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Abstract: In this study, the modulus of elasticity and flexural strength properties of laminated wood
elements reinforced with steel mesh with different mesh openings were determined. In accordance
with the purpose of the study, three- and five-layer laminated elements were produced from scotch
pine (Pinus sylvestris L.) wood material, which is widely used in the wood construction industry in
Türkiye. The 50, 70, and 90 mesh steel used as the support layer was placed between each lamella
and pressed with polyvinylacetate (PVAc-D4) and polyurethane (PUR-D4) adhesives. Afterward, the
prepared test samples were kept for 3 weeks at 20 ◦C temperature and 65 ± 5% relative humidity for
3 weeks. The flexural strength and modulus of elasticity in flexural of the prepared test samples were
determined according to the TS EN 408: 2010+A1 standard by the Zwick universal tester. Multiple
analysis of variance (MANOVA) was carried out using MSTAT-C 1.2 software to determine the
effect of the modulus of elasticity and flexural strength on the obtained flexural properties, the mesh
opening of the support layer, and the adhesive type. When the differences within or between groups
were significant with a margin of error of 0.05, achievement rankings were made using the Duncan
test on the basis of the least significant difference. According to the results of the research, the highest
bending strength (120.3 N/mm2) was obtained in three-layer samples reinforced with 50 mesh steel
wire and bonded with Pol-D4 glue, and the highest modulus of elasticity (8969.3 N/mm2) was
obtained in three-layer samples reinforced with 50 mesh steel wire and bonded with Pol-D4 glue.
As a result, the reinforcement of the laminated wood material with steel wire had an increasing
effect on the strength. Accordingly, the use of 50 mesh steel wire can be recommended to increase
mechanical properties.

Keywords: wood material; lamination; reinforcement; support layer

1. Introduction

Since the past, furniture has had an important place in terms of possessions because
it meets both physical and psychological needs. Wood is an engineering material widely
used in interior and exterior decoration applications due to its superior properties, such as
its ease of processing, paintability, low energy consumption during processing, availability
in various colors and patterns, low permeability of sound and heat [1–4]. Despite its many
advantages, wood also has some disadvantages, such as its hygroscopicity, heterogeneity,
and size limitation [5].

Today’s technology has increased the durability of wood materials and paved the
way for the production of many new wood materials, such as plywood, particleboard, and
other panel products. Wood material has been preferred as a raw material in construction
elements for the last 40 years, and although it is used frequently, it is mostly in the form
of timber obtained from tree trunks or wood pieces [6]. Especially, evergreen, coniferous,
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and mature trees are seen as a source of structural timber. As with various other construc-
tion materials, wood material is available in different qualities (grades) and has many
standardized features and sizes [7].

While the disadvantages such as the heterogeneous structure and limited size possi-
bilities of wood are eliminated, the improvement of the mechanical resistance properties
can be achieved with lamination technology (Glulam: Glue-laminated wood) [8]. Layered
timber has been used since the 1800s. Research on this material started in the USA in the
1930s in Forest Products Laboratories [9]. Under a prolonged load, wood undergoes a
viscoelastic creep, which requires a constant load that varies over time. When the load
applied to the reinforced glulam beam changes over time, both the strength and stiffness
of the beam decrease [10]. Once pre-stress is applied, the distortion becomes even more
significant. Therefore, it is of great theoretical and engineering importance to understand
the long-term mechanical performance of reinforced glulam beams and clarify the effect of
creep [11].

Reinforcement in glulam beams is a technique that provides greater advantages in both
increased stiffness and strength, with structural members having higher mechanical per-
formance [12]. Reinforcement can be achieved using natural fibers or polymeric (artificial)
fibers, which are usually bonded internally or externally to the laminate of the stretched re-
gion of the beams [13]. It has been observed that reinforcement with metal elements, which
can be applied to both the stretched and compressed regions of the glulam parts, is effective
in reducing deflection and increasing the loading capacity [14]. Metal has been one of the
most widely used materials for reinforcement since the 1960s. Steel bar, steel strip, steel or
aluminum sheets, and steel-knitted wire mesh are the best examples. Reinforcing wooden
structures with steel materials is both effective and cost-effective [15,16]. Steel-reinforced
beams show that the behavior of reinforced beams is completely different from that of
non-reinforced ones. The strengthening process changed the failure mode from fragile to
durable and increased the load-carrying capacity of the beams [7]. It was determined that
for simply reinforced beams, stiffness increased by 25.9%, ultimate load increased by 48.1%,
and ductility increased by 43.8%. For reinforced and pre-stressed beams, stiffness increased
by 37.9%, ultimate load increased by 40.2%, and ductility increased by 79.1% [14].

In a study that proposed that close-mounted steel rods could be used to reinforce
glulam bamboo beams, a total of five glulam bamboo beams, one unreinforced and four
reinforced, were constructed and tested to break under a four-point loading system, and the
bending behavior was examined by comparing the differences. The experimental results
showed that the load-bearing capacity and cross-sectional stiffness of the reinforced beams
increased significantly compared with those of the unreinforced beam. It was also found
that steel bars mounted close to the surface shared the tensile stress of bamboo beams and
worked effectively during the loading process. In addition, the plane section assumption
of the cross-sectional stress distribution along the height was verified, and an analytical
model was proposed to predict the section stiffness of reinforced bamboo beams [17].

The use of reinforcing mesh on laminated surfaces increased the ultimate load ca-
pacities of the tested beams. The highest ultimate load capacities were observed in tests
of adhesive-laminated beams, which were reinforced with polyurethane adhesive using
steel wire reinforcement nets and produced using five laminated layers in the direction
perpendicular to the lamination surface [18].

The results of a study that used one precast concrete, one post-tensioned concrete, one
porous steel, and one solid timber in the construction of four one-way parking garages
were intriguing. The resulting comparison showed that there was little difference in the
energy of the structural systems used for car parks under material best practices. While
solid timber was more suitable even in the worst-case scenario, it was observed that it
lost its advantageous position against its cement equivalent and high-recycled-content
steel [19].

It was shown that the proposed rational reinforcement of wooden beams increased
their bearing capacity by 175% and reduced bearing deformation by 85%. The study
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revealed the high efficiency of the application of the strengthening method in the roof
beams and floors of the buildings [20].

Under constant loading conditions, the total stress value of the steel bars decreased
by 17.5%, 13.6%, and 9.1%, respectively. The ratio of the long-term deflection of the beam
mid-span to the total deflection was 26.9%. As the strengthening ratio increased, the stress
loss of the steel bars decreased, and the long-term deflection rate also decreased [11].

As can be seen in the literature summarized above, wood is used for different purposes
under different conditions. To achieve high success with smaller sections, wood is subjected
to various processes and reinforced with different materials. This study aimed to determine
the bending strength and elasticity properties in the bending of glulam beams produced in
three and five layers by placing a steel wire mesh with 50, 70, and 90 mesh pore openings
between the layers obtained from Scotch pine (Pinus sylvestris L.). The results of the study
showed that reinforced laminated beams can be used in applications with longer support
spans in the wooden structure system compared with solid wood.

2. Materials and Methods
2.1. Materials
2.1.1. Wood

Scotch pine (Pinus sylvestris L.) used in the preparation of the test samples was selected
according to criteria such as natural color uniformity, smoothness of fibers, absence of knots,
absence of reaction wood, and absence of fungal and insect damage. Test samples were
formed into 7 and 4.2 mm lamellas, respectively, according to the 3- and 5-layered state,
by a wood saw and planning machines. The wood material, which became lamellae, was
stacked and maintained at 20 ± 2 ◦C and 65 ± 5% relative humidity until the equilibrium
moisture content was 12%.

2.1.2. Stainless Steel Wire Mesh

Stainless steel wire meshes are used as braided materials in various places because
of the continuity of their mechanical properties as well as their ability to preserve the
aesthetic appearance and brightness on their surfaces for a long time and not deform at
high temperatures [21]. They are preferred because they have a long life, do not require
maintenance, and have high mechanical resistance [22]. In this study, steel wires with 50,
70, and 90 mesh pore openings were used. The wire diameters were 0.18 mm, 0.12 mm, and
0.10 mm, respectively, and the pore spacing was 330 µm, 242 µm, and 180 µm (Figure 1).
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2.1.3. Adhesives

Polyvinylacetate (PVAc-D4) and polyurethane (PUR-D4) adhesives, which are com-
monly used in the wood industry, were preferred in this study. The recommendations of the
manufacturer (Klebreit) were followed for application. The properties of PVAc-D4 were as
follows: viscosity at 20 ◦C: 13 ± 2 mPas; color: white; application amount: 120–200 gr/m2;
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open time: 6–10 min. The properties of PUR-D4 were a viscosity of 8 ± 1 MPa at 20 ◦C,
yellowish brown color, an application amount of 100–200 gr/m2, and an open time of
20–25 min [23].

2.2. Preparation of Test Samples

The test samples were prepared with dimensions of 21 mm × 30 mm × 400 mm
according to the TS EN 408: 2010+A1 standard [24]. PVAc-D4 and PUR-D4 were applied to
the 7 and 4.2 mm-thick lamellas prepared using air-dried Scots pine (Pinus sylvestris L.) and
reinforced with 50-, 70-, and 90-opening steel wire mesh reinforcement. and non-reinforced
(control) experimental groups were formed.

Two types of specimens were prepared with and without the reinforcement layer.
Steels with 3 different mesh properties (50, 70, and 90) were used between each layer
of the samples consisting of 3 and 5 lamellas reinforced by the support layer. For each
variable, 10 samples were prepared from both the reinforced and non-reinforced exper-
imental groups. While gluing the samples, 180–200 gr/m2 adhesive was applied with
a brush on both surfaces of the lamellas and pressed under 1.1 N/mm2 pressure. After
waiting for at least 24 h in the press, the samples were cut with a saw into dimensions of
21 mm × 30 mm × 400 mm.

2.3. Conducting of Experiments

The flexural strength and modulus of elasticity in flexural of the prepared test samples
were determined according to the TS EN 408: 2010+A1 standard by the Zwick tester [24].
They were determined under a static load from 4 points on the Zwick tester. The experi-
mental setup is given in Figure 2.

fm =
3Fmaxl2

bt2 (1)
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fm: Flexural strength (N/mm2),
Fmax: Maximum load (N),
l2: 16 times the thickness (mm),
b: Width (mm),
h: Thickness (mm).

Em =
l3(F2 − F1) (l − l1)

3

4(W2 − W1)b1 × h3
1

(2)

Em: Modulus of elasticity (N/mm2),
l: Length (mm),
l1: Distance between supports (mm),
b1: Width (mm),
h1: Thickness (mm),
F2 − F1: Increase in the load ratio on the right part of the load deformation curve (N),
W2 − W1: Increase in deformation corresponding to F2 − F1, (mm).
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The 4-point flexural strength ( fm) and modulus of elasticity (Em) of the test specimens
placed (Figure 3) at a distance of 366 mm between the supports were calculated using
Equations (1) and (2) [24].
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The proportional comparison of the reinforcement to the flexural strength and flexural
modulus of elasticity were calculated according to Equations (3) and (4).

Pf m =
fmSW − fmGB

fmSW

× 100 (%) (3)

PEm =
EmSW − EmGB

EmSW

× 100 (%) (4)

Pf m: Proportional comparison of the flexural strength (%),
Pf m: Proportional comparison of the modulus of elasticity (%),
fmSW : Flexural strength value of solid wood (N/mm2),
fmGB : Flexural strength value of glulam beam (N/mm2).
SW: Solid wood,
GB: Glulam beam.

2.4. Statistical Analysis

Multiple analysis of variance (MANOVA) was carried out using MSTAT-C 1.2 package
software to determine the effect of the modulus of elasticity and flexural strength on the
obtained flexural properties, the mesh opening of the support layer, and the adhesive
type. When the differences within or between groups were significant with a margin of
error of 0.05, achievement rankings were made using the Duncan test on the basis of the
least significant difference (LSD). As a result, in cases in which the modulus of elasticity
and flexural strength properties were important, we attempted to obtain a lamination
combination with a high level of success.

3. Results and Discussion
3.1. Flexural Strength

The statistical values regarding the modulus of elasticity and flexural strength of
non-reinforced beams made of 3 layers of lamellas with a thickness of 7 mm and reinforced
beams made of 5 layers of 4.2 mm-thick lamellas are given in Table 1.
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Table 1. Mean and coefficient of variation values of the flexural strength and modulus of elasticity
(N/mm2).

Adhesive
Type

Number of
Layers

Reinforcement
Type

Number of
Samples Flexural Strength (N/mm2)

Modulus of Elasticity
(N/mm2)

Mean COV Mean COV

PUR-D4

3

Non-reinforcement 10 103.2 4.6 6568.5 9.5
50 Mesh 10 120.3 2.4 8969.3 6.7
70 Mesh 10 107.6 1.7 7465.6 8.2
90 Mesh 10 101.7 5.8 6757.7 9.5

5

Non-reinforcement 10 79.6 11.3 5139.8 6.8
50 Mesh 10 103.1 5.2 7825.8 9.3
70 Mesh 10 104.7 1.9 6480.7 8.9
90 Mesh 10 110.0 6.3 7510.2 5.4

PVAc-D4

3

Non-reinforcement 10 96.0 2.8 6267.6 10.1
50 Mesh 10 90.1 8.0 6781.9 6.2
70 Mesh 10 107.9 7.4 8044.7 6.1
90 Mesh 10 87.7 4.9 5835.4 5.4

5

Non-reinforcement 10 93.6 6.0 5413.6 6.6
50 Mesh 10 93.5 4.9 6283.8 4.0
70 Mesh 10 95.3 3.1 5783.8 13.1
90 Mesh 10 94.5 4.5 6254.4 3.4

When the flexural strength values given in Table 2 are examined, it can be seen
that there are differences according to the adhesive type, the number of layers, and the
characteristics of the reinforcement material. The results of the analysis of variance to
determine the factor affecting the flexural strength are given in Table 2.

Table 2. Analysis of variance results for flexural strength.

Source of Variance Degrees of
Freedom

Sum of
Squares

Mean
Square F Value p ≤ 0.05

Adhesive Type (A) 1 3220.230 3220.230 113.238 0.0000 *
Number of Layers (B) 1 1014.049 1014.049 35.659 0.0000 *
Interaction (AB) 1 588.289 588.289 20.687 0.0000 *
Reinforcement Type (C) 3 2652.834 884.278 31.095 0.0000 *
Interaction (AC) 3 3260.366 1086.789 38.217 0.0000 *
Interaction (BC) 3 2320.004 773.335 27.194 0.0000 *
Interaction (ABC) 3 1833.480 611.160 21.491 0.0000 *
Error 144 4095.016 28.438
Total 159 18984.268

*: The difference is significant at a level of 0.05.

The differences between groups in terms of the effects of the sources of variance on
the flexural strength properties—adhesive type, number of layers, and reinforcement type;
adhesive type–number of layers, adhesive type–reinforcement type, and number of layers–
pore openings binary interactions; and the adhesive type–number of layers–reinforcement
type triple interaction—were statistically significant (p ≤ 0.05).

According to the results of the comparative Duncan homogeneity test performed to
determine the importance of the adhesive type on flexural strength properties, the highest
flexural strength properties were obtained in beams produced with polyurethane glue.
Although the production of beams with polyurethane or polyvinylacetate glue showed
different effects on flexural strength properties, beams produced with polyvinylacetate
glue had the lowest value in terms of flexural strength properties. The homogeneity test
results for adhesive type, reinforcement type, and number of layers are shown in Figure 4.
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Figure 4. Homogeneity for adhesive type, reinforcement type, and number of layers. A: The highest
value of flexural strength, C: The lowest value.

According to the results of the comparative Duncan homogeneity test (LSD ± 2.67)
performed to determine the importance of the number of layers to the flexural strength
properties, the highest flexural strength (A: 101.8 N/mm2) was obtained in beams produced
with three layers. Although the production of beams with three layers and five layers
showed different effects on flexural strength properties, five-layer beams had the lowest
value (B: 96.5 N/mm2) in terms of flexural strength properties.

According to homogeneity test results for reinforcement types related to flexural
strength, the lowest value (C: 92.64 N/mm2) was obtained from beams produced with no
reinforcement. Although 50 mesh and 70 mesh showed similar properties in terms of the
reinforcement type on flexural strength properties, the highest value (A: 103.9 N/mm2)
was seen in beams produced using 70 mesh.

The homogeneity test results for the interactions of reinforcement type–number of
layers and adhesive type–number of layers are shown in Figure 5.
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Figure 5. Homogeneity for interaction of reinforcement type–number of layers and adhesive type–
number of layers. A: The highest value of flexural strength, E: The lowest value.
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According to the results of the homogeneity test (LSD ± 3.78) performed to deter-
mine the importance of the bilateral interaction between the number of layers and the
reinforcement type to the flexural strength properties, the lowest value was obtained for
non-reinforced beams produced with five layers, and the highest value was obtained
for 70 mesh reinforced beams produced with three layers. In addition, three-layer non-
reinforced beams and five-layer 70 mesh reinforced beams showed similar properties.

According to the results of the homogeneity test (LSD ± 2.70) performed to de-
termine the importance of the bilateral interaction between the number of layers and
the adhesive type to the flexural strength properties, the lowest value was obtained for
polyvinylacetate-glued beams produced with five layers, and the highest value was ob-
tained for polyurethane-glued beams produced with three layers. Beams produced using
polyvinylacetate glue showed the same properties for three and five layers.

The Duncan test results for the interaction of reinforcement type–adhesive type are
given in Figure 6.
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Figure 6. Homogeneity for interaction of reinforcement type–adhesive type. A: The highest value of
flexural strength, E: The lowest value.

According to the results of the homogeneity test (LSD ± 3.78) performed to determine
the importance of the bilateral interaction between the reinforcement type and adhesive
type to the flexural strength properties, the lowest value (E: 90.53 N/mm2) was obtained for
the polyurethane-glued beams produced with no reinforcement, and the highest value (A:
111.7 N/mm2) was obtained for the polyurethane-glued beams produced with 50-opening
steel mesh wire reinforcement. While beams produced using polyvinylacetate glue showed
the same properties in 50-mesh and 90-mesh reinforcements, 70-mesh and 90-mesh rein-
forcements showed the same properties as beams produced using polyurethane glue.

The triple-interaction Duncan results for adhesive type–number of layers–reinforcement
type on flexural strength are given in Table 3.

According to the results of the homogeneity test carried out to determine the im-
portance of the triple interaction of adhesive type–number of layers–pore openings on
the flexural strength properties, while the highest flexural strength (120.30 N/mm2) was
obtained for 50 mesh steel-reinforced beams with polyurethane adhesive, the lowest flex-
ural strength (77.88 N/mm2) was obtained for non-reinforced beams with polyurethane
adhesive produced with five layers. There was no statistical difference between five-layer
glued laminated wood beams bonded with PVAc-D4. Additionally, there was no difference
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between the three-layer non-reinforced material bonded with PUR-D4 and the five-layer
50 mesh and 70 mesh reinforcement material (LSD ± 5.34).

Table 3. Triple-interaction Duncan results of adhesive type–number of layers–reinforcement type on
flexural strength (N/mm2).

Reinforcement Type

PUR-D4 PVAc-D4

3 Layers 5 Layers 3 Layers 5 Layers
x HG x HG x HG x HG

Non-Reinforcement 103.20 CD 77.88 H ** 95.96 E 93.56 EF
50 Mesh 120.30 A * 103.10 CD 90.08 FG 93.45 EF
70 Mesh 107.60 BC 104.70 CD 107.90 BC 95.28 EF
90 Mesh 101.70 D 110.00 B 87.67 G 94.48 EF

LSD ± 5.339

x: Arithmetic mean. HG: Homogeneity group. *: The highest flexural strength. **: The lowest flexural strength.

3.2. Modulus of Elasticity

The results of the analysis of variance to determine the factor affecting the modulus of
elasticity are given in Table 4.

Table 4. Analysis of variance results for modulus of elasticity.

Source of Variance Degrees of
Freedom

Sum of
Squares

Mean
Square

F
Value p ≤ 0.05

Adhesive Types (A) 1 22893580.550 22893580.550 82.9539 0.0000 *
Number of Layers (B) 1 22488826.095 22488826.095 81.4872 0.0000 *
Interaction (AB) 1 94775.169 94775.169 0.3434 NS
Reinforcement Type (C) 3 55344914.544 18448304.848 66.8466 0.0000 *
Interaction (AC) 3 23773747.689 7924582.563 28.7144 0.0000 *
Interaction (BC) 3 27042864.738 9014288.246 32.6629 0.0000 *
Interaction (ABC) 3 6120967.578 2040322.526 7.3930 0.0001 *
Error 144 39741076.618 275979.699
Total 159 197500752.981

*: The difference is significant at the level of 0.05.

The difference between the groups in terms of the effects of the sources of variance
on the flexural elasticity modulus—adhesive type, number of layers, reinforcement type,
adhesive type–reinforcement type binary interaction, and number of layers–reinforcement
type binary interaction—were statistically significant (p ≤ 0.05). However, the adhesive
type–number of layers binary interaction level was not statistically significant. Due to the
anisotropic nature of the wood material, the difference between the fiber length and wood
elasticity modulus values significantly affects the measured forces [25,26].

According to the results of the comparative Duncan homogeneity test performed
to determine the importance of adhesive types to the modulus of elasticity, the highest
modulus of elasticity was obtained for beams produced with polyurethane glue. Although
the production of beams with polyurethane or polyvinylacetate glue showed different
properties on the modulus of elasticity, beams produced with polyvinylacetate glue had
the lowest value in terms of the modulus of elasticity. The homogeneity test results for the
adhesive type, reinforcement type, and number of layers are shown in Figure 7.

According to the results of the comparative Duncan homogeneity test performed to
determine the importance of the number of layers to the modulus of elasticity, the highest
modulus of elasticity (A: 7086 N/mm2) was obtained for beams produced with three
layers. In addition, five-layer beams had the lowest (B: 6336 N/mm2) value in terms of the
modulus of elasticity.
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Figure 7. Homogeneity for adhesive type, reinforcement type, and number of layers. A: Higest
modulus of elasticity, D: Lowest modulus of elasticity.

According to the results obtained, the lowest value was obtained for beams produced
with no reinforcement. The highest value (A: 7465 N/mm2) in terms of reinforcement types
on the elasticity modulus was seen in the beams produced using 50 mesh.

The Duncan homogeneity test performed to determine the importance of the binary
interaction of adhesive type–reinforcement type to the modulus of elasticity is shown in
Figure 8.
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Figure 8. Homogeneity for interaction of adhesive types-reinforcement types. A: Higest modulus of
elasticity, D: Lowest modulus of elasticity.

According to the results of the homogeneity test (LSD ± 328.1) carried out to de-
termine the importance of the binary interaction of adhesive type–reinforcement type
to the modulus of elasticity, the lowest value (D: 5841 N/mm2) was obtained for the
polyvinylacetate-glued beams produced with no reinforcement, and the highest value (A:
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8398 N/mm2) was obtained for the polyurethane-glued beams produced with 50-opening
steel mesh wire reinforcement.

The Duncan homogeneity test performed to determine the importance of the binary
interaction of the number of layers–reinforcement type on the modulus of elasticity is given
in Figure 9.
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Figure 9. Homogeneity for interaction of the number of layers–reinforcement type. A: Higest
modulus of elasticity, D: Lowest modulus of elasticity.

According to the results of the homogeneity test (LSD ± 328.1) carried out to determine
the importance of the layer number–reinforcement type binary interaction on the modulus
of elasticity, the lowest value (D: 5277 N/mm2) was obtained for non-reinforced beams
produced with five layers, and the highest value (A: 7876 N/mm2) was obtained from
50 mesh-reinforced beams produced with three layers.

The triple-interaction Duncan results for adhesive type–number of layers–reinforcement
type on the modulus of elasticity are given in Table 5.

Table 5. Homogeneity for interaction of adhesive type–number of layers–reinforcement type on
modulus of elasticity (N/mm2).

Reinforcement Types

PUR-D4 PVAc-D4

3 Layers 5 Layers 3 Layers 5 Layers
x HG x HG x HG x HG

Non-Reinforcement 6568 D 5140 G ** 6268 DE 5414 FG
50 Mesh 8969 A * 7826 BC 6782 D 6284 DE
70 Mesh 7466 C 6481 D 8045 B 5784 EF
90 Mesh 6758 D 7510 C 5835 EF 6254 DE

LSD ± 464.0

x: Arithmetic mean. HG: Homogeneity group. *: The highest MOE. **: The lowest MOE

According to the results of the homogeneity test (LSD ± 464.0) carried out to determine
the importance of the triple interaction of adhesive type–number of layers–reinforcement
type to the modulus of elasticity, while the highest flexural strength (8969 N/mm2) was ob-
tained for 50 mesh steel-reinforced beams with polyurethane adhesive produced with three
layers, the lowest flexural strength (5140 N/mm2) was obtained for non-reinforced beams
with polyurethane adhesive produced with five layers. The Fmax values and deformation
types of the test samples are given in Figure 10.
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Figure 10. Some of the test samples after experiments. (a1) PUR—three layers, (a2) PUR—three layers,
50 mesh, (a3) PUR—three layers, 70 mesh, (a4) PUR—three layers, 90 mesh, (b1) PUR—five layers,
(b2) PUR—5 layers, 50 mesh, (b3) PUR—5 layers, 70 mesh, (b4) PUR—5 layers, 90 mesh, (c1) PVAc—
three layers, (c2) PVAc—three layers, 50 mesh, (c3) PVAc—three layers, 70 mesh, (c4) PVAc—three
layers, 90 mesh, (d1) PVAc—five layers, (d2) PVAc—five layers, 50 mesh, (d3) PVAc—five layers,
70 mesh, (d4) PVAc—five layers, 90 mesh.

The use of steel wire mesh between layers in the production of reinforced beams
increased the flexural strength and modulus of elasticity in flexure. As can be seen in
Figure 10(b4,d4), in the use of 90 mesh steel-knitted wire, five-layer beams suffered more
breakage than three-layer beams, regardless of the adhesive type. Additionally, it should
be noted here that the glue line, which has a significant effect on the deformation of the
beam between the layers, is damaged during bending [27,28].

The proportional comparison results of the effect of reinforcement on flexural strength
and flexural elasticity modulus are given in Table 6.

In terms of the effect on the flexural elasticity modulus, there was an increase of 60%
in the reinforcements made with 50 steel mesh and polyurethane adhesive. There was a
31% increase in flexural strength for the same combination.
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Table 6. Proportional comparison of reinforcement effect (%).

Number
of

Layer
Reinforcement

Flexural Modulus of Elasticity (N/mm2) Flexural Strength (N/mm2)

Solid
Wood

(N/mm2)

PUR-D4 PVAc-D4 Solid
Wood

(N/mm2)

PUR-D4 PVAc-D4

Em
(N/mm2)

Change
(%)

Em
(N/mm2)

Change
(%)

fm
(N/mm2)

Change
(%)

fm
(N/mm2)

Change
(%)

3 Layers

Non-Reinforc.

5587.9

6568.5 17.6 6267.6 12.2

93.9

103.2 9.9 95.9 2.2
50 Mesh 8969.3 60.5 6781.9 21.4 120.3 28.1 90.1 −3.1
70 Mesh 7465.6 33.6 8044.7 33.6 107.6 14.6 107.9 15.0
90 Mesh 6757.7 20.9 5835.4 8.2 101.7 8.3 87.7 −6.3

5 Layers

Non-Reinforc. 5139.8 −8.0 5413.6 −3.1 77.9 −17.0 93.6 −0.4
50 Mesh 7825.8 40.0 6283.8 12.5 103.1 9.8 93.5 −0.5
70 Mesh 6480.7 16.0 5783.8 15.9 104.7 11.5 95.1 1.5
90 Mesh 7510.2 34.4 6254.4 34.4 110.0 17.15 94.5 0.6

4. Conclusions

The present study aimed to obtain glulam beams that would have high strength
properties in terms of performance in the place of use by using steel wire mesh with
different pore openings, different types of adhesives, and different numbers of layers.
For this purpose, between the layers of glulam beams, 50, 70, and 90 mesh steel wire,
which is considered more cost-effective, was used as reinforcement. Additionally, lamella
thicknesses of 4.2 mm (for five layers) and 7 mm (for three layers) were produced with
the same final thickness as the glulam beams. The flexural strength and modulus of the
elasticity properties of the reinforced glulam beams were determined. The obtained data
were compared with beams produced with no reinforcement. As a result of the experiment,
non-reinforced glulam beams and reinforced glulam beams were evaluated statistically
according to adhesive type, number of layers, and pore openings.

In terms of adhesive type, the highest flexural strength value was obtained for
polyurethane (PUR-D4) glue, and the lowest flexural strength value was obtained for
polyvinylacetate (PVAc-D4) glue. Moreover, in terms of adhesive type, the highest modulus
of elasticity properties was obtained for PUR-D4 glue, and the lowest modulus of elasticity
properties was obtained for PVAc-D4 glue.

In terms of adhesive type, PUR-D4 glue had good results for the highest flexural
strength and modulus of elasticity, while PVAc-D4 glue had low results. This result can be
interpreted as follows: polyurethane glue establishes a stronger chemical bond between
the lamellae compared to polyvinylacetate glue.

The highest flexural strength and modulus of elasticity values were obtained for three
layers, and the lowest flexural strength value was obtained for five layers.

In terms of pore openings, the highest flexural strength value was obtained for 50 mesh,
and the lowest flexural strength value was obtained for non-reinforced glulam beams.
Again, in terms of pore openings, the highest modulus of elasticity properties was obtained
for 50 mesh, and the lowest modulus of elasticity was obtained for non-reinforced glu-
lam beams. In line with the data obtained, it can be interpreted that as the pore opening
increases, the flexural strength decreases. Here, it can be interpreted that porous rein-
forcement materials may be preferred over plate-shaped reinforcement material for use
between layers. Simultaneously, the use of 90 mesh can be recommended in cases in which
elasticity is desired, while the use of 50 mesh can be recommended in applications that
require rigidity.

To conclude, it is predicted that satisfying results can be obtained by diversifying
adhesives with different wood species in the construction sector and by experimenting
with different reinforcements and various numbers of layers and sequences. Additionally,
a preliminary idea was formulated that materials with a porous structure, as reinforcement,
could further increase the healing effect.
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In the experiments, delamination was observed in some of the samples. This indicated
that the adhesive adhesion was not sufficient. With the use of porous support layers, in
addition to adhesion, it can have a further healing effect thanks to mechanical bonding.

The experimental results showed that reinforcement improved the bending strength
of the glulam beams. The most important reason for this is that the strength properties of
the steel material were higher than the wood material, and if they are used together, this
feature has a positive effect on the strength of the wood material.
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