f5j§ n; =0 (68)
p
r=§&=x+p}5 =0 (69)
so that the following very simple equation can be found for the normal stress:
Oyy _ B1 B2 P _ Ba (70)
tlp 2 _ BZ , > , 5
oy PBi—B2|\/2xv/0+ B3 \/2x/p+ B3
5.2. Mode 2 Problem
The mode 2 problem can be addressed using the following complex functions:
1,2
01(z1) =By =z (71)

P
©y(22) = Bul_uzzz ’

where B is a real quantity. Substituting Equation (71) into Equation (2) gives the following

stress field:
2 i O
Oxx s Blsm VE o B5sin
_ 0 — 0
oyy ¢ =B —sing [ —1, —sin (72)

Txy [3; cos % 3, cos %

where B is a constant to determine, depending on the nominal applied stress, the geometry
of the notched body and its elastic properties.
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Along the notch edge, the only non-vanishing stress is:

Oxxt+0 Oxx— O .
Py — 25 0080 — Tyy Sin0 =
(73)

Oy = =5
Brfl/z{%[([?)% — 1) —cos6<[3% —i—l)] sin% - Blcos%sine}

1
~Br; /2{1[ (B3 —1) — cos0(B3+1)] sin % — B, cos P sino}

There are several ways to define parameter B:
1. Asa function of the maximum shear stress along the bisector of the notch:
Max Max
T T

B= Xy —
By _ By T%ax
V2EB? (/2% 4p3

where X’ represents the distance from the notch tip corresponding to the maximum

value for the shear stress, Txy.
It can be linked to the maximum value of the normal stress, oy, along the notch boundary

2.
oMax
B= N (75)
where:
5‘%” 7?1—1/2{% KB% - 1) - COS@(B% + 1)] sin % — [3~1 cos 5 siné} 76
_Ygl/z{% KB% — 1) - cos@((ﬁ% + 1)} sin % — 3, cos % sin@}
and 0 is the solution of the following equation:
d0vy o
20 [x' = p/2(cos? % -1) 0 (77)
y' =p/2sin"? %

It can be linked to a generalized stress intensity factor, Ky,. Indeed, at a proper

3.
distance from the notch tip:
1 Ky
B= — 78
B B2 Vo 7

where K, is the mode 2 generalized stress intensity factor for the orthotropic blunt

crack [50].
5.3. Mode 3 Problem

The mode 3 problem associated to a parabolic notch in an orthotropic plate can be
addressed by taking advantage of the following complex function:

1
93(73) = —B23 79)
where B is a real constant, whereas z3 is a complex variable defined as:
73 = X3 + iy, = r3el% (80)
where: 0
X3 = X, + EB% Y3 = [33}7, (81)
(82)

13 = /X3 +y3 03 = Arg(xs +1iy;)



Some years later, with the aim to improve this last-mentioned solution, and to obtain
used the following enriched forms for complex potentials:
A—1
z
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T

Z
o\ (z1) =A1( !
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In Equation (81), x" and y’ are the distances from the notch tip in the x and y directions,
Stress components can be determined by substituting Equation (79) into Equation (20),
leading to the following expressions:
ti 0
Toy = TZI}},) Bs 2—‘;3 cos 5

Tzx = _thl}]]) &

2 .
631 / % s >
tip . . .
where Tzl}};) is the maximum shear stress at the notch tip.

(83)
6. Lateral Radiused V-Shaped Notches
6.1. Mode 1 Loadings

Moreover:

21— 2u
q:

The edge of a blunt notch with a generic opening angle and curvature radius at its

_

us

tip can be described using the following mapping function [8,9] z = &1 (see also Figure 4),

where z = x +1iy and & = u + iv, and the notch edge is described by the equation u = u.

()

q

(84)

L

Figure 4.

Equations (87)—(89).

Radiused V-shaped notch in an infinite solid and reference system used for
With reference to the coordinate system shown in Figure 4, the solution for this notch
® ~ A-1
0 (z) = 21 Az .
]:

problem can be sought using a series formulation for the complex potentials in the form

However, in order to obtain manageable expressions for the stress fields, the series
expansion can be truncated to a finite number of terms, with a tradeoff between the
simplicity and accuracy of the associated solution.

the bisector line.

Dealing with the mode 1 problem, Zappalorto and Carraro [45] used a one-term-
based solution, obtaining simple yet accurate expressions which were found to be in

satisfactory agreement with numerical results, in particular near the notch tip and along
ro

Z2

) " h(z) ~ i

very accurate stress fields both along and outside of the notch bisector line, Pastrello et al. [46]
1
ro

A—-1 pp—1 -1
V4 Z
Io Io

(85)
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— y: Liv.— el .
where zj= xj+iy;= rje™ and:

In Equation (86), X' = x — rg and y’ = y represent the distances from the apex of the
notch; instead, A1, By, C1, D1, E1, A1, w1, {1, and t; are real constants to be determined with
proper boundary conditions, under the hypothesis that 1 < A; < p; < .

Substituting Equation (85) into Equation (9) allows the mode 1 stress components to
be explicitly derived:

Xlz(%) [k11 cos(1 — )07 + kypsin(1 — py)01]+
A—1
X21 (%) ! [k21 COS(l — )\1)92 + koo Sll‘l(l 7\1) ] (87)
w—1
Xzz(%) 1 [ko1 cos(1 — pq)02 + koo sin(1 — py)02]+
1—1
X23 (%) b [kz] COS(l C])ez + kzz Sll’l(l Cl)ez} }
G;i}g )Ml .
0o = —= (%) [my1 cos(1 —A1)01 +mypsin(1 —A1)01]+
pi—1 )
XlZ(%) [myq cos(1 — py)0q + mypsin(1 — py)0q]+
A—1
X21 (%) ! [le COS(l — )\1)92 + mypy sm(l 7\1) ]+ (88)
w—1
Xzz(%) 1 [myq cos(1 — py)0 + myo sin(1 — g )02]+
¢1—1
X23 (%) [m21 cos(1 — ¢1)02 + mop sin(1 — Cl)ez}}
G;,i}}? s\ M1 )
Trog = A (%) [nll COS(l — )\1)91 +nqo Sll’l(] — )\1)61]4—
rp\Hl .
X12<5> [n17 cos(1 — py )01 +nyp sin(l — py)01]+
A—1
X21 (%) ! [n21 COS( 7\1)92 + ny» sm(l ?\1) } (89)
ni—1
Xzz(?) [np1 cos(1 — py)02 +nop sin(1 — py) 6]+
11
X23 (%) [1’121 COS(l — Cl)ez + npy sm(l Cl)eg]}

where:
A Z{ﬁtl A—1) +X12B;1(H1*1)_I_XZlﬁtzl()\l*l)_FXzthzl )_|_X Btl C1— 1)} (90)

and A; can be determined by solving the following nonlinear equation [44]:

cos(1 —A1)02(v){cos(1 —A1)01(y) [m1 (v)n21 (v) — mz1 (v)n11(v)]—

sin(1 — A1)61(y) [ma1 (Y)n12(y) — mya(v)np (v)]} — 91)
sin(1 — A1)02(y){cos(1 —A1)01(y) [maa(y)n11(v) — mi1(v)n22(v)]

sin(1 —2A1)01(v) [mi2(v)no2(v) — mp(y)ni2(y)]} =0

Differently, the remaining seven constants, {t1, 11, {1, X12, X21, X22, X23}, can be deter-
mined by approximating the boundary conditions ouuly_y, = Tuv|y—y, = 0 (for more
details, see [45]).
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6.2. Mode 2 Loadings

The mode 2 problem can be addressed using the following complex potentials [47]:

01 (z1) = —iAgz)2 1 —iCzt ! @h(29) = —iBpz)? ' —iDpZb? T — Bzt (92)

— y: Liv.— el .
where z;= Xj+iy;= rje I and:

X =x —i—ro[ﬁjtz v = Biy's = /& +n? 6 = Arg(g; + in)) (93)

In Equation (93), X' = x — rg and y’ = y represent the distances from the apex of the
notch. Ay, By, Cy, Dy, Ep, Ag, 1y, (o, and t; are real constants to be determined with proper
boundary conditions, under the hypothesis that 1 < Ay < p, < (.

Equation (92) provides the following expression for the mode 2 stress field:

L\ A1 )
Op = A{ (%) [k12 cos(1 — Ap)01 — kqp sin(1 — Ap)01]+

+X12<%) " (k12 cos(1 — pp)071 — kg sin(1 — )04+
+x (2) "7 kp cos(1 — Ag)0; — ko sin(1 — A2)8a)+ (94)
+X22 (%) Hrl[kzz cos(1 — pp)02 — koy sin(1 — pp) 0]+
+X23<%0) Cz_l[kzz cos(1 — (2)02 — ko sin(1 — Cz)ez]}

wy—1

+X12(%0> * [mypcos(1 — )8y — myg sin(1— p)04]+
Aa—1

+X21 (%) ’ [moy cos(1 — Ay)02 — mpy sin(1 — Ap)02]+ (95)
pp—1

+X22 (%) [may cos(1 — )02 — myg sin(1 — pp) 0]+
Co—1

+X23(%) [my cos(1 — )02 — my; sin(1 — Cz)ez]}

Trg = A

[n2p cos(1 — 1y)02 — npy sin(1 — iy )02 ]+
(

(

[ng2 cos(1 — Az)02 — npy sin(1 — Ay)07]+ (96)

(
l—1

+X23 (Q) 2 [1’122 COS(l (p)0y — Ny sin(1 — Cz)ez] }

Here, A; is a linear elastic eigenvalue to be determined by solving the following equation:

where y =

cos(1 —A2)02(v){cos(1 —A2)01 (y) [miz(y)n22(y) — ma(y)ni2(v)]—

sin(1 —A2)01(v) [my1 (v)n22(y) — maz (y)n11 (v)]} — 97)
sin(1 —A2)02(y){cos(1 — ?\2)91(1/) [m21 (v)n12(v) — myp(v)no1 (v)]—

sin(1 —A2)01 (v)[my1 (v)no1 (v) — moi (y)ni1(v)]} =0

7 — o. Parameters to, Wo, 2, X12, X21, X22, X23 depend on the notch geometry and

material properties and can be determined according to the procedure proposed in ref. [47].
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As mentioned before for the parabolic notch, the generic parameter A in Equations (93)—(95)
can be expressed as a function of the maximum shear stress along the notch bisector, the
maximum principal stress along the notch edge, or as a function of a mode 2 Generalized
Stress Intensity Factor.

6.3. Mode 3 Loadings

In the case of mode 3 loadings, the solution for the stress field can be determined by
taking advantage of the following complex potential function:

03(23) = —A37}° (98)

where A3 is a real constant, whereas z3 is a complex variable defined as:

73 = X3 +1iy; = r3e'% (99)
In Equation (98):
x3 =X + roﬁ? y3 = B3y’ (100)

13 = /X3 +y3 03 = Arg(xs +1iy;) (101)

and x’ and y’ are the distances from the notch tip in the x and y directions, respectively.
Substituting Equation (97) into Equation (21) allows the shear stress components to
be determined:

t] o Bt3 123
T,0 = oy (3) - [cos(1 —A3)03cos 0 + B3 sin(l — A3)03sin 6]

I3

. 6 1 As (102)
Ty = T%},) (ror(j3> - [cos(1 —A3)03sin 6 — B3 sin(1l — A3)03 cos 6]
where:
Lni(?f)l\ )
to =2 dU7%) 103
3 LnB, (103)
and - -
A (104)

- 203(v) - 2{Arctan[B3 tany] + 7t}

It is worth noting that in the case of an isotropic material (33 = 1), Equation (101) turns
out to be: .
()
To="T - cos Az0
T with A3 = 25 (105)
Ty = Tzlg(r%) - sin A6 Y

in agreement with the exact solution [13,14,51].

7. Examples of Application

In this section, several examples of application for the solutions described in this
paper are presented, considering several materials and different geometries. In particular,
Figures 5-7 contain new data derived from numerical analyses specifically carried out
within this work. Conversely, Figures 8-16 contain numerical data taken from the literature,
and the original references are reported in their captions.
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1 7
Oyy
—Material 1
—Material 2
—Material 3 3
0.1 + Elliptical hole under tension
Ba E a=10 mm, b=v10 mm \
S Solid lines: Egs. (23) Oxx
E Symbols: FEA
0.01 ¢
F i’ Buect{
) )
0.001 e
0.001 0.01 0.1 1 10

Distance from notch tip [mm]

Figure 5. Elliptic hole with a =10 mm and b = v/10 mm in a 150 x 150 mm? plate under tension. Mode
1loadings, different materials. Plot of the normalized stress components oyy / U;;,p and oy / afof along
the notch bisector line and comparison with Equation (23). a is the length of the ellipse semi-major

axis, while b is the length of the ellipse semi-minor axis.

1.5
H Elliptical hole under in-plane shear .
A Material 1

H a=10 mm, b=v/10 mm
- Solid lines: Eq. (106)
L Symbols: FEA

A Material 2
A\ Material 3

L

max
Oy

Opy/

Figure 6. Elliptic hole with a = 10 mm and b = v/10 mm in a 150 x 150 mm? plate under in-plane
shear. Mode 2 loadings, different materials. Plot of the normalized main stress oy /o\a* along the
notch edge and comparison with Equation (106). a is the length of the ellipse semi-major axis, while
b is the length of the ellipse semi-minor axis. c is the ellipse linear eccentricity.
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Bisector

075

Elliptical hole
a=4 mm. b=v10 mm

() L L) L I ] L I ] L Lo

001 01 1 10 100

Distance from the notch tip [mm]

Figure 7. Elliptic hole with a = 4 mm and b = v/10 mm in a 150 x 150 mm? plate under anti-plane
shear. Mode 3 loadings, different materials. Plot of the normalized stress component T,y / T;l}l? along
the notch bisector line and comparison with Equation (36). a is the length of the ellipse semi-major
axis, while b is the length of the ellipse semi-minor axis.

1
0.8 r
g g 0.6 1 Blue: Material 1
2 - Red: Material 2
S 04 Black: Material 3
' Hyperbolic profile, Eq. (37)
I p=10mm, h=30mm
02 | Not.ch _depth of 90mm
Solid lines: Eq. (45)

I Symbols: FEM

0 L1l
0.01 0.1 1 10

Distance from notch tip [mm]

Figure 8. Symmetric hyperbolic notches with p = 10 mm, h = 30 mm, and notch depth of 90 mm in a
plate with ligament of 60 mm and loaded under tension. Mode 1 loadings, different materials. Plot of
the normalized stress component oy / ofip evaluated along the notch bisector line and comparison
with Equation (45). Data adapted from [37].
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0.8

z
§>\ 0.6 A Material 1
Sﬁ A Material 2
S 0.4 A Material 3

Hyperbolic profile, Eq. (37)
p=10 mm, h=30 mm

Notch depth of 90 mm
Solid lines: Eq. (52)
Symbols: FEM

0 10 20 30

Distance from notch tip [mm]

Figure 9. Symmetric hyperbolic notches with p = 10 mm, h = 30 mm, and notch depth of 90 mm
in a plate with ligament of 60 mm and loaded under in-plane shear. Mode 2 loadings, different
materials. Plot of the stress component Txy / TXMan along the notch bisector line and comparison with
Equation (52). Data adapted from [39].

e

~

(9
T

Hyperbolic notch
p=10 mm, h=30 mm,
- Notch depth of 90 mm

Solid lines: Eq. (59)
Symbols: FEM
L G,,/G,,=10 \

Normalised shear stress, t,,/ T,,
(=)
W
T

=

N

W
T

0 bl ] ] [
0.01 0.1 1 10

Distance from the notch tip [mm]

Figure 10. Symmetric hyperbolic notches with p = 10 mm and notch depth of 90 mm in a plate with
ligament of 60 mm and loaded in anti-plane shear. Mode 3 loadings, different materials. Plot of the
stress component Ty / TEP along the notch bisector line and comparison with Equation (59). Data
adapted from [31].
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1
0.1 ¢
RSP L
Mg‘ L
S | V\e\@‘@ﬁ»\
0.01
E Parabolic profile, Eq. (60) .
[ p=1,25mm, notch depth of 10mm —Material 1
L Net ligament of 80mm —Material 2
L Solid lines: Eq. (65) —Material 3
Symbols: FEM
0.001 e =
0.01 0.1 1

Distance from notch tip [mm]

Figure 11. Parabolic notches with p = 1.25 mm and notch depth of 10 mm in a plate with ligament of
80 mm and loaded m tension. Mode 1 loadings, different materials. Plot of the normalized stress
components oyy / 0;;;}0 and oy / cr}l;;,p along the notch bisector line and comparison with Equation (65).
Data adapted from [37].

A Material 1
A Material 2
/A Material 3

T T T T

Parabolic profile, Eq. (60),
p=1.25mm, notch depth of 10 mm
Plate net ligament of 80 mm

Solid lines: Eq. (72)

Symbols: FE

I I AR I I TR R R R | I I TR R R R | I I el

0.01 ‘
0.001 0.01 0.1 1 10

Distance from notch tip (mm)

Figure 12. Parabolic notches with p = 1.25 mm and notch depth of 10 mm in a plate with ligament
of 80 mm and loaded under in-plane shear. Mode 2 loadings, different materials. Plot of the stress
component Ty / ’eran along the notch bisector line and comparison with Equation (72). Data adapted
from [39].
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1
R r
£y I
N
r L
l—? I
s 075
wn -
5]
= L
w)
o L
8 L
Z 05
) L
5]
wl
2
:
g L
Z

- Parabolic notch with p=0.25
[ Plate net ligament of 180 mm
0.25 L Notch depth of 10 mm

Solid lines: Eq. (83)

Symbols: FEM

0.001

0.01

Distance from the notch tip [mm]

Figure 13. Parabolic notch with p = 0.25 mm and depth of 10 mm in a plate with ligament 180 mm

and loaded in anti-plane shear. Mode 3 loadings, different materials. Plot of the stress component
Tyz/ T};;p along the notch bisector and comparison with Equation (83). Data adapted from [31].

0.1

2
y = Y

voy
[

2h
—Material 1
—Material 2 20 p=1.25mm, 20=90°
p
0.001 E__Material 3 4 a=10mm, h=40mm
i - Solid lines: Eq. (87-89)
L g Symbols: FEM
- vy vy ‘Jyy
0.0001 et e E—
0.01 0.1 1

Distance from notch tip [mm]

10

Figure 14. V-shaped blunt notch with p = 1 mm, 2« = 90°, and depth of 10 mm in plate with net

ligament of 80 mm loaded in tension. Mode 1 loadings, different materials. Plot of the normal-

ized stress components oyy / G;;p and oyxy/ O‘;I;;p along the notch bisector line and comparison with
Equations (87)—(89). Data adapted from [38].
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| AMaterial 1
L AMaterial 2
A Material 3

1
f
>
S Pt
~ ‘L'g
5 ”
0.1
f
p=1.25mm 20=90° PR
a= 10mm 9
f W= 50 mm g
- Solid lines: Eq. (96)
Symbols: FEM
0‘01 | ! R A | ! | R
0.001 0.01 0.1 1 10

Distance from notch tip [mm]

Figure 15. V-shaped radiused hole with p = 1.25 mm, 2 = 90°, and depth of 10 mm in a plate with
net ligament of 80 mm and loaded under in-plane shear. Mode 2 loadings, different materials. Plot
of the stress component Tyy /TV°™ along the notch bisector line and comparison with Equation (96).
Data adapted from [39].

1
0.75
B
£ 05
N
o
| 20790°, p=0.5 mm
025 Notch depth of 10 mm
L Plate net ligament of 140 mm
" Solid lines: Eq. (102)
| Symbols: FEM S
0 1 I T B A | 1 T N N A A | 1 T B B A | 1 [ T T T N I
0.001 0.01 0.1 1 10

Distance from the notch tip [mm]

Figure 16. V-shaped notch with p = 0.5 mm, 2« = 90° and depth of 10 mm in a plate with net ligament
of 140 mm and loaded in anti-plane shear. Mode 3 loadings, different materials. Plot of the normalized
stress component Ty / TE;,P along the notch bisector line and comparison with Equation (102). Data
adapted from [40].

The results related to mode 1 and mode 2 loadings have been obtained using the
following material systems (under the hypothesis that the x-direction corresponds to the
notch bisector direction):
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1. Material 1 with the following properties: Ex = 160 GPa, Ey = 10 GPa, Gxy = 5 GPa,
Vxy = 0.30 so that 31 = 0.7198, 3, = 5.5572, representative of a unidirectional Carbon-
Fiber Reinforced Epoxy laminate with fibers oriented along the notch bisector line;

2. Material 2 with the following properties: Ex = 10 GPa, Ey = 160 GPa, Gxy = 5 GPa,
Vxy = 0.01875 so that 3, = 0.1799, 3, = 1.3893, representative of a unidirectional
Carbon-Fiber Reinforced Epoxy laminate with fibers oriented along the direction
normal to the notch bisector line;

3. Material 3 with the following properties: Ex = 10 GPa, Ey = 10 GPa, Gxy = 3.846 GPa,
Vxy = 0.3 so that 31 = 0.9904, 3, = 1.0095, representative of a symmetric quasi-isotropic
glass fib laminate.

In particular, we have chosen Material 1 and Material 2 since they can be regarded
as limiting cases within the context of composites materials, whereas Material 3 has been
chosen as an intermediate case between Material 1 and 2.

Differently, several Gy, /Gy, were used to obtain results related to mode 3 loadings.

The stress distributions in plates with an elliptical hole under tension, in-plane shear
and out-of-plane shear are presented in Figures 5-7, respectively, considering three differ-

ent materials. In particular, in Figure 5, the normalized stress components oyy / cr;,l}r,’ and

Oxx/ cr;l}}? along the horizontal axis, derived from Equation (23), are compared with the re-
sults from the numerical analyses carried out on orthotropic finite size (150 mm x 150 mm)
plates under pure tension. As evident, the accuracy of Equation (23) is noteworthy also in
the presence of a finite-size solid.

In Figure 6, the numerical results from finite-size orthotropic plates (150 mm x 150 mm)
under shear are compared with the analytical solution reported in Section 3. In this case,
the maximum principal stress has been evaluated along the notch edge and compared with
the following analytical expression (obtained from Equation (27)):

_ Oxx+0Oyy _ Oxx

P W 0080 — Tyy SINO =

vV 2 2 Xy

W ((@0p)(a+02) (n (B-1)@1ha—na(Ff-1)@2) |

2w 1172(B1—R2)©102

N TXMyax cos 0 [ (a+bB1)(a+bBa) (rz (1+ﬁ%)®2A1 —r (1-&-/5%)@1/\2) + (106)
2w r112(B1—B2)©102

Ty sin 0 ((ﬂ+bﬁ1)(“+bﬁz)(’1ﬁz@zﬂl—72519102) _ 1)
w 172(B1—P2)0102

In Figure 7, instead, the attention is focused on out-of-plane shear stresses, evalu-
ated along the bisector line of elliptical holes in orthotropic plates subjected to Mode
3 loadings. Numerical results were obtained by considering three different materials
(Gxz/Gyz = 0.1;1;10) and compared with the predictions based on Equation (36).

The results related to symmetric hyperbolic notches in plates under Mode 1, 2, and 3
loadings are shown in Figures 8, 9 and 10, respectively. Moreover, in this case, the analytical
solutions, theoretically valid for infinitely deep notches, are able to describe with great
accuracy the numerical results from finite-size solids.

Eventually, the results for blunt V-notches with different notch opening angles are
presented in Figures 11-16.

In more detail, the results for the stress fields arising in plates with parabolic notches
(blunt cracks) under tension, in-plane shear, and out-of-plane shear are summarized in
Figures 11, 12 and 13, respectively. Furthermore, for this case, Equations (65), (72) and (83),
exact in the case of deep blunt cracks, can be effectively used to characterize the local stress
fields arising in finite-size solids.

Eventually, the attention is moved to lateral radiused notches with a notch opening
angle different from zero (2 = 90°), documenting once again the accuracy of the equations
proposed in this work (see Figures 14-16).

Based on the results reported in this section, the following main comments can be
drawn in relation to the features of the stress fields:
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e  With regards to Mode 1 loadings, Figures 5, 8, 11 and 14 make it evident that when the
material is very stiff along the loading direction (Material 2), the stress gradient is high,
and the distribution of the maximum principal stress along the notch bisector line (i.e.,
the normal stress orthogonal to the notch bisector line) is very steep. Conversely, in
the case of a material very stiff along the notch bisector line (Material 1), the stress
gradient is much lower, and the distribution of the maximum principal stress along
the notch bisector line (i.e., the normal stress orthogonal to the notch bisector line) is
mild. As evident, this behavior is general and does not depend on the particular notch
geometry under investigation.

e  With regards to Mode 2 loadings, from Figures 6, 9, 12 and 15, it is evident that when
the material is very stiff along the direction normal to the bisector line (Material 2),
the stress gradient is high, and the point, along the notch bisector line, exhibiting the
maximum shear stress is very close to the notch tip. This behavior is general and does
not depend on the particular notch geometry under investigation.

e  Eventually, with reference to Mode 3 loadings, from Figures 7, 10, 13 and 16, it is
evident that when G;, is much larger than Gj,, where j is the direction of the notch
bisector line, the stress gradient is high, and the distribution of the maximum antiplane
shear stress along the notch bisector line is very steep, independent of the considered
notched geometry. Vice versa, when G;, is smaller than Gj,, the stress gradient is mild.

In order to conclude this section, it is possible to state that the equations and solutions
reported in this paper, either exact or approximated, are characterized by a very satisfactory
accuracy and represent useful tools to assess the notch stress fields in orthotropic solids
weakened by a large variety of geometrical variations.

8. Conclusions and Final Remarks

In this work, a brief overview of the analytical solutions available to describe the
in-plane and out-of-plane stress fields in orthotropic solids with radiused notches has been
presented, and their accuracy discussed versus a number of numerical results.

In more detail, initially, a brief summary of the fundamentals of complex potentials for
orthotropic elasticity was presented, with reference to plane stress or strain and antiplane
shear problems.

Subsequently, the attention was moved to the relevant expressions for the notch stress
fields, considering elliptical holes, symmetric hyperbolic notches, parabolic notches, blunt
cracks, and radiused V-notches.

Eventually, examples of application were presented, comparing the presented analyti-
cal solutions to the results from numerical analyses carried out on relevant cases.

Based on the cases analyzed, the following main comments can be drawn in relation
to the effect of the elastic material properties, independent of the particular notch geometry
considered:

e  With regards to Mode 1 loadings, when the material is very stiff along the traction
direction, the stress gradient is high, and the distribution of the maximum principal
stress along the notch bisector line (i.e., the normal stress orthogonal to the notch
bisector line) is very steep. Conversely, in the case of a material very stiff along the
notch bisector line, the stress gradient is much lower, and the distribution of the
maximum principal stress along the notch bisector line is mild.

e  With regards to Mode 2 loadings, when the material is very stiff along the direction
normal to the bisector line, the stress gradient is high, and the point, along the notch
bisector line, exhibiting the maximum shear stress is very close to the notch tip.

e  With reference to Mode 3 loadings, when G, is much larger than G;,, where j is the
direction of the notch bisector line, the stress gradient is high, and the distribution of
the maximum antiplane shear stress along the notch bisector line is very steep. Vice
versa, when G, is smaller than G;,, the stress gradient is mild.
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As a major conclusion of this work, it can be stated that the equations and solutions
reported in this paper, either exact or approximated, are characterized by a very satisfactory
accuracy and represent useful tools to assess the notch stress fields in orthotropic solids
weakened by a large variety of geometrical variations.

A final remark concerns the choice of employing an analytical solution or a numerical
one (e.g., FEA) in front of a real problem. All the reviewed solutions showed an excellence
accuracy when compared with FEA. It means that at an up-front cost of implementing
the equations in a spreadsheet or in some programming language (e.g., Python), very
accurate solutions at low computational cost could be obtained, saving the cost of running
FE simulations.
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