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Abstract: The eccentric RHS (rectangular hollow sections) joint offers improved mechanical properties
and better space utilization. Its use in frame structures has gained significant attention. Currently,
the initial rotational stiffness of RHS joints, the simplified finite element analysis method of eccentric
RHS joints, and the influence of the spatial effect of RHS joints are still unknown. The purpose
of this research is to establish a calculation formula for the initial rotational stiffness of eccentric
RHS joints, study the influence of the spatial effect under complex stress conditions, and propose a
mathematical model that can be used to simplify the analysis of eccentric RHS joints. The research
findings indicate that the web plate’s deformation stiffness primarily influences the joints’ initial
rotational stiffness. This increases with a higher beam-to-column depth-to-width ratio, beam-to-
column thickness ratio, and column width-to-thickness ratio. The form of the moment distribution
in the joint changes, and begins to have a significant effect on the rotational stiffness when the
beam-to-column flange width ratio reaches and exceeds 0.7. The stiffeners have a direct additive
effect on the joint stiffness. The influence of adjacent beams on the joint is minimal, and the spatial
effect of the joint can be disregarded. Furthermore, the finite element analysis confirmed the accuracy
of the power function model in accurately simulating the static load behavior of the joint, particularly
the bending moment–angle relationship.

Keywords: eccentric RHS joint; initial rotational stiffness; stiffener

1. Introduction

The application of steel tube structures can be traced back to the St. Louis Bridge
in the United States in 1867 [1], marking the earliest use of such structures. In 1962, the
Committee for International Development and Education on Construction of Tubular
Structures (CIDECT) was established, focusing on research and development of offshore
steel tube platform structures. The construction of the first offshore steel tube platform
in the Gulf of Mexico in 1974 further popularized the use of steel tube structures, leading
to the development of relevant design specifications [2]. Steel tube structures have wide
applications in various public buildings such as stadiums, terminal buildings, and ocean
platforms. Among the different types of joints used in steel tube structures, including
bolted ball joints, welded ball joints, cast steel joints, flange joints, and intersecting joints,
the intersecting joint stands out as one of the most representative forms. The intersecting
joint is formed by directly welding the steel tube to the outer surface of the through rod
through the end-intersecting line cutting. It offers advantages such as a simple structure,
convenient construction, and direct force transmission.

In steel tube structures, the main components are tubular hollow sections and rectan-
gular hollow sections. Consequently, intersecting joints are classified into tubular joints
and RHS joints. Tubular joints have a longer research history compared to other types of
intersecting joints. Scholars have extensively studied tubular joints with T-shaped [3,4],
K-shaped [5], X-shaped [6], TT-shaped [7], and KK-shaped [8] configurations, resulting
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in mature research outcomes. The use of RHS joints emerged slightly later than that of
tubular joints. RHS joints possess most of the advantages of tubular joints and offer the
added convenience of easier processing of the rod end face. However, RHS joints exhibit an
uneven stiffness distribution within the cross-sectional area, leading to more complex stress
distribution at the joint connection. As a result, scholars have conducted numerous studies
on the static performance of various types of RHS joints, yielding a wealth of research
findings [9–12]. The research outcomes on intersecting joints have been incorporated into
relevant design specifications [13–16].

The utilization of rectangular steel tubes as beam-column members and the adoption
of eccentric intersecting joints in frame structures have gradually gained prominence in
the construction of prefabricated buildings and outdoor elevator shafts. This approach
allows for a smooth outer surface of the building, enhancing both the aesthetic appeal and
space utilization. As part of this development, eccentric RHS joints have been introduced,
wherein the axes of the beam-column members are perpendicular to each other, and the
outer webs are flush. Notably, there are existing applications of eccentric RHS joints, such
as the Shanghai World Expo Spain Pavilion [17]. Despite their practical application, there
have been relatively few studies conducted on eccentric RHS joints. Zhao et al. [18,19]
conducted a systematic analysis of the out-of-plane bearing capacity and stiffness of such
joints. The research revealed that the primary failure mode of the joint is the buckling
failure of the side wall of the main tube when the width of the main branch is relatively
large. Conversely, when the width of the main branch tube is relatively small, the failure
mode of the joint is characterized by plastic deformation of the main tube surface. Two
formulas for calculating the ultimate bearing capacity have been derived based on these
two failure modes.

Guo et al. conducted tests on eccentric RHS joints, and focused on summarizing the
in-plane flexural capacity of eccentric RHS beam-column joints [20]. The findings revealed
that the in-plane failure mode of these joints is a combination of column flange yielding and
web buckling deformation. To further investigate the flexural bearing capacity of eccentric
RHS joints under a certain axial force of the column member, 60 finite element models
were established, and parametric analyses were performed. As a result, a calculation
Formula (1) [20] for the flexural bearing capacity of eccentric RHS joints in the plane
was derived.

∆Mu = (0.397 + 0.345 · β∗) · fytlhl (1)

Mu: Ultimate bending moment,
t1: Length of plate corresponding to stiffening,
l: Thickness of the plate corresponding to the stiffening,
h: Indicates the moment arm provided by the upper and lower stiffeners,
f y: The yield strength of the steel,
β*: Width ratio correction, which is related to the joint geometry.
Currently, the research on eccentric RHS joints still has the following problems: firstly,

the research on eccentric RHS joints was limited to the bearing capacity. The research on the
initial rotational stiffness of RHS joints is still lacking. Secondly, the finite element analysis
of eccentric RHS joints was limited to solid elements. The simplified finite element analysis
method of eccentric RHS joints is still lacking. Additionally, the research on eccentric RHS
joints was limited to a single beam direction. In practical frame structure applications, a
TT-shaped joint space with two adjacent beams at 90◦ is often formed, where both beams in
different directions may experience significant loads. Therefore, the influence of the spatial
effect under complex stress conditions is still unknown.

Based on the results of existing research [20], this study used ABAQUS to establish
eccentric RHS joint models for verification and parameter influence analysis. The purposes
of the research are as follows: firstly, to obtain the initial rotational stiffness of eccentric
RHS joints by the height-to-width ratio (η), width ratio correction (β*), column diameter
to thickness ratio (γ), beam to column wall thickness ratio (τ). The selection principles
for these geometric parameters can be referenced from literature [21,22]. Secondly, this
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study analyzed the influence of the spatial effect under complex stress conditions. Finally,
the research proposes a mathematical model that can be used to simplify the analysis of
eccentric RHS joints.

2. Construction and Finite Element Model
2.1. Construction

The joint form studied in this paper is a T-shaped eccentric RHS joint. The joints are
divided into two types: non-stiffener joints and stiffener joints. The beam and the outer
edge of the column are aligned in a non-stiffener joint. A stiffener joint is based on the
non-stiffener joint, and a stiffening thickness of 6 mm is welded on the upper and lower
flanges of the beam and the column. The length of the stiffeners along the beam direction
is 120 mm. The column member is a rectangular hollow section that is � 200 × 8 mm,
and the beam member is a rectangular hollow section of � 250 × 150 × 6 mm. The joint
constructions are shown in Figure 1.
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Figure 1. Models of joints. (a) Eccentric RHS joint without stiffeners; (b) Eccentric RHS joint
with stiffeners.

2.2. Finite Element Model

The finite element software ABAQUS 2018 was used to simulate the eccentric RHS
joints. Considering the calculation accuracy and costs comprehensively, all of the com-
ponents, stiffeners, and welds in this research were divided into structured grids using
a three-dimensional linear reduced integration element (C3D8R). The mesh of the finite
element model not only needs to ensure the analysis accuracy of the calculation model, but
also needs to consider the calculation efficiency. Therefore, the mesh of the finite element
model established in this study was finer at the locations with complex stress distribution,
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large stress gradients, and complex contact relationships, and the mesh was relatively
rough for the rest of the parts. The element size at the end of each member was 20 mm.
The element sizes of 5 mm, 10 mm, and 20 mm were used for mesh refinement transitions
from the intersecting surface to the rod end, respectively. It was divided into 4 layers
in the thickness direction [23]. According to the above method, the mesh of the joint’s
finite element model in this research is shown in Figure 2. The ultimate bending moments
obtained from finite element analysis under different mesh sizes are presented in Table 1.
The maximum mesh size of the finite element models in this research were set to be less
than 90, in order to ensure the accuracy and efficiency of the calculations.
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Table 1. The ultimate bending moments obtained from finite element analysis.

Maximum Mesh Size Ultimate Bending Moment
Mu/(kN/m) Error/%

80 96.18 0.81
90 96.43 1.07

100 98.12 2.84
110 101.53 6.41
120 106.23 11.34
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In the analysis of the eccentric RHS joints, a reference point (RP point) was established
at the centroid of the end section. Constraints and loads were applied to the RP point under
the following conditions: the bottom of the column was fully constrained in all degrees
of freedom, while the top only released the in-plane rotational degrees of freedom and
vertical translational degrees of freedom. A continuous vertical force was applied at the top
of the column. The connection surface between the weld and the member was bounded
by the binding constraint. A bilinear strengthening model was employed for the material
constitutive model, considering the true stress and strain. The material properties obtained
by the material property experiment were as follows: the yield stress (f y) was 450 MPa, the
ultimate stress (f u) was 650 MPa, the elastic modulus (E) was 2.08× 105 MPa, the tangential
modulus (E′) was 0.005E, and Poisson’s ratio (ν) was 0.3.

In this study, 60 models of eccentric RHS beam-column joints and 50 models of
eccentric RHS beam–column joints with stiffening ribs were created to investigate the
static performance of these joints. The models were developed by varying the geometric
parameters such as the beam-column flange width ratio β (b/B), beam height to column
flange width ratio η (h/B), column tube wall width-thickness ratio γ (B/2T), and beam-
column section wall-thickness ratio τ (t/T). The objective was to examine the influence of
these geometric parameters on the static performance of eccentric RHS beam-column joints.

Since the column members mostly had square cross-sections with equal heights and
widths, this study focused on the case where the column width (B) was equal to the column
height (H). The numerical models of the eccentric RHS beam-column joints were named
following a specific format: for example, for “J-P-p1-p2”, “J” represents the joint type,
“P” denotes the main geometric parameters studied in the group of models, “p1” denotes
the column section width B in the group of models, and “p2” denotes specific values of
the main variation parameters of the specimens. “+” represents the joint with stiffeners.
Detailed information about the modeling, including the specifications of all numerical
models of the eccentric RHS beam–column joints, can be found in Tables 2 and 3.

Table 2. Eccentric RHS joints without stiffeners.

Model Number

Column Size Beam Size

Width
B/mm

Thickness
T/mm

Width
b/mm

Height
h/mm

Thickness
t/mm

J-β-200-130 200 8 130 250 6
J-β-200-140 200 8 140 250 6
J-β-200-150 200 8 150 250 6
J-β-200-160 200 8 160 250 6
J-β-200-170 200 8 170 250 6
J-β-150-80 150 8 80 200 6
J-β-150-90 150 8 90 200 6

J-β-150-100 150 8 100 200 6
J-β-150-110 150 8 110 200 6
J-β-150-120 150 8 120 200 6
J-β-250-160 250 8 160 300 6
J-β-250-175 250 8 175 300 6
J-β-250-190 250 8 190 300 6
J-β-250-200 250 8 200 300 6
J-β-250-210 250 8 210 300 6
J-γ-200-6 200 6 150 250 6
J-γ-200-7 200 7 150 250 7
J-γ-200-8 200 8 150 250 8
J-γ-200-9 200 9 150 250 9
J-γ-200-10 200 10 150 250 10
J-γ-150-6 150 6 100 200 6
J-γ-150-7 150 7 100 200 7
J-γ-150-8 150 8 100 200 8
J-γ-150-9 150 9 100 200 9
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Table 2. Cont.

Model Number

Column Size Beam Size

Width
B/mm

Thickness
T/mm

Width
b/mm

Height
h/mm

Thickness
t/mm

J-γ-150-10 150 10 100 200 10
J-γ-250-8 250 8 180 300 8
J-γ-250-9 250 9 180 300 9
J-γ-250-10 250 10 180 300 10
J-γ-250-11 250 11 180 300 11
J-γ-250-12 250 12 180 300 12
J-η-200-200 200 8 150 200 6
J-η-200-225 200 8 150 225 6
J-η-200-250 200 8 150 250 6
J-η-200-275 200 8 150 275 6
J-η-200-300 200 8 150 300 6
J-η-150-150 150 8 100 150 6
J-η-150-175 150 8 100 175 6
J-η-150-200 150 8 100 200 6
J-η-150-225 150 8 100 225 6
J-η-150-250 150 8 100 250 6
J-η-250-250 250 8 200 250 6
J-η-250-275 250 8 200 275 6
J-η-250-300 250 8 200 300 6
J-η-250-325 250 8 200 325 6
J-η-250-350 250 8 200 350 6

J-τ-200-4 200 8 150 250 4
J-τ-200-5 200 8 150 250 5
J-τ-200-6 200 8 150 250 6
J-τ-200-7 200 8 150 250 7
J-τ-200-8 200 8 150 250 8
J-τ-150-4 150 8 100 200 4
J-τ-150-5 150 8 100 200 5
J-τ-150-6 150 8 100 200 6
J-τ-150-7 150 8 100 200 7
J-τ-150-8 150 8 100 200 8
J-τ-250-4 250 8 200 250 4
J-τ-250-5 250 8 200 250 5
J-τ-250-6 250 8 200 250 6
J-τ-250-7 250 8 200 250 7
J-τ-250-8 250 8 200 250 8

Table 3. Eccentric RHS joints with stiffeners.

Model Number

Column Size Beam Size Stiffener Size

Width
B/mm

Thickness
T/mm

Width
b/mm

Height
h/mm

Thickness
t/mm

Thickness
tl/mm

Length
l/mm

J-t1-200-4+ 200 8 150 250 8 4 100
J-t1-200-5+ 200 8 150 250 8 5 100
J-t1-200-6+ 200 8 150 250 8 6 100
J-t1-200-7+ 200 8 150 250 8 7 100
J-t1-200-8+ 200 8 150 250 8 8 100
J-l-200-60+ 200 8 150 250 6 6 60
J-l-200-80+ 200 8 150 250 6 6 80
J-l-200-100+ 200 8 150 250 6 6 100
J-l-200-120+ 200 8 150 250 6 6 120
J-l-200-140+ 200 8 150 250 6 6 140
J-β-200-130+ 200 8 130 250 6 6 100
J-β-200-140+ 200 8 140 250 6 6 100
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Table 3. Cont.

Model Number

Column Size Beam Size Stiffener Size

Width
B/mm

Thickness
T/mm

Width
b/mm

Height
h/mm

Thickness
t/mm

Thickness
tl/mm

Length
l/mm

J-β-200-150+ 200 8 150 250 6 6 100
J-β-200-160+ 200 8 160 250 6 6 100
J-β-200-170+ 200 8 170 250 6 6 100
J-β-150-80+ 150 8 80 200 6 6 100
J-β-150-90+ 150 8 90 200 6 6 100

J-β-150-100+ 150 8 100 200 6 6 100
J-β-150-110+ 150 8 110 200 6 6 100
J-β-150-120+ 150 8 120 200 6 6 100
J-η-200-200+ 200 8 150 200 6 6 100
J-η-200-225+ 200 8 150 225 6 6 100
J-η-200-250+ 200 8 150 250 6 6 100
J-η-200-275+ 200 8 150 275 6 6 100
J-η-200-300+ 200 8 150 300 6 6 100
J-η-150-150+ 150 8 100 150 6 6 100
J-η-150-175+ 150 8 100 175 6 6 100
J-η-150-200+ 150 8 100 200 6 6 100
J-η-150-225+ 150 8 100 225 6 6 100
J-η-150-250+ 150 8 100 250 6 6 100
J-γ-200-6+ 200 6 150 250 6 6 100
J-γ-200-7+ 200 7 150 250 6 6 100
J-γ-200-8+ 200 8 150 250 6 6 100
J-γ-200-9+ 200 9 150 250 6 6 100

J-γ-200-10+ 200 10 150 250 6 6 100
J-γ-150-6+ 150 6 100 200 6 6 100
J-γ-150-7+ 150 7 100 200 6 6 100
J-γ-150-8+ 150 8 100 200 6 6 100
J-γ-150-9+ 150 9 100 200 6 6 100

J-γ-150-10+ 150 10 100 200 6 6 100
J-γ-200-6+ 200 6 150 250 6 6 100
J-τ-200-4+ 200 8 150 250 4 4 100
J-τ-200-5+ 200 8 150 250 5 4 100
J-τ-200-6+ 200 8 150 250 6 4 100
J-τ-200-7+ 200 8 150 250 7 4 100
J-τ-200-8+ 200 8 150 250 8 4 100
J-τ-150-4+ 150 8 100 200 4 4 100
J-τ-150-5+ 150 8 100 200 5 4 100
J-τ-150-6+ 150 8 100 200 6 4 100
J-τ-150-7+ 150 8 100 200 7 4 100
J-τ-150-8+ 150 8 100 200 8 4 100

3. Initial Stiffness of the Joint
3.1. Eccentric RHS Joints without Stiffeners

The calculation formula for the initial stiffness K0 of the T-shaped square tube inter-
secting joints was provided from the literature [2], as shown in Formula (1). It considers
the deformation coefficient of the main panel kcf, the tensile deformation coefficient of the
web kcw, and the shear deformation coefficient of the web ksh. The tensile deformation
coefficient of the web can be calculated using Formulas (2) to (4).

K0 =
Eh2

2
kcf

+ 2
kcw

+ 1
ksh

(2)

kcw =
2 · T · beff,cw,el

H − 3T
(3)
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beff,cw,el = 2 · 0.7 · leff,cw + t (4)

leff,cw= max{T ·
√

B
2 · T ≤ 2.5 · T,

B
2
·
√

1− β ≤ H
2
} (5)

The finite element calculation results are shown in Tables 4–7. The stress distribution
of the eccentric intersecting beam-column joint is depicted in Figure 3. Combining the test
and finite element results [20] shows that the bending moment was primarily transmitted
to the web on the eccentric side. The web’s local tensile and compressive deformations
on the eccentric side contributed significantly to the joint’s overall deformation. Panel
deformation mainly occurred towards the end of joint loading, particularly after the large
area near the corner point where the web is connected to the beam, and entered the
plastic range.

Table 4. Stiffnesses at different beam-column flange width ratios.

Model Number
Beam–Column
Flange Width

Ratio β

Rotational Stiffness
K0/(kN·m·rad−1)

Finite Element Formula Error/%

J-β-200-130 0.65 8435.53 8108.01 −3.88
J-β-200-140 0.70 8681.78 8423.72 −2.97
J-β-200-150 0.75 9004.52 8870.70 −1.49
J-β-200-160 0.80 9549.81 9448.95 −1.06
J-β-200-170 0.85 10,651.09 10,158.47 −4.63
J-β-150-80 0.53 5386.18 5526.39 2.60
J-β-150-90 0.60 5508.9 5555.64 0.85
J-β-150-100 0.67 5710.09 5748.51 0.67
J-β-150-110 0.73 6156.72 6105.02 −0.84
J-β-150-120 0.80 7090.71 6625.16 −6.57
J-β-250-160 0.64 12,403.06 11,312.82 −8.79
J-β-250-175 0.70 12,123.24 11,822.41 −2.48
J-β-250-190 0.76 12,589.15 12,597.31 0.06
J-β-250-200 0.80 13,458.62 13,261.29 −1.47
J-β-250-210 0.84 14,268.36 14,043.19 −1.58

Table 5. Stiffnesses at different beam height to column flange width ratios.

Model Number
Beam Height to
Column Flange
Width Ratio η

Rotational Stiffness
K0/(kN·m·rad−1)

Finite Element Formula Error/%

J-η-200-200 1.00 5655.36 5376.64 −4.93
J-η-200-225 1.13 6909.83 7016.18 1.54
J-η-200-250 1.25 9004.52 8870.70 −1.49
J-η-200-275 1.38 10,786.44 10,940.21 1.43
J-η-200-300 1.50 13,237.56 13,224.70 −0.10
J-η-150-150 1.00 3121.51 3022.32 −3.18
J-η-150-175 1.17 4228.32 4278.00 1.17
J-η-150-200 1.33 5703.28 5748.51 0.79
J-η-150-225 1.50 7100.36 7433.88 4.70
J-η-150-250 1.67 8818.22 9334.08 5.85
J-η-250-250 1.00 8602.05 8799.27 2.29
J-η-250-275 1.10 11,142.91 10,917.69 −2.02
J-η-250-300 1.20 13,189.28 13,261.29 0.55
J-η-250-325 1.30 15,711.35 15,830.08 0.76
J-η-250-350 1.40 18,475.05 18,624.04 0.81
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Table 6. Stiffnesses at different column tube wall width–thickness ratios.

Model Number
Column Tube Wall
Width–Thickness

Ratio γ

Rotational Stiffness
K0/(kN·m·rad−1)

Finite Element Formula Error/%

J-γ-200-6 16.67 7164.19 7262.48 1.37
J-γ-200-7 14.29 7785.08 7999.25 2.75
J-γ-200-8 12.50 9004.52 8870.70 −1.49
J-γ-200-9 11.11 9973.64 9862.26 −1.12

J-γ-200-10 10.00 11,492.77 10,965.21 −4.59
J-γ-150-6 12.50 4347.77 4415.37 1.55
J-γ-150-7 10.71 4694.31 5035.76 7.27
J-γ-150-8 9.38 5710.09 5748.51 0.67
J-γ-150-9 8.33 6901.66 6547.09 −5.14

J-γ-150-10 7.50 8195.46 7427.57 −9.37
J-γ-250-8 15.63 12,335.87 12,051.23 −2.31
J-γ-250-9 13.89 14,203.56 13,124.57 −7.60

J-γ-250-10 12.50 14,641.01 14,333.68 −2.10
J-γ-250-11 11.36 16,173.1 15,668.97 −3.12
J-γ-250-12 10.42 17,516.66 17,124.04 −2.24

Table 7. Stiffnesses at different beam–column section wall–thickness ratios.

Model Number
Beam–Column Section

Wall–Thickness
Ratio τ

Rotational Stiffness
K0/(kN·m·rad−1)

Finite Element Formula Error/%

J-τ-200-4 0.50 7085.27 7919.16 11.77
J-τ-200-5 0.63 8310.69 8394.87 1.01
J-τ-200-6 0.75 9004.52 8870.70 −1.49
J-τ-200-7 0.88 9389.58 9346.63 −0.46
J-τ-200-8 1.00 9683.7 9822.67 1.44
J-τ-150-4 0.50 4863.35 5131.88 5.52
J-τ-150-5 0.63 5318.5 5440.16 2.29
J-τ-150-6 0.75 5703.28 5748.51 0.79
J-τ-150-7 0.88 5983.3 6056.94 1.23
J-τ-150-8 1.00 6110.39 6365.43 4.17
J-τ-250-4 0.50 6695.22 7855.39 17.33
J-τ-250-5 0.63 8124.95 8327.28 2.49
J-τ-250-6 0.75 8602.05 8799.27 2.29
J-τ-250-7 0.88 9223.87 9271.37 0.51
J-τ-250-8 1.00 9604.13 9743.58 1.45

Materials 2023, 16, x FOR PEER REVIEW 10 of 24 
 

 

J-τ-200-7 0.88 9389.58 9346.63 −0.46 
J-τ-200-8 1.00 9683.7 9822.67 1.44 
J-τ-150-4 0.50 4863.35 5131.88 5.52 
J-τ-150-5 0.63 5318.5 5440.16 2.29 
J-τ-150-6 0.75 5703.28 5748.51 0.79 
J-τ-150-7 0.88 5983.3 6056.94 1.23 
J-τ-150-8 1.00 6110.39 6365.43 4.17 
J-τ-250-4 0.50 6695.22 7855.39 17.33 
J-τ-250-5 0.63 8124.95 8327.28 2.49 
J-τ-250-6 0.75 8602.05 8799.27 2.29 
J-τ-250-7 0.88 9223.87 9271.37 0.51 
J-τ-250-8 1.00 9604.13 9743.58 1.45 

(a) Early loading      (b) End loading   
 

Figure 3. Stress distribution diagrams of joints without stiffeners. 

At the initial stage of bending, the mechanical behavior of eccentric RHS joints 
closely resembles that of equal-width T-joints with a flange width ratio (β) of 1. Taking leff 

= 2.5T and bringing it into Equation (4), because the wall thickness (T) is approximately 
equal to the wall thickness of the beam (t), and the column height (H) is much greater 
than (t), according to the forms of Formula (2)~Formula (5), the initial rotational stiffness 
K0 of the eccentric RHS joint can be written in the form of Formula (6). The coefficient (k) 
can be obtained through parameter analysis. 

2
0K kEhT=  (6)

The results of finite element parameter analysis are shown in Figure. 4. In Figure 4a, 
with an increase in the beam−to−column height−to−width ratio η(h/B), the bending mo-
ment was still borne by the eccentric side. However, the height of the beam increased, the 
stress area of the joint increased, and the development of plastic deformation became 
more complete. The initial rotational stiffness K0 of the joint increased linearly with an 
increase in η(h/B). The influence of η(h/B) can be fitted by a linear function. In Figure 4b, 
with an increase in the beam–column width ratio correction value β*(2b/B−1), the width of 
the beam increased, and the bending moment was distributed more to the non−eccentric 
side. The initial rotational stiffness K0 of the joint increased non−linearly with an increase 
in β*(2b/B−1). In Figure 4c,d, the failure mode of eccentric RHS joints was related to the 
thickness of the tube wall. Therefore, increasing the column diameter–thickness ratio 
γ(B/2T) is beneficial for enhancing the initial rotational stiffness K0. To some extent, in-
creasing the beam–column wall thickness ratio τ(t/T) can also improve the initial rota-
tional stiffness K0. The initial rotational stiffness K0 of the joint increased non−linearly 
with the γ(B/2T) and τ(t/T). The influence of β*(2b/B−1), γ(B/2T), and τ(t/T) can be fitted by a 

Figure 3. Stress distribution diagrams of joints without stiffeners.



Materials 2023, 16, 5103 10 of 23

At the initial stage of bending, the mechanical behavior of eccentric RHS joints closely
resembles that of equal-width T-joints with a flange width ratio (β) of 1. Taking leff = 2.5T
and bringing it into Equation (4), because the wall thickness (T) is approximately equal
to the wall thickness of the beam (t), and the column height (H) is much greater than (t),
according to the forms of Formula (2)~Formula (5), the initial rotational stiffness K0 of the
eccentric RHS joint can be written in the form of Formula (6). The coefficient (k) can be
obtained through parameter analysis.

K0 = kEhT2 (6)

The results of finite element parameter analysis are shown in Figure. 4. In Figure 4a,
with an increase in the beam-to-column height-to-width ratio η(h/B), the bending moment
was still borne by the eccentric side. However, the height of the beam increased, the
stress area of the joint increased, and the development of plastic deformation became more
complete. The initial rotational stiffness K0 of the joint increased linearly with an increase
in η(h/B). The influence of η(h/B) can be fitted by a linear function. In Figure 4b, with
an increase in the beam–column width ratio correction value β*(2b/B − 1), the width of
the beam increased, and the bending moment was distributed more to the non-eccentric
side. The initial rotational stiffness K0 of the joint increased non-linearly with an increase
in β*(2b/B − 1). In Figure 4c,d, the failure mode of eccentric RHS joints was related to
the thickness of the tube wall. Therefore, increasing the column diameter-thickness ratio
γ(B/2T) is beneficial for enhancing the initial rotational stiffness K0. To some extent, in-
creasing the beam-column wall thickness ratio τ(t/T) can also improve the initial rotational
stiffness K0. The initial rotational stiffness K0 of the joint increased non−linearly with the
γ(B/2T) and τ(t/T). The influence of β*(2b/B − 1), γ(B/2T), and τ(t/T) can be fitted by
a quadratic function. The final coefficient (k) can be written in the form of Formula (7),
where C1~C8 are undetermined constants. Using the data of 60 finite element models for
parameter fitting, the fitting results are shown in Formula (8); most of the errors are less
than 10%, and the maximum error is about 17%, which can obtain the initial rotational
stiffness of the joint more accurately.

k = (C1 + C2η) · (β∗2 + C3β∗ + C4) · (γ2 + C5γ + C6) · (τ2 + C7τ + C8) (7)

k = (−0.343 + 1.571 · η) · (β∗2−0.219 · β∗+1.211) · (γ2+7.620 · γ+236.060C6) · (τ2 + 1080.537 · τ + 1710.577) · 10−6 (8)
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total rotational stiffness of the joint. Detailed information about the modeling, including 
the specifications of all numerical models of eccentric RHS beam-column joints, can be 
found in Table 8. 
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Figure 4. The effects of geometric parameters on the initial rotational stiffness K0.
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3.2. Eccentric RHS Joints with Stiffeners

According to the component method, the presence of a stiffener in the joint can be
considered as an equivalent spring connected in parallel at the joint. This additional spring
enhances the rotational stiffness of the joint. By analyzing the stiffness contributed by
the stiffener, we can determine the overall stiffness of the joint with the stiffener. This
stiffness is then combined with the stiffness of the joints without a stiffener to obtain the
total rotational stiffness of the joint. Detailed information about the modeling, including
the specifications of all numerical models of eccentric RHS beam-column joints, can be
found in Table 8.

Table 8. Finite element calculation results of eccentric RHS joints with stiffeners.

Model Number

Rotational Stiffness
K0/(kN·m·rad−1)

Finite Element Formula Error/%

J-t1-200-4+ 14,880.21 14,915.25 0.24
J-t1-200-5+ 15,987.88 16,223.14 1.47
J-t1-200-6+ 17,373.82 17,531.02 0.90
J-t1-200-7+ 18,650.79 18,838.91 1.01
J-t1-200-8+ 19,533.17 20,146.8 3.14
J-l-200-60+ 13,313.45 13,712.91 3.00
J-l-200-80+ 15,567.45 15,282.38 −1.83
J-l-200-100+ 16,579.87 16,851.84 1.64
J-l-200-120+ 18,229.8 18,421.31 1.05
J-l-200-140+ 19,216.52 19,990.77 4.03
J-β-200-130+ 16,367.13 16,282.85 −0.51
J-β-200-140+ 16,712.04 16,529.1 −1.09
J-β-200-150+ 16,579.71 16,851.84 1.64
J-β-200-160+ 17,218.84 17,397.13 1.04
J-β-200-170+ 18,244.75 18,498.41 1.39
J-β-150-80+ 9700.97 10,332.07 6.51
J-β-150-90+ 10,422.72 10,639.5 2.08

J-β-150-100+ 10,790.95 10,840.69 0.46
J-β-150-110+ 11,720.02 11,271.38 −3.83
J-β-150-120+ 12,227.62 12,173.72 −0.44
J-η-200-200+ 11,217.62 10,785.96 −3.85
J-η-200-225+ 13,943.22 13,398.79 −3.90
J-η-200-250+ 16,579.71 16,851.84 1.64
J-η-200-275+ 20,414.23 19,992.13 −2.07
J-η-200-300+ 23,653.88 23,801.61 0.62
J-η-150-150+ 5941.52 5535.377 −6.84
J-η-150-175+ 9010.61 8000.551 −11.21
J-η-150-200+ 11,452.97 10,833.88 −5.41
J-η-150-225+ 13,742.02 13,558.85 −1.33
J-η-150-250+ 16,379.9 16,607.65 1.39
J-γ-200-6+ 15,002.93 15,011.51 0.06
J-γ-200-7+ 16,023.23 15,632.4 −2.44
J-γ-200-8+ 16,579.71 16,851.84 1.64
J-γ-200-9+ 18,122.54 17,820.96 −1.66
J-γ-200-10+ 19,006.86 19,340.09 1.75
J-γ-150-6+ 9189.39 9478.365 3.14
J-γ-150-7+ 9952.77 9824.905 −1.28
J-γ-150-8+ 11,309.46 10,840.69 −4.14
J-γ-150-9+ 12,203.30 11,972.49 −1.89
J-γ-150-10+ 12,361.27 13,326.06 7.80
J-γ-200-6+ 15,002.93 15,011.51 0.06
J-τ-200-4+ 12,715.51 12,316.82 −3.14
J-τ-200-5+ 13,780.39 13,542.24 −1.73
J-τ-200-6+ 14,287.32 14,236.07 −0.36
J-τ-200-7+ 14,777.89 14,621.13 −1.06
J-τ-200-8+ 15,225.99 14,915.25 −2.04
J-τ-150-4+ 7711.47 8283.747 7.42
J-τ-150-5+ 8991.67 8738.897 −2.81
J-τ-150-6+ 9129.09 9123.677 −0.06
J-τ-150-7+ 9533.8 9403.697 −1.36
J-τ-150-8+ 9640.53 9530.787 −1.14
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Formula (9) represents the incremental value of the initial rotational stiffness (∆K0)
resulting from the presence of a stiffener in the eccentric RHS joints. By analyzing the
parameters that influence the increase in bearing capacity, the main factors affecting ∆K0
can be determined. The geometric parameters, namely the stiffener thickness (tl), beam
height (h), and length (l), were investigated, as shown in Figure 5. It was observed that ∆K0
is directly proportional to tl and l, indicating that larger dimensions of the gusset plate lead
to a more pronounced enhancement in joint stiffness through the stiffener. Furthermore,
∆K0 exhibits a linear relationship with the beam height (h), with a positive intersection
point on the x-axis. This signifies that the stiffener’s ability to improve the joint stiffness
may be limited when the beam height is small. This can be attributed to the reduced longi-
tudinal deformation along the beam direction, which hinders the effective contribution of
the stiffeners.

∆K0 =
∆M

θ
(9)
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The parametric analysis results of the geometric parameters influencing the joint
dimensions are presented in Figure 6. Variations in the beam height or the beam-to-column
flange width ratio η were observed to have a more significant impact on the increment of
the initial rotational stiffness (∆K0). Conversely, changes in other geometric parameters of
the beam-column members and modifications to the stiffener shape exhibited a relatively
smaller effect on ∆K0. Notably, the parameter η was primarily achieved by altering the beam
height (h), which was not explicitly considered in the final formula to avoid redundancy.

Finally, the increment of the initial rotational stiffness (∆K0) of the joint is expressed
by Formula (10), and a parameter fitting was performed using the data from 50 finite
element models established in this research. The fitting result is presented in Formula (10).
When calculating the effect of the stiffener on the rotational stiffness, the contribution of
the stiffener was ignored if the calculated ∆K0 was negative. The effect of the stiffener on
the joint rotational stiffness was calculated using Formula (11), while the initial rotational
stiffness of the joint without a stiffener was calculated using Formula (8). These two
values were then added together to obtain the initial rotational stiffness of the joint with
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a stiffener. The maximum error (∆max) was −11.21%, and the average error (∆avg) was
−0.24%, demonstrating that the results met the engineering accuracy requirements.

∆K0 = C1Etll(h + C2) (10)

∆K0 = 0.440 · Etll · (h− 105.57) (11)
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4. Spatial Effect

Compared with in-plane joints, the bearing capacity of spatial joints is influenced by
two additional factors: geometric effect and load effect. These two influencing factors are
usually collectively referred to as the spatial effect. This section investigates the spatial
effects of joints under complex force conditions through building finite element models.

4.1. Geometric Effect

The geometric effect pertains to the influence of the branch tubes’ presence on the
stiffness of the joints and, consequently, on the ultimate bearing capacity of the joints. In
order to figure out the geometric effect on the eccentric RHS beam-column joints, finite
element models as shown in Figure 7 were established.

Figure 8 presents the comparison results of the impact of adjacent beam segments on
the core region of the joint area. It was observed that under the same applied load, the
stress distribution in the two models was nearly identical. This indicates that the presence
of adjacent beam segments does not significantly affect the stress distribution within the
joint area. The finite element results revealed that during in-plane bending of the eccentric
RHS beam-column joints, the primary force was mainly borne by the two column plates
directly connected to the beam. The stress level in the plate connected to the adjacent
beam section was relatively lower. Consequently, the presence of adjacent beam sections
did not provide effective constraints on the main stressed tube wall or contribute to the
improvement in joint stiffness.
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Figure 9 illustrates the comparison results of the moment-rotation angle curves for
the two cases. It can be observed that the adjacent beam segments only exerted a certain
restraining effect on the core region of the joint area when the joint reached its ultimate
bearing capacity and undergoes significant deformation; however, this effect was not
significant. Consequently, the influence of the geometric effect on the bearing performance
of the eccentric RHS beam-column joint was considered negligible.
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4.2. Load Effect

The load effect refers to the influence of changes in the load direction and magnitude
applied to the branch tube on the ultimate bearing capacity of the joint. In order to figure
out the load effects of the joints on the eccentric RHS beam-column joints, finite element
models as shown in Figure 10 were established.
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Figure 11a shows the finite element analysis results that depict the eccentric RHS
beam-column joints as plane joints subjected to in-plane bending moments. Under this
loading condition, it was observed that the two column plates directly connected to the
beam bore the majority of the load, while the stress levels in the other two plates were
relatively lower. Figure 11b presents the finite element analysis results when the joint was
subjected to both in-plane and out-of-plane bending moments. In this case, where the joint
was loaded simultaneously by two beams, it was observed that the stress distribution and
plastic deformation development in the two plates corresponding to one side beam were
similar to those in the case of a single beam. This indicates that when multiple beams are
loaded simultaneously, the influence between the members is relatively small, and the load
effect on the joint as a spatial joint is also limited.

Materials 2023, 16, x FOR PEER REVIEW 17 of 24 
 

 

 
(a) Flat Joint     (b) space joint    

Figure 11. Comparison of finite element results (load effect). 

By varying the bending moment M2 of the adjacent side beam, the bending capacity 
Mu1 and initial rotational stiffness K1 of the joint in the main stress direction were analyzed. 
The bending capacity Mu represents the joint’s ultimate bearing capacity when only a sin-
gle beam of the joint is subjected to load. The results of this analysis are shown in Figure 12.  

The ultimate bending moment of the joint on the other side was observed to be 
minimally affected when the adjacent side beam’s bending moment was low. However, a 
significant decrease in joint bearing capacity was observed when the bending moment of 
the adjacent side beam exceeded 80% of the ultimate bending moment. When the bend-
ing moment of the adjacent side beam was equal to the ultimate bearing capacity of the 
single beam joint, the joint’s bearing capacity and stiffness experienced a degradation of 
approximately 5%. However, in practical applications, it is unlikely that the beams on 
both sides of the joint structure will be loaded close to their ultimate bearing capacities 
simultaneously. Therefore, the load effect on the bearing capacity of the eccentric RHS 
beam–column joint can be disregarded in the design process, as the beams on both sides 
of the joint structure are not expected to simultaneously be subjected to loads approach-
ing their ultimate bearing capacities. 

0.0 0.4 0.8 1.2
65

70

75

80

M
u1

 / 
kN

·m

M2 / Mu

 B=200mm

 
0.0 0.4 0.8 1.2

8000

8500

9000

9500

K
1 /

 k
N

·m
·ra

d-1

M2 / Mu

 B=200mm

 
(a) Load effect on ultimate bending moment  (b) Load effect on rotational stiffness 

Figure 12. The influence of load effect on the bearing capacity of joints. 

5. Mathematical Model of Eccentric RHS Beam–Column Joint 
5.1. Selection of Mathematical Model 

According to the literature [20] and the analysis in this research, it is known that the 
final damage mode of the joint is large deformation damage when the eccentric RHS 
beam–column joint is subjected to in-plane unidirectional moment loading. The mo-
ment–rotation relationship curve is composed of three parts: an initial elastic section, a 
non-linear transition section, and a strengthening section which are showed in Figure 13. 
The relationship between moment and rotation is approximately linear in the initial 
elastic range. As the joint gradually transitions to the strengthening range, the slope of 

Figure 11. Comparison of finite element results (load effect).

By varying the bending moment M2 of the adjacent side beam, the bending capacity
Mu1 and initial rotational stiffness K1 of the joint in the main stress direction were analyzed.
The bending capacity Mu represents the joint’s ultimate bearing capacity when only a single
beam of the joint is subjected to load. The results of this analysis are shown in Figure 12.
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The ultimate bending moment of the joint on the other side was observed to be
minimally affected when the adjacent side beam’s bending moment was low. However,
a significant decrease in joint bearing capacity was observed when the bending moment
of the adjacent side beam exceeded 80% of the ultimate bending moment. When the
bending moment of the adjacent side beam was equal to the ultimate bearing capacity of
the single beam joint, the joint’s bearing capacity and stiffness experienced a degradation
of approximately 5%. However, in practical applications, it is unlikely that the beams on
both sides of the joint structure will be loaded close to their ultimate bearing capacities
simultaneously. Therefore, the load effect on the bearing capacity of the eccentric RHS
beam-column joint can be disregarded in the design process, as the beams on both sides of
the joint structure are not expected to simultaneously be subjected to loads approaching
their ultimate bearing capacities.

5. Mathematical Model of Eccentric RHS Beam-Column Joint
5.1. Selection of Mathematical Model

According to the literature [20] and the analysis in this research, it is known that
the final damage mode of the joint is large deformation damage when the eccentric RHS
beam-column joint is subjected to in-plane unidirectional moment loading. The moment-
rotation relationship curve is composed of three parts: an initial elastic section, a non-
linear transition section, and a strengthening section which are showed in Figure 13. The
relationship between moment and rotation is approximately linear in the initial elastic
range. As the joint gradually transitions to the strengthening range, the slope of the curve
decreases. After the joint reaches its ultimate bearing capacity, there is no significant change
in the moment with increasing rotation within a large deformation range.
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The power function model curve exhibits a smaller slope variation at lower rotations.
As the rotation increases, the slope decreases gradually. The moment gradually converges
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to the ultimate flexural capacity, and the trend of the power function model is consistent
with the variation observed in the moment-rotation curve obtained from experiments and
finite element analysis. Therefore, the power function model (Formula (9)) can effectively
simulate the entire loading process of the joint. Figure 14 presents the predicted results of
the power function model with different shape coefficients (n). When the shape coefficient
of the power function model is set to 3, it provides a good simulation of the joint’s loading
process. When applying this model to the strengthened ribbed joint of the eccentric RHS
joint, the moment-rotation curve of the joint closely matches the calculated results obtained
from finite element analysis (Figure 15).

θr =
M
Rki
· 1

[1− (M/Mu)
n]

1/n (12)

θ =
M
K0
· 1

[1− (M/Mu)
3]

1/3 (13)
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5.2. Joint-Level Finite Element Verification

Directly using solid elements for modeling requires significant computational time
when conducting structural calculations. It is common in the design process to employ
a beam system model for the overall analysis and design of the structure. The effect of
different joint connection types on the final calculation results in frame structures cannot
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be simply ignored. Therefore, it is necessary to address how to incorporate the effect of
joint semi-rigidity into the beam system model.

The mathematical model of the eccentric RHS joint’s static performance under in-plane
bending was established in this study. A rotational spring element was introduced at the
intersection of the beam and column components to account for the effect of joint semi-
rigidity in the beam system model. This method uses beam system units instead of solid
units for finite element modeling, which greatly reduces the computational complexity and
improves the computational efficiency.

The beam system model established in this study is shown in Figure 16a. The column
component is a rectangular hollow section (200 mm × 8 mm), and the beam component
is a rectangular hollow section (250 mm × 150 mm × 6 mm). A rigid section connects
the column and beam components with the same cross-sectional dimensions as the beam
section. Non-linear rotational springs were set up at the intersection of beam-column
members to simulate semi-rigid joints, which uses ABAQUS’ own Connector module. The
finite element model of the beam system is shown in Figure 17.
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The calculation results of the finite element model of the beam system are shown
in Figure 17. The ultimate bearing capacity of the joint is 76.29 kN·m, which is only
1% error compared with the bearing capacity calculation result of the solid model 75.58 kN·m.
Figure 18 shows a comparison of the calculation results of the load-displacement curve
between the beam system model and the solid model. In the figure, P is the vertical load at
the loading point at the beam end, and ∆ is the vertical displacement at the loading point at
the beam end. It can be seen from Figure 18 that the calculation results of the beam system
model and the solid model are basically consistent after using the power function model
to simulate the semi-rigidity of the joints. Throughout the whole process, the model’s
accuracy was effectively guaranteed, but the calculation time of the beam system model
was only 1% of the solid model; the computational efficiency was significantly improved.
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In the case of the solid models, when the load on the joint reached the ultimate carrying
capacity, the load still increased slightly with displacement. However, when the load on the
joint reached the ultimate carrying capacity, the load could not be significantly increased in
the case of the beam system models. This limitation arose from using the power function
model, where the maximum load-bearing capacity that the joint could achieve was the
ultimate carrying capacity. The model did not account for any strengthening effect that
may have occurred after the joint reached its ultimate carrying capacity.

5.3. Structure-Level Finite Element Verification

To validate the mathematical model’s accuracy for the joint’s static performance at
the structural level, a finite element model of a frame structure was established. The
1/4th structure was considered to simplify the calculations, as shown in Figure 19. The
modeling approach used in Section 5.2 was employed at the connections of the frame
beams and columns, where the joint semi-rigidity was simulated using non-linear rotational
springs. A vertical load was applied to the column components of the frame structure to
simulate the effects of permanent and live loads. Additionally, an equal horizontal load was
applied at each joint of the structure to simulate the effects of wind loads until structural
failure occurred.

The finite element analysis results of the frame structure are shown in Figures 20 and 21.
In both models, the locations of structural failure occurred at the joints of the first-layer
beams and columns. At the point of failure, the moments at both joints exceeded the ultimate
carrying capacity, reaching 77.65 kN·m, with the maximum stress reaching 545 MPa.

The beam model yielded the following results for the maximum displacements: 75 mm
for the first layer, and 129 mm for the second layer. On the other hand, the solid model
produced the following results: 73 mm for the first layer, and 126 mm for the second layer.
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The calculated results from both modeling approaches are essentially identical, with a small
discrepancy in the displacement calculations of only 2.67% and 2.34% for the beam and
solid models, respectively. This demonstrates the effectiveness of the proposed simplified
calculation method for the eccentric RHS joint when applied to frame structure analysis.
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6. Conclusions

This research comprehensively investigated the in-plane bearing capacity of eccentric
RHS beam-column joints. We analyzed the formula for the initial rotational stiffness of
the joint, and explored the influence of spatial effects on its performance. The following
conclusions can be drawn:

(1) The rotational stiffness (K0) of eccentric RHS joints is primarily influenced by the
tension-compression deformation stiffness (kcw) of the web. It increases with the
height-to-column flange width ratio (η) and the beam-to-column wall thickness
ratio (τ). Meanwhile, the column’s wall width-to-thickness ratio (γ) increases with
these ratios’ increments.

(2) The rotational stiffness (K0) does not change significantly when the beam-column
flange width ratio (β) is less than 0.5. It increases significantly with an increase in (β)
when (β) is greater than 0.5, indicating that the bending moment distribution form of
the joint changes.

(3) Considering the force mechanism of the eccentric RHS joint, the side plate connected
to the stressed beam and the web plate on the eccentric side bear most of the load,
while the plates on the other two sides of the rectangular tubular column member are
minimally affected. Therefore, for a T-shaped space joint with a 90◦ included angle,
the mutual influence between the two stressed beams can be disregarded.

(4) To simulate the semi-rigid effect of the joint, this study adopted a nonlinear corner
spring model. Compared with the solid element analysis, the ultimate bending
moment error of the joint is only 1.0%, the average lateral displacement error in the
frame structure is only 2.5%. The finite element analysis confirmed the accuracy of the
power function model in accurately simulating the static load behavior of the joint,
particularly the bending moment-angle relationship.
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Abbreviations
Notation Implication
η Beam height to column flange width ratio
β* Beam-column width ratio correction
γ Column tube wall width–thickness ratio
τ Beam-column section wall-thickness ratio
β Beam-column width ratio
Mu Ultimate bending moment
tl l The cross-sectional area of the plate corresponding to the stiffener
f y The yield strength of the steel
K0 The rotational stiffness
∆K0 The increment of the initial rotational stiffness
kcw The tension-compression deformation stiffness
P The vertical load at the loading point at the beam end
∆ The vertical displacement at the loading point at the beam end
h Indicates the moment arm provided by the upper and lower stiffeners
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