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Abstract: This study provides the results of an experiment on the possibility of using high-volume
ground granulated blast furnace slag (HVGGBFS)-based concrete as mass concrete. In addition to
the control concrete, the total weight of the binder was 75% ground granulated blast furnace slag
(GGBFS) and 25% ordinary Portland cement (OPC). For the aggregates, both natural and recycled
aggregates were used. Three specimens with dimensions of 800 mm × 800 mm × 800 mm were
prepared to simulate mass concrete. The workability, temperature aging and strength of the mass
concrete were tested. The test results showed that utilizing HVGGBFS concrete as mass concrete can
significantly reduce the heat of hydration due to the low heat of hydration of GGBFS, while the heat
of hydration of GGBFS and recycled aggregate combination is 11.2% higher than normal concrete,
with a slump that is 31.3% lower than that of plain concrete. The results also showed that the use
of recycled aggregates in HVGGBFS concrete can significantly reduce workability. However, the
compressive strength is higher than when natural aggregates are used due to the alkali activation
effect caused by the recycled aggregates. The compressive strength at 7 and 28 days increased by
33.7% and 16.3%, respectively.

Keywords: mass concrete; recycled aggregate; ground granulated blast furnace slag (GGBFS);
workability

1. Introduction

The sustainability of concrete, the second most consumed material on the earth, is
of paramount importance [1–4]. Rapid urbanization [5] and population growth [6] are
factors increasing the demand for new infrastructure and housing, further exacerbating
the environmental impact of the construction industry [7,8]. Global warming is currently
one of the most serious environmental problems. Cement manufacture is a major factor
contributing to global warming as 8% of CO2 emissions are due to cement manufactur-
ing [9–12]. Therefore, the development of alternative binders is an effective solution for
global warming [13–18]. Green and environmentally friendly construction can be achieved
by utilizing natural resources to the least extent [19–22]. Ground granulated blast furnace
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slag (GGBFS) is a kind of industrial by-product generated during pig iron manufactur-
ing [23–26]. As the chemical composition of GGBFS is similar to that of cement, many
researchers focus on the use of GGBFS as an alternative binder in concrete [27,28]. Since the
1960s, a new type of alkali-activated slag concrete (AASC) using GGBFS and an alkali acti-
vator has been rapidly developed [29–32]. Many researchers found using alkali activators
such as NaOH and water glass could activate the potential hydraulicity of GGBFS [33–36].
Partial replacement using GGBFS can highly reduce the environmental burden caused by
cement manufacturing.

Also, the demand for construction aggregates globally in the construction indus-
try is rising at a rate of approximately 5.2%, which reached 51.79 billion metric tons in
2019 [37–41]. This had led to an increasing concern connected with diminishing natural
resources and environmental depletion. Approximately 850 × 106 tons of solid waste
generated in Europe is due to demolition activities, which is approximately 31% of the total
waste generated, out of which only 3% of them are being used as aggregate originating
from recycled aggregates (RA) [42–44]. Hence, disposal of this construction and demolition
(C&D) waste is a growing concern among environmentalists. Also, using recycled concrete
aggregates (RCA) for construction practices to the maximum extent wherever possible, not
only reduces the harmful effects on the environment but also addresses the issue of C&D
waste management [45,46].

Recycled concrete aggregates are one kind of building material obtained by crushing
abolished construction waste [47–49]. Numerous studies have focused on the strength and
durability of concrete using recycled aggregates [50–52]. However, it is difficult to ensure
the homogeneity of the recycled aggregates. Compared with using natural aggregates,
concrete using recycled aggregates may lead to defects including low workability, low
strength and other durability problems [53–55]. Because of the low performance of recycled
concrete aggregates, it is commonly believed that the replacement ratio of recycled concrete
aggregates cannot be higher than 30% for the total mass of aggregates [56–59]. An important
factor is the impurities that adhere to the surface of recycled concrete aggregates [60–62].
These impurities are mainly obtained from the cement paste of old buildings and contain
large amounts of alkaline substances [63,64].

Because of the high alkaline level of the impurities, using recycled concrete aggregates
as alkali activators is a possible way to activate the potential hydraulicity of the GGBFS [65].
According to the study conducted by Kathirvel, using 50% recycled coarse aggregates can
obtain a higher compressive strength than 100% natural aggregates used in AASC [66]. It
seems that RCA may supplement the alkali contents in the concrete and play a role during
hydration [66]. The study provides useful information on the mechanical performances of
GGBFS-based concrete utilizing recycled concrete aggregates. It is also considered a very
efficient way to reuse recycled concrete aggregates [33,67]. However, as the study did not
emphasize the alkali activate effect of RCA, further studies are needed.

Mass concrete used in many structural and non-structural applications, such as raft
foundations, large size columns, concrete blocks for quay walls, suffers from cracking at
early ages from the heat generated due to the hydration reaction of the binder (cement) [68].
The heat from the hydration reaction developing at the core of mass concrete element
diffuses slowly to the surfaces at a rate depending on the thermal diffusivity property
of concrete, resulting in a temperature increase in the core. On the other hand, at the
bounding surfaces of the structural element, the generated heat is dissipated at a rapid
pace to the ambient environment depending primarily on the convective heat transfer
coefficient [69,70]. The heat trapped at the core of the mass concrete has two major im-
pacts, which compromises the integrity and long-term durability of the mass concrete
structures [71]. In general, the most common approaches are the use of low-heat generating
binders such as fly ash, or the use of supplementary cementitious materials such as GGBFS.
However, current research is more focused on the incorporation of fly ash in mass concrete.

Malhorta and Mehta studied the effects of high-volume fly ash (HVFA) concrete,
with fly ash making up more than 50% of the total mass of the binder, and obtained
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even better durability performances than OPC-based concrete [41,72–74]. These attributes
are extremely beneficial when used as mass concrete [75–77]. Similar to fly ash, GGBFS
could also reduce hydration heat in concrete [78,79]. However, very few studies show the
performances of HVGGBFS mass concrete [78,80–83]. Current research on high volume
GGBFS is focused on optimizing early age cracking (EAC) and shrinkage. For example,
Shen et al. [84] conducted restrained ring tests on GGBFS concrete with GGBFS content
varying from 0 to 50% and also found that the increasing content of GGBFS decreased the
EAC risk. Under semi-adiabatic conditions, Wei et al. [85] carried out uniaxial restrained
tests and concluded that, although the thermal shrinkage can be effectively reduced, the
major reasons accounting for EAC of GGBFS concrete lay in the consistent autogenous
shrinkage. Focusing on the influence of slag composition, Markandeya et al. [86] conducted
TSTM tests on GGBFS concrete using GGBFS with different MgO/Al2O3 ratios, but with
similar Ca/SiO2 ratios. Their results showed that a low MgO/Al2O3 ratio can result in high
autogenous shrinkage and therefore promote the EAC risk. However, these studies have
not deeply explored the contribution of GGBFS to the heat of hydration in mass concrete. In
addition, besides GGBFS, a variety of inexpensive wastes are needed to enter the concrete
system. Recycled aggregates are a good alternative. The old mortar on its surface can assist
the hydration of GGBFS to occur.

To summarize, it is very necessary to go for introducing high-volume GGBFS and
recycled aggregates into the concrete system for economic and ecological benefits. The
alkaline nature of the waste mortar on the surface of recycled aggregate and the potential
hydration properties of GGBFS is utilized to alleviate the problem of exothermic cracking
inside the mass concrete and to expand new ideas for the development of concrete.

This study focuses on the possibility of mass concrete with HVGGBFS and the alkali
activation after RCA incorporation. Based on this, mock-up tests of mass concrete with
HVGGBFS as a binder are provided. Workability, compressive strength and temperature
age are tested to compare the different binders. To examine the effect of recycled aggre-
gates as an alkali activator, both recycled and natural aggregates are used in HVGGBFS
concrete. This study also developed a strategy for producing mass concrete with lower
internal temperature.

2. Experimental Scheme
2.1. Materials

In this study, P·O42.5 ordinary Portland cement (OPC) from Yatai Group Harbin
Cement Company (Harbin, China) and the S95 grade ground granulated blast furnace
slag (GGBFS) from a local processing plant (Harbin, China) were used as binders, and
the density was 3.15 g/cm3 and 2.90 g/cm3, respectively. The chemical composition of
OPC and GGBFS is given in Table 1. According to the market survey, the costs of OPC
and GGBFS are CNY 450 per ton and CNY 250 per ton, respectively. GGBFS has obvious
economic benefits.

Table 1. The chemical composition of OPC and GGBFS (wt. %).

Ingredients SiO2 Al2O3 Fe2O3 CaO MgO Others

OPC 21.4 5.45 3.5 64.48 1.46 3.71
GGBFS 27.6 13.51 0.54 42.96 9.31 6.08

A total of four types of aggregates were selected for use: natural coarse aggregate
(NCA), natural fine aggregate (NFA), recycled coarse aggregate (RCA), and recycled fine
aggregate (RFA), respectively. The natural aggregates are gravel and river sand, which come
from the local quarries in Harbin. The recycled aggregates came from a local construction
site in Harbin, where the waste concrete was crushed by a jaw crusher, as shown in Figure 1.
The chemical composition and physical properties of the aggregates are listed in Table 2.
The recycled aggregates used the same particle gradation as the natural aggregates to
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control the consistency of the test conditions. The particle gradations of coarse and fine
aggregates are given in Figure 2, respectively.
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Figure 1. Preparation of RCA and RFA. (a) Crushing concrete with a jaw crusher. (b) Separation of
RCA and RFA.

Table 2. The chemical composition and physical properties of the aggregate.

Aggregate

Physical Properties Chemical Composition (wt. %)

Fineness
Modulus

Water
Absorption

(%)

Density
(g/cm3) SiO2 CaO Al2O3 Na2O K2O MgO Cl− Others

RCA 6.14 4.20 2.65 73.62 9.12 7.48 0.96 1.17 3.58 0.74 3.33
RFA 2.76 6.20 2.58 60.40 16.96 10.65 1.87 3.10 1.00 0.13 5.89
NCA 6.48 0.58 2.76 96.71 0.23 0.63 0.08 0.14 0.24 0.01 1.96
NFA 2.86 2.63 2.69 75.59 1.39 13.18 3.28 4.42 0.11 0.02 2.01
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Figure 2. Distribution of aggregate particle size: (a) coarse aggregate and (b) fine aggregate.

The proportions of the mass concrete are given in Table 3, where the binder for the
control group was 100% OPC, while the other two groups replaced an equal mass of OPC
with 75% GGBFS. The most common water–binder ratio is 0.5, the binder–sand ratio is
0.46, and the percentage of sand in aggregates is 0.43. According to the difference between
binders and aggregates, the concrete mixtures are named ONN (OPC − NCA − NFA),
BNN (OPC + GGBFS − NCA − NFA) and BRR (OPC + GGBFS − RCA − RFA).
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Table 3. Mixture proportion of concrete (kg/m3).

Mixture ID OPC GGBFS
Coarse Aggregate Fine Aggregate

Water
Gravel Recycled River Sand Recycled

ONN 360 0 1027 - 775 - 180
BNN 90 270 1027 775 180
BRR 90 270 - 1000 - 755 180

2.2. Proportion of Concrete

Three days before the preparation of concrete, the coarse and fine aggregates are
dried in a natural environment to a dry condition (moisture content approximated to 0).
One hour before preparation, the RCA and RFA were pre-absorbed and the amount of
water absorbed was calculated based on the water absorption of the recycled aggregate
over the natural aggregate. Four 150-L capacity concrete mixers were used to prepare the
mass concrete together (one mass concrete specimen was approximately 520 L). The solid
components, including OPC, GGBFS, and coarse and fine aggregates, were first mixed for
2 min. Water was then added to the mixer and mixing continued for 2 min. All the fresh
concrete mixture was poured into the mould (800 mm × 800 mm × 800 mm) as shown in
Figure 3 and pounded with a pounding bar. Finally, the surface was smoothed and cling
film was attached, and 72 h later, the wooden formwork was removed and the concrete
specimens were watered and cured.
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2.3. Testing Procedures
2.3.1. Fresh Properties Tests

The slump, air content and chloride contents of fresh concrete were tested immediately
in compliance with test methods regulated in ASTM C143/143M [87], C231 [88] and JGJ/T
322-2013 [89], respectively.

2.3.2. Temperature History

The authors conducted detailed field monitoring of temperature rise in mass concrete
blocks. As shown in Figures 4 and 5, nine temperature sensors were installed at three
different locations in the centre, corners and edges of the concrete at the top, middle height
and bottom. Temperature changes were measured at 10 min intervals over 10 days.
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2.3.3. Compressive Strength Test

The compressive strengths of concrete mixes were determined at 3, 7 and 28 days
of age. Concrete cylinders of 300 mm × 150 mm were used for the compressive strength
tests as per ASTM C39 [90]. The loading rate was kept at 0.2 MPa/s. An average of three
specimens was used to perform the test. A compression testing machine with a capacity of
2000 kN was used for these tests.

2.3.4. Rebound Number

The rebound number test of hardened concrete was conducted according to the methods
specified in ASTM C805/805M [91]. All test pictures can be seen in the Support Information.

2.3.5. Micro-Analysis

Samples at the age of 7 and 28 days were immersed into isopropanol for one week
to stop the reaction and dried in a 40 ◦C oven for 1 h for the SEM studies. The surface of
the samples was coated by carbon and subsequently dried in a low vacuum desiccator
before analysis. Afterwards, the fractured and polished samples were observed by SEM
with the secondary electron (SE) mode at an acceleration voltage of 20.0 kV under a low
vacuum, respectively.
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3. Results and Discussion
3.1. Fresh Properties

Figure 6 shows the results of the slump, air content and chloride content depending
on the mixture combination. The slump result of ONN is 190 mm, which is higher than
BNN and BRR. The higher water absorption of GGBFS and the alkali activation of recycled
aggregates are considered to be the main reasons for the lower slump of BNN and BRR [33].
If too much GGBFS is added (up to 75% in this paper), the water requirement is too large
and the viscosity of the slurry is unfavourable for flow.
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The air content ranges from 3.4% to 5.1%, which satisfied the target range. The high
water absorption of RCA leads to a decrease in the effective water–cement ratio, which in
turn introduces more air pockets and increases the air content of the material. Moreover,
there are micro-cracks and voids in the paste attached to the surface of RCA, which also
leads to an increase in the air content.

The three types show a lower than 0.30 kg/m3 chloride content, which satisfies the
standard range [89]. When a high volume of GGBFS is used, the content of chloride ions
within the concrete decreases significantly, which is very much utilized for the safety
of reinforced concrete structures. It is well known that corrosion of reinforcing bars in
reinforced concrete is a very serious problem, and the most important reason for this lies
in the erosion of chloride ions. Therefore, the incorporation of large quantities of GGBFS
is helpful in the protection of steel reinforcement. Also, it was found that since recycled
aggregates contain old mortar, they have a higher chloride ion content and introduce
twice as many chloride ions as natural aggregates for the same mix ratio. Therefore, the
subsequent application of recycled aggregates requires strict monitoring of the chloride ion
content within the concrete.

3.2. Temperature History

Figure 7 shows the temperature history of the specimens with age. After pouring, the
temperature of all specimens went up gradually. For the ONN specimen, 50 h after placing,
the highest temperature of 28.7 ◦C appeared in the centre position of the specimen, and the
temperature at the edge of the specimen was 23 ◦C, which makes a temperature difference
of 5.7 ◦C between the centre and the edge. For the BNN specimen, it took about 100 h to
reach the peak temperature, which is about two times later than the ONN specimen. The
highest temperature of BNN is 24.5 ◦C, which is 3 ◦C lower than ONN. This is due to the
larger OPC content in the ONN mixture than in the BNN mixture. The BRR specimen
reached the peak temperature faster than BNN, and the highest temperature was 1.5 ◦C
higher than the BNN specimen. This may be because the alkalinity of recycled aggregate in
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BRR played a role in activating the potential hydraulic of GGBFS, thus it contributed to
raising the temperature of BRR [33].
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temperature [92]. The results of this study show that concrete containing GGBFS has the
potential to reduce the risk of cracking in structures such as dams and tunnels.

The temperature change is closely related to the performance of the material in terms
of the heat of hydration. Gao et al. [93] tested the heat of hydration of GGBFS slurries
with substitution rates ranging from 0 to 40% and found that the heat of hydration of the
slurries decreased significantly with the increase in the dosage of GGBFS. The reason for
this is the low hydration activity of GGBFS in the early stage, which leads to the decrease
in hydration products in the first 72 h.

Considering the limitations of the heat of hydration test, we could not measure the
effect of RCA on the heat of hydration of HVGGBFS concrete. Given this, since recycled
fine aggregate (RFA) and RCA have similar compositions, we tested the effect of RFA on
the heat of hydration, details of which can be found in [33]. RFA increases the heat of
the solution due to the higher amount of CaO. CaO reacted with water to form Ca(OH)2
and released heat. It is considered the reason that a higher peak is observed in RFA-based
specimens. Similarly, the old mortar attached to the surface of the RCA had a large amount
of residual cement. These cement particles with a high quantity of CaO increase the alkali
concentration and further activate the hydraulicity of GGBFS.

3.3. Compressive Strength

Figure 8 shows the 3-, 7- and 28-day compressive strength of each specimen. ONN had
a higher compressive strength than BNN; 53.2%, 48.6% and 26.3% higher at 3, 7, 28 days,
respectively. Hydration of concrete slowdowns when GGBFS is added to it, thus leading to
a lower hydration of heat. It is due to the reason that GGBFS reacts slowly to form a C-S-H
gel and most of its content reacts with calcium hydroxide to form a C-S-H gel and thus a
delay in hydration. Early strength whether compressive or flexural both reduced due to
slow hydration but with increased curing period strength both compressive and flexural
are increased considerably due to further formation of C-S-H gel by GGBFS. Due to slow
hydration, the early strength of concrete is compromised and thus needs more supervision
in its initial stages while, as provided with a longer curing period, GGBFS tends to produce
concrete showing much better results in terms of strength in the long run.
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Figure 8. Compressive strength with different mixture.

ONN has 54.7%, 22.4% and 12% higher strength than BRR at 3, 7, 28 days as expected.
According to the literature, the use of 100% RFA in OPC-based concrete leads to a loss of
compressive strength ranging from 39% to 60% [94,95]. In comparison, the use of RFA in
HVGGBFS concrete is a more efficient method of use. When comparing BNN with BRR,
they showed similar strength at 3 days, while BRR has 33.7% and 16.3% higher strength
than BNN at 7 and 28 days, respectively. This can be explained as the mortar from old
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buildings adhered to the surface of recycled aggregates with high alkalinity; the potential
hydraulic of GGBFS is activated by the high alkalinity from the recycled aggregates.

3.4. Rebound Number

Figure 9 shows the specimens’ rebound number with age. ONN, which has the
highest compressive strength, has the highest rebound number. BRR has a higher rebound
number than BNN. The reason is the same as the reason for the compressive strength
mentioned before.
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3.5. Micro-Analysis

Figure 10 shows the SEM images of BRR at 7 and 28 days. The images both indicate
fine and long needle-like structures, i.e., Ettringite. Ettringite has a very low solubility
product among all hydration products and is very susceptible to precipitation crystalliza-
tion, exhibiting an impact on early mobility. Simultaneously, the formation of Ettringite can
promote the early strength development of cement, and the mechanical occlusion between
the radiolucent calcium alumina crystal clusters provides significant early strength. Ad-
ditionally, for large-volume cement concrete projects or high-temperature cured concrete
products, the calcium alumina formed will decompose due to the high internal temperature
in the early stage, and Ettringite will be formed again in the late stage of cement hardening,
which will easily cause the cracking and damage of concrete. As the amount of GGBFS is
larger, it significantly reduces the internal exotherm of large-volume concrete.
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4. Conclusions

In this study, the potential for the incorporation of high volumes of GGBFS and recycled
aggregate into a mass concrete system at the same time was emphasized. Slump, air content and
chloride content of fresh concrete were tested. And three 800 mm × 800 mm × 800 mm mass
cube specimens were tested for monitoring the internal heat of hydration and rebound
number. Also, the compressive strength of concrete was tested at 3, 7, and 28 days. The
main conclusions obtained are as follows:

(1) For fresh concrete, slump decreases with increasing GGBFS content and aggregate
dosage; 75% GGBFS and recycled aggregate combination gives a 31.3% lower slump
than BNN with natural aggregates. The chloride content of all specimens was less
than 0.3 kg/m3.

(2) The higher volume level of GGBFS replacement resulted in a significant reduction
in heat of hydration compared to OPC. The combination of GGBFS and recycled
aggregate showed 11.2% higher heat of hydration than BNN of natural aggregate.

(3) At 28 days of age, high-volume GGBFS reduces compressive strength compared to
ONN. The compressive strength at 7 days and 28 days with recycled aggregate was
33.7% and 16.3% higher than with natural aggregate when high-volume GGBFS was
used as a binder.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ma16165632/s1.
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