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Abstract: Numerical simulation of impact and shock-wave interactions of deformable solids is an
urgent problem. The key to the adequacy and accuracy of simulation is the material model that
links the yield strength with accumulated plastic strain, strain rate, and temperature. A material
model often used in engineering applications is the empirical Johnson–Cook (JC) model. However,
an increase in the impact velocity complicates the choice of the model constants to reach agreement
between numerical and experimental data. This paper presents a method for the selection of the JC
model constants using an optimization algorithm based on the Nesterov gradient-descent method.
A solution quality function is proposed to estimate the deviation of calculations from experimental
data and to determine the optimum JC model parameters. Numerical calculations of the Taylor
rod-on-anvil impact test were performed for cylindrical copper specimens. The numerical simulation
performed with the optimized JC model parameters was in good agreement with the experimental
data received by the authors of this paper and with the literature data. The accuracy of simulation
depends on the experimental data used. For all considered experiments, the calculation accuracy
(solution quality) increased by 10%. This method, developed for selecting optimized material model
constants, may be useful for other models, regardless of the numerical code used for high-velocity
impact simulations.

Keywords: Johnson–Cook (JC) constitutive model; Taylor impact test; high strain-rates; shock waves;
finite element simulation; Nesterov gradient-descent method

1. Introduction

Numerical simulation of high-velocity interactions of deformable solids requires
using material models that adequately describe material behavior at high strain-rates
and temperatures. The role of shock-wave processes increases with an increase in the
impact velocity. Known material models, such as the classical empirical Johnson–Cook
(JC) model [1,2], that describe the change in yield strength (both hardening and softening)
give different results compared to the experimental data with increasing plastic strain,
plastic strain rate, and temperature. Classical material models developed for calculating
the reliability of construction elements and structures at high impact velocities can give
critically incorrect results. An adequate numerical description of the behavior of materials
under dynamic loading leads to modifications in known empirical models, increasing
the number of fitting parameters and therefore increasing the complexity of such models.
Most researchers use commercial software products, in particular ANSYS/LS Dyna, that
implement known material models with standard constants, causing difficulties with the
adequate simulation of high-velocity shock-wave processes.

The JC constitutive model is widely used in many scientific and engineering appli-
cations. For example, Zhang C. et al. [3] used the JC model to simulate the deformation
and fracture of fiber-reinforced polymer composites at normal and elevated tempera-
tures. Xie H. et al. [4] calibrated the JC model parameters for melt-cast explosives under
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static and dynamic loading. The JC model has been applied to anisotropic materials, or-
thotropic aluminum alloy after modification and experimental selection of parameters [5],
and anisotropic deformation analysis of high-strength 6XXX aluminum alloy sheets [6].
Sun X. et al. [7] combined the JC model with a fracture model for magnesium alloys, fo-
cusing on the choice of model parameters. Yang S. et al. [8] selected the parameters of the
modified JC model for titanium alloy at elevated temperatures using a global optimization
method based on the initial values received using a regression method. Yin W. et al. [9]
used the JC model to estimate residual stress on the surface and within the blade of aircraft
engines. The JC model has been actively applied to simulate the high-speed machining of
titanium, aluminum, and steel samples [10–14]. However, the parameters of the JC model
are determined experimentally at low strain-rates and, as will be shown below, may not
accurately describe the high-velocity deformation of materials. The estimation of the model
parameters will be discussed in more detail below. To perform such an estimation, we
propose to use a set of classical Taylor tests together with numerical simulations.

The Taylor test is usually used to compare numerical and experimental results at high
impact velocities and to estimate the dynamic characteristics of materials in the strain-rate
range of 104–105 s−1. Originally, the Taylor test was designed to calculate the impact
yield stress of a cylindrical specimen, including its residual length, after impact with a
non-deformable target (rigid wall) using a simple model of a rigid plastic material [15].
This approach has often been used to determine the dynamic yield strength [16–20] and to
select constitutive relations and constants in numerical simulations [21–27].

At present, experimental studies and numerical simulations of the Taylor test have been
performed actively for a wide range of materials and loading conditions. Sen S. et al. [28]
examined five different plasticity models, such as the JC model [1,2], the Zerilli–Armstrong
model [29], the Steinberg–Cochran–Guinan–Lund model [30], the Mechanical Threshold
Stress model, and the Preston–Tonks–Wallace model [31], and showed that the Taylor test
can determine the parameters of the models with acceptable accuracy. Lee S. et al. [32]
investigated strain hardening of austenitic stainless steel (AISI 304) over a wide range of
strain rates (from quasistatic to 106 s−1). Armstrong R.W. [33] presented the constitutive
relations of metals, including α-titanium, copper, α-iron, and tantalum for a wide range
of strain rates. The focus was on the Taylor high-velocity impact tests (solid cylinder)
and the simulation of the strain characteristics. Gao C. et al. [34] developed a modified
Taylor test using a split Hopkinson pressure bar and high-speed imaging to obtain stress–
strain curves. The proposed method has been verified by experiments and finite element
method simulations at different impact velocities. Jia B. et al. [35] used a single shear
specimen to investigate the thermo-viscoplastic behavior of aluminum alloy (2024-T351)
subjected to simple shear stress. A hybrid material model was developed and verified
via numerical simulation of the Taylor test. Li J-C. et al. [36] performed the Taylor tests
for projectiles with four types of nose shapes (blunt, hemispherical, truncated ogive, and
truncated conical) and studied the characteristics of loading conditions depending on
the nose shape and impact velocity. In [37], Li J-C. et al. applied the results of [36] to a
numerical and experimental study of the high-velocity loading of a missile-borne recorder
at different velocities using the Taylor impact test. Selyutina N.S. et al. [38] determined
the dynamic yield strength of metals using the structural–temporal approach, but the
range of interaction velocities was limited, which reduced the role of the shock waves.
Pantalé O. et al. [39] simulated the dynamic tensile properties of materials using a specially
designed target in the Taylor impact test to generate tensile deformation in its central
area. Rodionov E.S. et al. [40] experimentally and numerically investigated the dynamic
plasticity of oxygen-free high-conductivity copper (OFHC) at strain values of 0.3 and strain
rates up to 1.7 × 104 s−1. Experimental data for OFHC copper at higher impact velocities
of 150–450 m/s are presented in [18,41].

Thus, articles devoted to the JC model and the Taylor test are published annually in
the world scientific literature. Most of the articles report on the choice of material model
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parameters to ensure good agreement of numerical calculations with experimental data.
This trend has no tendency to decrease.

This paper presents the numerical calculations of classical Taylor rod-on-anvil impact
tests for cylindrical OFHC copper samples. A method for selecting the JC model constants
using an optimization algorithm based on the Nesterov gradient-descent method [42] was
proposed. To optimize the selection of the JC model constants, a solution quality function
was proposed, which can estimate the deviation of the calculations from the experimental
data and determine the optimal JC model parameters. The optimal JC model parameters
were selected.

2. Formulation of the Problem

A 3D simulation of a cylindrical projectile impact with a non-deformable target (Taylor
test) was performed. The material of the cylindrical sample (oxygen-free high-conductivity
copper, OFHC) was chosen to compare the numerical results with the experimental data [41].
Simulations of the experiments [16,43] were conducted for copper specimens with corre-
sponding initial conditions (geometric dimensions, velocity).

The 3D calculations were performed using an elastic–plastic medium model and
our own research software (COMP3, v1.0) based on the modified finite element method
developed by G.R. Johnson [44]. The system of basic equations and relations of the finite
element method can be found in [45–47]. The COMP3 software has shown its adequacy for
a wide range of high-velocity interactions of deformable bodies [48,49].

The method used 4-node tetrahedral finite elements. A finite-element mesh for a
cylinder was generated as follows. The cylinder was divided along the height by planes
parallel to the end surfaces into NZ—1 layers of the same height, where NZ is the number of
nodes along the vertical Z axis. Each layer was divided into NY—1 equal sectors, where NY
is the number of rays, and into NR—1 rings of equal thickness, where NR is the number of
nodes along the ray. As a result, the cylinder was divided into quadrangular and triangular
(near the axis) prisms. The quadrangular prisms consisted of 6 tetrahedral elements, while
the triangular prisms consisted of 3. Figure 1 shows the finite element model of a cylinder.
This problem is symmetric, so 1/2 of the cylinder is modelled. The number of elements
in the finite element model was 1314, and the number of nodes was 6120 (NR = 9, NY = 9,
NZ = 18).
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Figure 1. Finite element model of a cylinder. Diameter D0 = 7.8 mm, height L0 = 34.5 mm.

The material constants used in calculations were as follows: density (8930 kg/m3), bulk
sound velocity (3940 m/s), shear modulus (41 GPa), yield strength (90 MPa), Grüneisen
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parameter (2.04), specific heat capacity (392.4 J/kg·K), Hugoniot adiabat coefficients
(3940 m/s and 1.49) [16].

3. Modification of the JC Constitutive Model

The JC constitutive model [1,2] was used for the 3D simulation of deformation of a
copper cylinder. The disadvantage of this model is that an increase in plastic deformation
with an increase in the strain rate leads to an unlimited increase in the yield strength, which
is not observed in experiments. In particular, Zelepugin S.A. et al. [41] showed that OFHC
copper in high-velocity impact experiments with plastic strain accumulation demonstrates
an increase in microhardness from 900 MPa to ~3000 MPa. Moreover, the JC constitutive
model parameters were experimentally determined by the model developers at relatively
low strain-rates (up to 103 s−1). However, the strain rates reached values of 106 s−1 and
more at high-velocity impacts. Model constants determined for numerical simulation of
high-velocity processes at low strain-rates led to discrepancies between numerical and
experimental results. This raised the question of determining the parameters of the JC
constitutive model for high strain-rates.

Numerical calculations using the original JC model at an impact velocity of 316 m/s
revealed a hardening of ≥5 times due to an increase in equivalent plastic strains, which
is 2 times higher than the hardening measured in [41]. In this regard, the JC constitutive
model was modified by limiting the maximum value of plastic hardening in terms of the
dimensionless factor Bmax:

σ = min

(
σ0 + Bεn

pl
σ0 · Bmax

)
(1 + C ln(

.
ε
∗
))

(
1−

(
T − T0

Tm − T0

)m)
(1)

Here, σ0 is the quasi-static yield strength (denoted as A in the original model [1]);
εpl is the equivalent plastic strain;

.
ε
∗
=

.
εpl/

.
ε0 is the dimensionless plastic strain rate;

.
εpl is the plastic strain rate;

.
ε0 is the initial strain rate (

.
ε0 = 1 s−1); T0, T, and Tm are the

initial, current, and melting temperatures, respectively; and B, n, C, and m are the material
model constants.

4. Solution-Quality Function

We proposed to introduce a solution quality function to quantitatively estimate the
discrepancy between experimental and numerical results.

The reliable measured parameters of the cylinder after impact are the residual length
of the cylinder L and the radius of points on the cylinder lateral surface Wf (Figure 2). A
less-reliable measured parameter is the maximum cylinder radius, Rf, due to the possible
fracture of the cylinder in contact with the rigid wall. It is worth noting that the speci-
mens were partially broken along the external radius at impact velocities of 316 m/s and
above [41].

For more accurate agreement between experimental data and numerical results, we
proposed to estimate five points on the lateral surface of the cylinder. The solution quality
function Q f was selected in the form as follows:

Q f =

 20 · ∆
(

L
L0

)2
+ ∆(R f )

2+

2
[
∆W f (

1
5 )

2
+ ∆W f (

1
4 )

2
+ ∆W f (

1
3 )

2
+ ∆W f (

1
2 )

2
+ ∆W f (

2
3 )

2
]
, (2)

where
∆
(

L
L0

)
=
(

Lnum/L0
Lexp/L0

)
− 1,

∆W f = W f num/W f exp − 1,

∆(R f ) = R f num/R f exp − 1.
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The weighting factors 20, 2, and 1 were selected in such a way that the residual
length, being a reliable measured parameter, had the greatest effect on the solution quality.
Deviations of the lateral surface radius had less effect on the solution quality. The smallest
contribution was given by the maximum radius, as it varied in the experiments during the
tension of the external edge of the cylinder. Note that the quality function could be chosen
in different ways, and the influence of quality function was not investigated in this paper.
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Figure 2. Cylinder measurement points after deformation.

The Q f function can numerically estimate the deviation of calculations from the
experimental data and find the model parameters using optimization methods. Q f is a
positive value and turns to zero when the calculations of the external surface of the cylinder
after impact match the experimental data. The external surface of the cylinder remains
smooth after deformation, so the chosen number and location of radius measuring points
Wf is adequate to approximate the shape of the external surface with high accuracy.

The introduced quality function Q f solves the problem of finding model parameters
that minimize this function and are optimal.

Since the number of parameters to be optimized was small (6: σ0, B, n, Bmax, C, m),
gradient-descent methods were effective for solving this problem. However, it should be
noted that calculating the Q f value for a single numerical experiment takes a long time (up
to several hours, Intel Xeon 3.2 GHz). Therefore, the number of calculation steps should
be minimized. For this purpose, the Nesterov gradient-descent method was chosen to
determine the Q f minimum [42].

The idea of the Nesterov gradient-descent method is that the direction of the gradient
is calculated at the predicted value of the currently found point, and the movement is
performed relative to this point. The convergence rate of the method increases if the
gradient of the function changes lightly. In this case, the distance between the points grows,
and the speed of movement along the gradient increases. At the same time, sharp changes
in the gradient direction with error lead to a reduction in the movement step, and the
method effectively finds the local minimum.

Numerical calculations showed that the influence of parameters m and n on the nu-
merical results was weak for the considered impact conditions. In addition, the parameter
σ0 is a quasi-static yield strength and cannot change at high strain-rates from a physical
point of view. Thus, three parameters of the modified model remained under consideration:
B, Bmax, and C.
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The JC model parameters were optimized to determine the minimum of the function:

min
[

Q f (
→
x )
]

→
x = [B, Bmax, C]

(3)

5. Numerical Results and Discussion

The parameters of the Johnson–Cook model for OFHC copper were estimated using
the experimental data of the Taylor test [41] and well-known experiments on the impact of
cylinders with a rigid wall by Gust W.H. [16] and by Wilkins M.L. and Guinan M.W. [43].
An extended review of the calculated and experimental data for different medium models
is given in [50].

For simulation, we chose experiments with the initial data shown in Table 1. The first
series of calculations was performed using the original Johnson–Cook model parameters
for copper, shown in Table 2.

Table 1. Parameters of experiments.

Test Material L0 (mm) D0 (mm)
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0 (m/s) T0 (K) Reference

1 OFHC Cu 23.47 7.62 210 298 [43]

2 ETP Cu 30 6.0 188 718 [16]

3 OFHC Cu
M1 34.5 7.8 162 298 [41]

4 OFHC Cu
M1 34.5 7.8 167 298 [41]

5 OFHC Cu
M1 34.5 7.8 225 298 [41]

6 OFHC Cu
M1 34.5 7.8 316 298 [41]

Table 2. Original Johnson–Cooke model parameters [2].

σ0 (MPa) B (MPa) C n m Tm (K)

89 292 0.025 0.31 1.09 1356

Figure 3a shows the fields and isolines of the specific shear strain energy, and Figure 3b
shows the temperature fields and isolines at times of 30 and 87 µs. It can be seen that
the maximum shear strains, as well as temperature, were generated in the center of the
cylindrical specimen at the contact boundary between the specimen and the rigid wall. The
maximum temperature reached 949 K by 87 µs. The calculations were terminated at 87 µs
when the average velocity of the specimen along the Z axis became positive. We did not
use a failure criterion and friction in our simulation [51].

Calculated and experimental profiles of the external surfaces of the cylinders are
shown in Figure 4.

The values of the solution quality function are presented in Table 3.

Table 3. Values of the solution quality function for tests 1–6.

Test 1 2 3 4 5 6 Average Standard
Deviation

Q f 0.149 0.292 0.099 0.143 0.162 0.311 0.193 0.07
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Figure 3. Fields and isolines of (a) specific shear strain energy (GJ/m3) and (b) temperature (K) in a
copper cylinder at 30 and 87 µs upon impact with a rigid wall at an initial velocity of 316 m/s.
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Calculations showed that the original JC model constants did not agree quantitatively
with the experimental data. Tests 3 and 4 demonstrated a near-perfect match between
numerical and experimental data for the cylinder’s final length. However, the shape of the
lateral surface and the maximum diameter differed. For test 1, the calculation described
well the experimental shape of the lateral surface, but there was a discrepancy in the
cylinder’s final length. Other tests also showed a discrepancy between numerical and
experimental results. It is worth noting that the simulation performed for tests 1 and 2 were
in good agreement with the calculations presented in [50].

Optimization of the JC model parameters was performed as follows:

1. Optimization of parameters for each of tests 1, 2, 3, 4, 5, and 6;
2. Optimization of parameters for tests 1 and 2:

Q f =
1
2

(
Q<1>

f + Q<2>
f

)
; (4)

3. Optimization of parameters for tests 3–6:

Q f =
1
4

6

∑
i=3

Q<i>
f ; (5)

4. Optimization of parameters for tests 1–6:

Q f =
1
6

6

∑
i=1

Q<i>
f . (6)

A universal code was developed to solve all four optimization problems simultane-
ously. The total number of Taylor test calculations exceeded 900. The solution time was
about one day for an Intel Xeon 3.2 GHz.

Figure 5 shows the calculated and experimental profiles of the external surface of the
cylinders when optimizing the parameters for each of experiments 1, 2, 3, 4, 5, and 6. The
JC model parameters after optimization are presented in Table 4.
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Table 4. Optimal parameters of the Johnson–Cook model.

Test B (GPa) C Bmax

1 0.202 0.023 3.509

2 0.205 0.023 3.503

3 0.309 0.024 3.387

4 0.286 0.022 3.623

5 0.539 0.014 2.783

6 0.486 0.018 2.881

1 + 2 0.204 0.023 3.493

3 + 4 + 5 + 6 0.565 0.020 2.558

1 + 2 + 3 + 4 + 5 + 6 0.265 0.024 3.330

In tests 1–4, the hardening limit was reached in a small volume and did not affect
the process. The material deformed heavily in tests 5 and 6, so the results were affected
by the limitation of the maximum plastic hardening. For this reason, in tests 5 and 6,
the numerical optimization reduced the hardening limit Bmax to a value of ~2.8, which
corresponds to the microhardness experiments [41]. However, in the experiments [41],
the increase in maximum microhardness at individual points reached 3.5 times, and the
average microhardness increase at the front end of the cylinder increased by 1.8–2.3 times.
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Table 5 compares the calculated optimal model parameters with the original parame-
ters [2] for different tests, where B/B0 and C/C0 are the ratios between optimal and original
parameters, Qf0 is the solution quality before the optimization of parameters, and Qf is
the solution quality after the optimization of parameters. Good agreement between the
calculated and experimental data was observed at Qf < 0.07 (tests 1, 2, 5, 1 + 2, 3 + 4 + 5 + 6).

Table 5. Solution quality for optimal parameters of the Johnson–Cook model.

Test B/B0 C/C0 Bmax Qf Qf0 Qf0/Qf

1 0.692 0.919 3.509 0.011 0.149 13.6

2 0.702 0.907 3.503 0.046 0.292 6.4

3 1.059 0.948 3.387 0.098 0.099 1.0

4 0.981 0.865 3.623 0.143 0.143 1.0

5 1.846 0.566 2.783 0.041 0.162 3.9

6 1.663 0.725 2.881 0.088 0.311 3.5

1 + 2 0.697 0.910 3.493 0.028 0.221 7.8

3 + 4 + 5 + 6 1.936 0.820 2.558 0.063 0.179 2.8

1 + 2 + 3 + 4 + 5 + 6 0.908 0.965 3.330 0.177 0.193 1.1

It should be noted that the original parameters of the Johnson–Cooke model better
described the behavior of copper in the experiments in [41] at impact velocities of 162 m/s
and 167 m/s than in the experiments in [16,43]. However, at higher impact velocities,
the deviation of the optimal model parameters from those determined in the low-velocity
experiments increased up to two times.

Calculations showed that the experiments in [16,43] are best described by the Johnson–
Cooke model, assuming that the OFHC copper parameters differ from the measured
parameters [2] (B-decrease by 30%, C-decrease by 10%). At impact velocities of 162 m/s
and 167 m/s [41], the experiments are described exactly by the same set of parameters.
However, with an increase in the impact velocity, the deviation of the calculated values
from the experimental values increases. The set of experimental data [41] is better described
under the assumption that hardening parameter B of the used copper increases by a factor
of 1.9, while parameter C decreases slightly.

Determining a set of parameters that optimally describes the set of experiments
considered [16,41,43] showed that the average solution quality improves by 10%, but
this improvement is achieved by the accurate description of the experiments in [16,43]
(by 1.7 and 1.8 times) and a slight deviation (by 20% and 10%) in the description of the
experiments in [41] for impact velocities of 225 m/s and 316 m/s, respectively.

6. Conclusions

1. The JC constitutive model was modified by introducing a material-hardening limit
for plastic deformation, Bmax, at high strain-rates.

2. A solution quality function, Qf, was proposed to estimate the deviation of calculations
from the experimental data. The final length of the cylinder, the radius of the lateral
surface of the cylinder at five points, and the maximum radius of the cylinder were
taken as the function parameters, with weighting factors of 20, 2, and 1 according to the
effect on the final quality of the solution and reliability of the parameter measurement.

3. An optimization algorithm for selecting parameters B and C of the JC constitutive
model and the limiter Bmax was developed to find the best agreement between the cal-
culated and experimental data for the Taylor impact test using the Nesterov gradient-
descent method.

4. The optimal parameters, namely, B, Bmax, and C, of the modified JC constitutive
model were calculated for nine sets of experimental data. The solution quality in
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some experiments increased by several times when using optimal parameters. For all
experiments, the solution quality improved by 10% after optimization.

5. The developed method for optimizing the selection of the constitutive model constants
can be adapted for a wide range of problems (arbitrary set of optimized parameters,
arbitrary material models, and software codes, including ANSYS/LS Dyna).
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