Effects of TiC, Si, and Al on Combustion Synthesis of Ti₃SiC₂/TiC/Ti₅Si₃ Composites

Chun-Liang Yeh * and Kuan-Ling Lai

Department of Aerospace and Systems Engineering, Feng Chia University, Taichung 40724, Taiwan
* Correspondence: clyeh@fcu.edu.tw; Tel.: +886-4-2451-7250 (ext. 3963)

Abstract: The fabrication of Ti₃SiC₂ from TiC-containing reactant compacts was investigated by combustion synthesis in the mode of self-propagating high-temperature synthesis (SHS). The initial sample composition was formulated based on (3−x)Ti+(ySi+(2−x)C+xTiC+zAl), with stoichiometric parameters of x from 0 to 0.7, y = 1.0 and 1.2, and z = 0 and 0.1. For all samples studied, combustion was sufficiently exothermic to sustain the reaction in the SHS manner. Due to the dilution effect of TiC, combustion wave velocity and reaction temperature substantially decreased with TiC content. When compared with the TiC-free sample, the TiC-containing sample facilitated the formation of Ti₃SiC₂ and the TiC content of x = 0.5 produced the highest yield. Excess Si (y = 1.2) to compensate for the evaporation loss of Si during combustion and the addition of Al (z = 0.1) to promote the phase conversion were effective in improving the evolution of Ti₃SiC₂. All final products were composed of Ti₃SiC₂, TiC, and TiSi. For the TiC-containing samples of x = 0.5, the weight fraction of Ti₃SiC₂ increased from 67 wt.% in the sample without extra Si and Al to 72 wt.% in the Si-rich sample of y = 1.2 and further up to 85 wt.% in the Si-rich/Al-added sample of y = 1.2 and z = 0.1. As-synthesized Ti₃SiC₂ grains were in a thin plate-like shape with a thickness of 0.5–1.0 µm and length of about 10 µm. Ti₃SiC₂ platelets were closely stacked into a layered structure.

Keywords: Ti₃SiC₂; TiC; combustion synthesis; weight percentage; X-ray diffraction

1. Introduction

MAX phases belong to a family of hexagonal-structure layered ceramics with stoichiometry of MₙₐAXₙ (usually n = 1, 2, or 3), where M is an early transition metal (Ti, Zr, Nb, Ta, Cr, etc.), A is an element of the IIIA or IVA group (Al, Si, Sn, Ge, etc.), and X is C or N [1]. Typical MAX phases such as Ti₃AlC, Cr₃AlC, Ti₃SiC₂, Ti₅AlC₃, Nb₃AlC₃, and Ti₅AlN₃ as well as their associated solid solutions have been broadly investigated [1–5]. Properties of the MAX phases combine merits of both metals and ceramics. Like metals, they are excellent thermal and electrical conductors, readily machinable, and highly resistant to thermal shock. Like ceramics, they possess high stiffness, low density, low thermal expansion coefficients, and good corrosion and oxidation resistances [6,7]. In addition, higher-order MAX phases with n > 3 such as Ta₅AlC₃, Ta₆AlC₅, Ti₆AlC₅, and Ti₅SnC₃ have been discovered [8–10].

Potential applications of MAX ceramics have been considered, including structural materials for high-temperature applications, protective coatings and bond-coat layers in thermal barrier systems, accident-tolerant fuel claddings in nuclear power plants, solar receivers in concentrated solar power systems, electrical contacts, catalysts, heat exchangers, corrosion-resistant materials, and joining materials [1,11]. Specifically, Ti₃AlC, Ti₅AlC₃, and Cr₃AlC are potential candidates to replace Ni/Co superalloys in the hottest part of a gas turbine engine to enable operation at higher temperatures [12]. Ti₃SiC₂, Ti₃AlC, Ti₅AlC₃, and Cr₃AlC have attracted considerable attention as potential accident-tolerant fuel claddings in light-water nuclear reactors [13]. Ti₃SiC₂ and Ti₃AlC have been proposed...
as ohmic contacts [14]. As catalysts, TiSiC$_2$, TiAlC, and TiAlC$_2$ show excellent chemoselectivity for the hydrogenation of organic compounds [15].

TiSiC$_2$ is one of the most studied M$_2$AX$_3$ compounds and has been produced by various powder-sintering processes such as hot pressing (HP) [16], hot isostatic pressing (HIP) [17], mechanical alloying (MA) [18,19], spark plasma sintering (SPS) [20–23], and self-propagating high-temperature synthesis (SHS) [24–27]. A variety of powder combinations have been adopted as the initial reactants, including Ti/Si/C, Ti/SiC/C, Ti/Si/TiC, Ti/Si$_2$Si/TiC, Ti/Si/TiC/TiC, TiH$_2$/SiC/C, etc. [16–27]. Sintering fabrication routes often produce secondary phases (e.g., Ti$_5$C$_4$, Ti$_5$Si$_3$, Ti$_5$Si$_5$, SiC$_3$, and Ti$_5$Si$_5$C$_3$) along with TiSiC$_2$. Although TiC and Ti$_3$Si$_2$ are considered to be suitable reinforcing phases for TiSiC$_2$ [28,29], several approaches have been applied to enhance the production of TiSiC$_2$.

For the improvement of TiSiC$_2$ formation, most of the studies have focused on different reactant mixtures, off-stoichiometric compositions, and Al additions. For example, Radhakrishnan et al. [30] synthesized TiSiC$_2$ from element powders with a Si-excess composition of Ti:Si:C = 3:1.2:2 by reactive sintering at 1800 °C for 10 h. Liu et al. [31] employed TiH$_2$, Si, and graphite powders under a Si-rich stoichiometry of Ti:Si:C = 3:1.2:2 to prepare porous TiSiC$_2$ through a multi-stage sintering process, within which TiH$_2$ decomposed to form Ti at 600 °C, followed by the formation of TiC and Ti$_3$Si$_2$ at about 1100 °C, and the production of TiSiC$_2$ at 1350 °C. Li et al. [28] indicated that an increase in Si increased the fraction of TiSiC$_2$ in a Ti-Si$_2$C-TiC composite fabricated by reactive plasma spraying. It was believed that excess Si compensated for the evaporation loss of Si at high temperatures and, therefore, led to a higher yield of TiSiC$_2$. With the aid of Al as a reaction promoter in the SPS process, Zhang et al. [32] prepared TiSiC$_2$ from an element powder mixture of 3Ti/Si/2C/xAl ($x = 0.1–0.3$) at 1280 °C, and Sun et al. [33] obtained TiSiC$_2$ from the reactant mixture of 3Ti/SiC/C/xAl ($x = 0.15$ and 0.2) at 1200 °C. The effect of Al additions on enhancing the formation of TiSiC$_2$ was also confirmed by pressureless sintering of reactant mixtures composed of 4Ti/TiC/2SiC/0.2Al at 1380 °C for 1 h [34] and 3Ti/1.5Si/1.9C/0.5Al at 1400 °C for 2 h [35]. Moreover, Gubarevich et al. [36] utilized an Al-containing element powder mixture of 3Ti/Si/2C/0.1Al to produce TiSiC$_2$ by combustion synthesis. It has been proposed that Al could suppress the evaporation of Si at high temperatures and form a liquid phase in the Ti-Si-C-Al quaternary system, which could facilitate the diffusion of Ti and Si atoms and promote the interactions between TiC and Ti$_3$Si$_2$ or Ti-Si melt [34–36].

However, the influence of excess Si and Al on the fabrication of TiSiC$_2$ by combustion synthesis with raw materials containing TiC has been little studied. As a first attempt, this study aimed to investigate the effects of TiC, Si, and Al on the formation of TiSiC$_2$ by solid-phase combustion synthesis in the SHS mode. When compared with other processing methods, the SHS technique takes advantage of highly exothermic reactions to produce MAX phases and has benefits of energy effectiveness, time-saving, simplicity, low cost, scalability, and high-purity products [37–39]. In this study, starting mixtures comprising different amounts of TiC were prepared with an exact Ti:Si:C = 3:1:2 stoichiometry and Si-rich and Al-added compositions. The effects of TiC content and excess Si and Al were studied on the combustion wave velocity and reaction temperature as well as on the enhancement of TiSiC$_2$ formation.

2. Materials and Methods

The starting materials adopted by this study included Ti (Alfa Aesar, Ward Hill, MA, USA, < 45 µm, and 99.8%), Si (Strem Chemicals, Newburyport, MA, USA, < 45 µm, and 99.5%), carbon black (Showa Chemical Co., Tokyo, Japan), TiC (Aldrich Chemical, Burlington, MA, USA, < 45 µm, and 99%), and Al (Showa Chemical Co., Tokyo, Japan, < 45 µm, and 99%). The reactant mixture was formulated based on the following equation:

$$(3 - x)\text{Ti} + y\text{Si} + (2 - x)\text{C} + x\text{TiC} + z\text{Al} \rightarrow \text{Ti}_5\text{SiC}_2$$ \hspace{1cm} (1)
where the parameters \(x, y, \) and \(z \) signify the numbers of moles of TiC, Si, and Al in the reactant mixture, respectively. In this study, the content of TiC was studied with \(x = 0, 0.2, 0.3, 0.4, 0.5, 0.6, \) and \(0.7 \). The sample of \(x = 0 \) was TiC-free and composed only of elemental Ti, Si, C, and Al powders. Two mole numbers of \(y = 1.0 \) and \(1.2 \) were examined for Si; \(y = 1.0 \) denoted a sample without extra Si and \(y = 1.2 \) represented a sample with Si in excess of 20 mol.%. The value of \(z \) defined a sample without \((z = 0) \) or with Al \((z = 0.1) \) additions. The amount of Al included in the reactant mixture was very small. In summary, three sample compositions with different contents of TiC were involved; namely, the exact stoichiometry of TiSiC = 3:1:2, a Si-rich configuration of TiSiC = 3:1:2:2, and a Si-rich/Al-added composition of TiSiC:Al = 3:1:2:2:0.1. Reactant powders were dry-mixed in a ball mill and uniaxially compressed into cylindrical samples with a diameter of 7 mm, a height of 12 mm, and a relative density of 50%.

The combustion synthesis experiment was conducted in a windowed stainless-steel chamber under an Ar environment at a pressure of 0.25 MPa. A tungsten coil with an electric voltage of 60 V and a current of 1.5 A was mounted at 1 mm above the sample top surface and was utilized to ignite the sample by thermal radiation. The combustion wave propagation velocity \((V) \) was determined from the flame-front trajectory, based on the time sequence of recorded pictures. The exposure time of each recorded image was set at 0.1 ms. To facilitate the accurate measurement of instantaneous locations of the combustion front, a beam splitter with a mirror characteristic of 75% transmission and 25% reflection was used to optically superimpose a scale onto the image of the sample. The combustion temperature was measured by a bare-wire thermocouple (Pt/Pt-13%Rh) with a bead size of 125 \(\mu \)m. Details of the experimental setup and approach have been reported elsewhere [40]. The phase composition and microstructure of the final product were analyzed using an X-ray diffractometer (XRD, Bruker D2 Phaser, Karlsruhe, Germany) with CuK\(\alpha \) radiation and a scanning electron microscope (SEM, Hitachi, S3000H, Tokyo, Japan), respectively. Based on the XRD peak intensity, the weight fractions of TiSiC\(_2 \), TiSi\(_3 \), and TiC in the product were calculated by the following equations [25,41]:

\[
W_{TSC} = \frac{I_{TSC}}{I_{TSC} + 4.159I_{TS} + 0.818I_{TC}}
\]

\[
W_{TS} = \frac{I_{TS}}{I_{TS} + 0.241I_{TSC} + 0.197I_{TC}}
\]

\[
W_{TC} = \frac{I_{TC}}{I_{TC} + 1.222I_{TSC} + 5.084I_{TS}}
\]

where \(W_{TSC}, W_{TS}, \) and \(W_{TC} \) are the weight percentages of TiSiC\(_2 \), TiSi\(_3 \), and TiC, respectively. \(I_{TSC}, I_{TS}, \) and \(I_{TC} \) are the integrated intensities of diffraction peaks associated with TiSiC\(_2 \) (104) at \(2\theta = 39.548^\circ \), TiSi\(_3 \) (102) at \(2\theta = 37.565^\circ \), and TiC (111) at \(2\theta = 35.918^\circ \), respectively [25,41]. The equations derived by Zou et al. [41] were based on the theory of X-ray diffraction, in that the diffraction intensity of \(i \)th phase is a function of the mass fraction of the \(i \)th phase in the sample and the overall absorption coefficient of the sample. The equations were specifically applied for a quantitative evaluation of the contents of three coexisting phases; namely, TiSiC\(_2 \), TiSi\(_3 \), and TiC. The constants of the equations were experimentally determined from the XRD patterns of the powder mixture samples, which were blended from pure TiSiC\(_2 \), TiSi\(_3 \), and TiC at weight ratios of 2:4:4, 3:2:5, 4:3:3, and 5:4:1. Representative reflections of TiSiC\(_2 \) (104), TiSi\(_3 \) (102), and TiC (111) were chosen because they did not overlap with other peaks in the XRD patterns [41].

3. Results and Discussion
3.1. Combustion Wave Kinetics

Experimental observations of this study indicated that combustion wave behavior of the sample compact apparently varied with the TiC content in the starting mixture. For
the 3Ti-Si-2C stoichiometric sample with TiC of \(x = 0.2 \), Figure 1a shows that upon ignition, a distinct combustion front formed and propagated downward in a self-sustaining manner. As revealed in Figure 1a, the combustion wave traversed the entire sample in about 1.83 s and a slightly bent deformation of the burned sample was observed, perhaps due to a liquid phase being formed during the SHS process. With an increase in TiC content to \(x = 0.7 \), as presented in Figure 1b, the combustion wave exhibited a spinning propagation mode. According to Ivleva and Merzhanov [42], this is because the heat flux liberated from self-sustaining combustion is no longer sufficient to maintain the steady propagation of a planar front. There are both thermodynamic and kinetic reasons that provide the basis for departure from a steady condition [43]. Thermodynamic considerations arise from the degree of exothermicity of the reaction. Kinetic reasons are largely attributed to insufficient reactivity due to the presence of diffusion barriers. The spinning combustion wave observed in Figure 1b could have been primarily caused by the dilution effect of TiC on reaction exothermicity, which resulted in a longer combustion spreading time of about 4.10 s. It should be noted that the addition of extra Si (\(y = 1.2 \)) and Al (\(z = 0.1 \)) had almost no effect on the combustion behavior.

![SHS images](image)

Figure 1. Time sequences of recorded SHS images illustrating the propagation of self-sustaining combustion waves of Al-free samples with (a) TiC of \(x = 0.2 \) and Si of \(y = 1 \) and (b) TiC of \(x = 0.7 \) and Si of \(y = 1 \). The increase in TiC reduced the combustion intensity and decelerated the combustion wave.

The enthalpy of reaction (\(\Delta H_r \)) and adiabatic combustion temperature (\(T_{ad} \)) of Equation (1) with \(y = 1 \) and \(z = 0 \) were calculated as a function of the TiC content (i.e., \(x = 0 \)– 0.7) from the energy balance equation with thermochemical data [44,45] and plotted in Figure 2. For the TiC-free sample (\(x = 0 \)), Figure 2 shows that the reaction had the largest \(\Delta H_r \) of \(-448 \) kJ and the highest \(T_{ad} \) of about 2860 K. The increase in TiC content from \(x = 0.1 \) to 0.7 led to a decrease in \(\Delta H_r \) from \(-430 \) to \(-320 \) kJ and a considerable decline in \(T_{ad} \) from 2754 K to 2182 K. The calculated results of Figure 2 provide an explanation for the observed combustion behavior.
Figure 2. Enthalpies of reaction (ΔH_r) and adiabatic combustion temperatures (T_{ad}) of Equation (1) as a function of number of moles of TiC.

Figure 3 plots the temperature profiles measured from the samples without extra Si and Al, but containing different amounts of TiC. A temperature profile detected from a TiC-free element powder compact ($x = 0$) was included for comparison. All profiles exhibited a steep temperature rise followed by a rapid descent, which is typical of the SHS reaction that features a fast combustion wave and a thin reaction zone. The peak value was considered as the combustion front temperature (T_c). Due to the dilution effect of TiC on combustion, Figure 3 shows a decrease in peak combustion temperature from 1464 °C for the TiC-free sample to about 1200 °C for the TiC-containing sample of $x = 0.7$. The descending trend was consistent with the calculated adiabatic temperature. On the other hand, the addition of extra Si and a small amount of Al essentially had little influence on the combustion temperature. Experimental measurements indicated that the temperature variation induced by adding extra Si and Al was within ±20 °C of the value detected from the 3Ti-Si-2C stoichiometric sample.

Figure 3. Effect of TiC content on the combustion temperature of reactant compacts for synthesis of Ti$_3$SiC$_2$.

It was found that the reaction front temperatures of the samples with $x = 0$, 0.2, and 0.4 were above the lowest eutectic point (1330 °C) of the Ti–Si mixture. This justified the
reaction mechanism proposed by Gauthier et al. [46], which suggested that Ti₃SiC₂ is formed through the interaction of a Ti–Si liquid phase with solid TiC. However, the peak combustion temperatures of the TiC-added samples of x = 0.5, 0.6, and 0.7 varied between 1200 and 1300 °C; therefore, the formation of Ti₃SiC₂ could have been dominated by solid-phase reactions. For a mechanism involving no liquid phases [47,48], Ti₃SiC₂ is proposed to form through two intermediates, TiCₓ and Ti₅Si₃Cₓ, reacting with free silicon and carbon, respectively. This implies that an increase in TiC content in the starting composition could lead to a transition of the governing reaction mechanism from a liquid–solid scenario to a solid-state mode.

It was proposed that the reaction mechanism of Ti₃SiC₂ formation in the Ti-Si-C system could be initiated by the reaction of Ti with C as Equation (2), followed by the interaction between Ti and Si as Equation (3). These two reactions are highly exothermic and produce TiC and Ti₅Si₃ as the precursors. Finally, the formation of Ti₃SiC₂ is via a reaction involving TiC, Ti₅Si₃, and Si, as shown in Equation (4).

\[
\text{Ti} + \text{C} \rightarrow \text{TiC} \quad (2)
\]
\[
5\text{Ti} + 3\text{Si} \rightarrow \text{Ti}_5\text{Si}_3 \quad (3)
\]
\[
2\text{TiC} + 0.2\text{Ti}_5\text{Si}_3 + 0.4\text{Si} \rightarrow \text{Ti}_3\text{SiC}_2 \quad (4)
\]

The effects of TiC, Si, and Al on the combustion front propagation velocity are presented in Figure 4, indicating a substantial decrease in the flame-front speed with TiC content from 6.7 mm/s for the elemental 3Ti-Si-2C sample to 2.3 mm/s for the TiC-containing sample of x = 0.7. As the layer-by-layer heat transfer from the reaction zone to an unburned region plays an important role in establishing combustion wave behavior, the propagation speed is strongly affected by the combustion front temperature. Such a great decrease in the combustion wave velocity could be a consequence of the dilution effect of TiC on combustion and the change in the reaction mechanism from a liquid–solid reaction mode to one dominated by solid-phase species, as discussed above. In particular, the combustion wave of the sample with x = 0.7 propagated in a spinning manner, which prolonged the total reaction time and reduced the propagation rate.

![Figure 4](image-url)

Figure 4. Effects of TiC, Si, and Al on the combustion front velocity of reactant compacts for synthesis of Ti₃SiC₂. Combustion velocity was strongly affected by TiC content, but little influenced by extra Si and Al.
In addition, Figure 4 reveals that the addition of extra Si (y = 1.2) and Al (z = 0.1) had relatively minor effects on combustion velocity. The combustion velocity of the sample with extra Si of 20% was very close to that with stoichiometric Si. The addition of Al generally increased the combustion velocity by about 5%, possibly due to the formation of a liquid phase in the Ti-Si-C-Al system [32]. It should be noted that extra Si and Al also had little influence on the combustion temperature.

3.2. Composition and Microstructure Analyses of Synthesized Products

Figure 5a,b show XRD patterns of the final products synthesized from the elemental 3Ti-Si-C sample and the TiC-containing sample of x = 0.5, respectively. No extra Si and Al were employed in the samples of Figure 5. The final products were composed of three constituent phases, Ti$_3$SiC$_2$, TiC, and Ti$_5$Si$_3$. The diffraction peak intensity of Ti$_3$SiC$_2$ relative to that of either TiC or Ti$_5$Si$_3$ is noticeably amplified in Figure 5b when compared with that of Figure 5a. This justified the role of TiC as the reactant in enhancing the formation of Ti$_3$SiC$_2$ by the SHS process because TiC is one of two major intermediates to form Ti$_3$SiC$_2$.

The effects of Si and Al on the formation of Ti$_3$SiC$_2$ can be seen in Figure 6, which presents XRD spectra for TiC-containing samples of x = 0.5 with excess Si and the addition of Al. Figure 6a reveals that for the Si-rich sample without Al additions, the dominancy of Ti$_3$SiC$_2$ over TiC and Ti$_5$Si$_3$ was stronger than that observed in Figure 5b. This indicated that the sample with Si in excess of 20 mol.% improved the yield of Ti$_3$SiC$_2$ as extra Si compensated for the evaporation loss of Si at high temperatures. For the Si-rich/Al-added sample, Figure 6b indicates that the addition of a small amount of Al further augmented the XRD peak intensity of Ti$_3$SiC$_2$. According to Zhang et al. [32], Al can aid the formation of a liquid phase in the Ti-Si-C-Al system, and the liquid facilitates the diffusion of Ti and Si atoms and promotes the evolution of Ti$_3$SiC$_2$. As a reaction promoter, Sun et al. [33] pointed out that Al of a small quantity could evaporate from the grain boundary, rather than forming a solid solution in Ti$_3$SiC$_2$.

![Figure 5. XRD patterns of the products synthesized from samples with composition parameters of (a) x = 0, y = 1, and z = 0 and (b) x = 0.5, y = 1, and z = 0.](image-url)
Figure 6. XRD patterns of the products synthesized from samples with composition parameters of (a) $x = 0.5$, $y = 1.2$, and $z = 0$ and (b) $x = 0.5$, $y = 1.2$, and $z = 0.1$.

The weight percentages of Ti$_3$SiC$_2$, TiC, and Ti$_5$Si$_3$ in the products associated with the three initial sample compositions were calculated and are presented in Figure 7a–c. For the stoichiometric samples with Ti:Si:C = 3:1:2 (i.e., $y = 1$ and $z = 0$), Figure 7a shows that for the TiC-free sample, the resulting product was composed of 50 wt.% Ti$_3$SiC$_2$, 41 wt.% TiC, and 9 wt.% Ti$_5$Si$_3$. The TiC-containing sample was found to increase the formation of Ti$_3$SiC$_2$; a maximum yield of 67 wt.% was detected at $x = 0.5$, in which the fractions of the other two phases were 26 wt.% TiC and 7 wt.% Ti$_5$Si$_3$. However, a further increase in the TiC content to $x = 0.6$ and 0.7 decreased the yield percentage of Ti$_3$SiC$_2$, possibly due to a reduced reaction temperature.

For the Si-rich samples of $y = 1.2$ and $z = 0$, the variations in Ti$_3$SiC$_2$, TiC, and Ti$_5$Si$_3$ fractions in the final products with the number of moles of TiC in the reactants are presented in Figure 7b. The contribution of excess Si to the production of Ti$_3$SiC$_2$ was justified, and the fraction of Ti$_3$SiC$_2$ reached between 66 and 72 wt.% for the TiC-containing samples. In addition, the content of TiC was about 25–27 wt.% and that of Ti$_5$Si$_3$ was around 5–7 wt.% for the products of the Si-rich samples.

The formation of Ti$_3$SiC$_2$ was further improved by the Si-rich/Al-added samples ($y = 1.2$ and $z = 0.1$). As unveiled in Figure 7c, the yield fraction of Ti$_3$SiC$_2$ exceeded 80 wt.% for the samples initially containing TiC between $x = 0.3$ and 0.6. The highest yield of Ti$_3$SiC$_2$, reaching 85 wt.%, was obtained from the sample of $x = 0.5$ and the product also contained 11 wt.% TiC and 4 wt.% Ti$_5$Si$_3$. Even for the TiC-free sample, as shown in Figure 7c, the fraction of Ti$_3$SiC$_2$ increased up to 78 wt.%.

Figure 8 makes a comparison of the yield fractions of Ti$_3$SiC$_2$ between the samples of three different compositions. It was evident that both extra Si and Al contributed to the formation of Ti$_3$SiC$_2$, and a larger increase in the yield percentage was achieved by the addition of Al. In this study, the highest yield of Ti$_3$SiC$_2$ was produced by the sample of 2.5Ti + 1.2Si + 1.5C + 0.5TiC + 0.1Al.
Figure 7. Weight fractions of Ti₃SiC₂, Ti₅Si₃, and TiC in the products synthesized from (a) stoichiometric samples of $y = 1$ and $z = 0$, (b) Si-rich samples of $y = 1.2$ and $z = 0$, and (c) Si-rich/Al-added samples of $y = 1.2$ and $z = 0.1$.

Figure 8. Variations in weight percentage of Ti₃SiC₂ formed in the final products with initial TiC content, excess Si, and Al additions.

The SEM image and EDS spectrum illustrated in Figure 9 display the fracture surface microstructure and atomic ratio of the product synthesized from the TiC-containing and Si-rich samples of $x = 0.5$, $y = 1.2$, and $z = 0$. Plate-like grains forming a layered microstructure, which is typical of the MAX ternary carbide, are clearly seen; the Ti₃SiC₂ platelets
were 0.5–1.0 μm in thickness and about 10 μm in length. An atomic ratio of Ti:Si:C = 52.6:13.8:33.6 matching well with Ti3SiC2 was obtained from the EDS analysis. The microstructure and EDS element spectrum presented in Figure 10 were associated with the product of the Si-rich/Al-added samples of x = 0.5, y = 1.2, and z = 0.1. Similarly, plate-like Ti3SiC2 grains closely packed into a laminated configuration were observed. The atomic ratio of Ti:Si:C = 51.6:15.0:33.4 provided by EDS confirmed the formation of Ti3SiC2.

Figure 9. SEM image and EDS spectrum of the product synthesized from the Si-rich sample with composition parameters of x = 0.5, y = 1.2, and z = 0.

Figure 10. SEM image and EDS spectrum of the product synthesized from the Si-rich/Al-added sample with composition parameters of x = 0.5, y = 1.2, and z = 0.1.

Table 1 summarizes the Ti3SiC2-related products fabricated by various methods with different starting reactant mixtures. For the formation of single-phase Ti3SiC2, SPS and reactive sintering are suitable methods. These two methods require high operating temperatures (about 1300–1500 °C) for 20–30 min or even 2–3 h. On the other hand, the SHS technique is an energy-efficient and time-saving fabrication route, and is suitable for the synthesis of Ti3SiC2/TiC/TiSi3 composites. As listed in Table 1, the addition of a small amount of Al has frequently been applied to improve the yield of Ti3SiC2 and slightly Si-rich mixtures have been adopted. Moreover, TiC and SiC have also been considered as the reactants in different fabrication methods.
Table 1. Ti$_2$SiC$_x$ products fabricated by different methods with various starting reactants.

<table>
<thead>
<tr>
<th>Methods</th>
<th>Reactant Mixtures</th>
<th>Synthesized Products</th>
<th>Refs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPS (1500 °C for 20 min)</td>
<td>3Ti/SiC/C</td>
<td>Ti$_2$SiC/TiC/TiSi$_5$ composite</td>
<td>[20]</td>
</tr>
<tr>
<td>SPS (1400 °C for 15 min)</td>
<td>Ti/1.1Si/2TiC/0.2Al; 2.2Si/3TiC/0.2Al</td>
<td>Pure Ti$_2$SiC$_x$</td>
<td></td>
</tr>
<tr>
<td>SPS (1280 °C for 36 min)</td>
<td>3Ti/Si/2C/0.2Al</td>
<td>Pure Ti$_2$SiC$_x$</td>
<td></td>
</tr>
<tr>
<td>SPS (1200 °C for 30 min)</td>
<td>3Ti/SiC/C/0.15Al</td>
<td>Pure Ti$_2$SiC$_x$</td>
<td></td>
</tr>
<tr>
<td>Reactive sintering (1350 °C for 3 h)</td>
<td>3TiH$_2$/1.2Si/2C</td>
<td>Pure Ti$_2$SiC$_x$</td>
<td></td>
</tr>
<tr>
<td>Reactive sintering (1280 °C for 1 h)</td>
<td>4Ti/TiC/2SiC/0.2Al</td>
<td>Ti$_2$SiC$_x$/TiC composite</td>
<td></td>
</tr>
<tr>
<td>Reactive sintering (1400 °C for 2 h)</td>
<td>3Ti/1.5Si/1.9C/0.5Al</td>
<td>Pure Ti$_2$SiC$_x$</td>
<td></td>
</tr>
<tr>
<td>Reactive sintering (1300 °C for 2 h)</td>
<td>Ti/Si/2TiC/0.2Al</td>
<td>Pure Ti$_2$SiC$_x$</td>
<td>[41]</td>
</tr>
<tr>
<td>SHS</td>
<td>3Ti/Si/2C, Ti/Si/2TiC, and 3Ti/SiC/C</td>
<td>Ti$_2$SiC$_x$/TiC/TiSi$_5$ composite</td>
<td>[25]</td>
</tr>
<tr>
<td>SHS</td>
<td>3Ti/Si/2C/0.2Al</td>
<td>Ti$_2$SiC$_x$/TiC composite</td>
<td>[36]</td>
</tr>
<tr>
<td>SHS</td>
<td>2.5Ti/1.2Si/1.5C/0.5TiC/0.1Al</td>
<td>Ti$_2$SiC$_x$/TiC/TiSi$_5$ composite</td>
<td>This work</td>
</tr>
</tbody>
</table>

4. Conclusions

The formation of Ti$_2$SiC$_x$ was investigated with the SHS method using TiC-containing reactant compacts with three compositions: an exact 312 stoichiometry of Ti$_2$SiC$_x$, a composition with excess Si of 20 mol.% at Ti$_2$SiC = 3:1:2:2, and a Si-rich/Al-added composition of Ti$_2$SiC$_x$/Al = 3:1:2:2:0.1. The initial reactant composition could be expressed by (3 − x)Ti + ySi + (2 − x)C + xTiC + zAl, with x ranging from 0 to 0.7, y = 1.0 and 1.2, and z = 0 and 0.1.

Experimental evidence indicated that solid-state combustion was highly exothermic and a self-sustaining combustion synthesis process was readily achieved upon ignition. Combustion wave velocity and reaction temperatures substantially decreased from 6.7 to 2.3 mm/s and 1464 to 1200 °C, respectively, as the TiC content in the green samples increased from x = 0 to x = 0.7. This was mainly attributed to the dilution effect of TiC on combustion. The XRD analysis identified that final products were composed of Ti$_2$SiC$_x$ and two intermediate phases, TiC and TiSi$_5$. When compared with TiC-free samples (x = 0), the TiC-containing samples benefited the formation of Ti$_2$SiC$_x$. The optimum content of TiC was found to be x = 0.5, beyond which the yield of Ti$_2$SiC$_x$ declined due to a decrease in combustion temperature. Even though extra Si (y = 1.2) and Al (z = 0.1) had almost no effect on combustion wave velocity and temperature, they enhanced the formation of Ti$_2$SiC$_x$ to a great extent. Considering the TiC-containing samples of x = 0.5, the weight fraction of Ti$_2$SiC$_x$ formed in the final products increased from 67 wt.% for the sample of Ti$_2$SiC$_x$/Al = 3:1:2:2 to 72 wt.% for the Si-rich sample, and further to 85 wt.% for the Si-rich/Al-added sample. This justified the contribution of excess Si to subsidize for its loss and the role of Al as an effective reaction promoter. The as-synthesized Ti$_2$SiC$_x$ grains were in a plate-like shape with a thickness of 0.5–1.0 µm and length of about 10 µm. The Ti$_2$SiC$_x$ grains were closely stacked into a laminated configuration, which is typical of a MAX microstructure.

One of main limitations to further commercialize MAX phases is the development of a suitable synthesis process to produce large quantities of highly pure MAX powders at an affordable cost [11]. Synthesis of MAX powders by the SHS method was shown to successfully produce industrial quantities at reasonable prices. More efforts and attention are
required to synthesize and scale-up MAX phase powders of sufficient purities or desired compositions. This study represents a substantial advance on the formation of TiSiC₃/TiC/Ti₃Si₃ composites with controllable compositions by SHS.

Author Contributions: Conceptualization, C.-L.Y.; methodology, C.-L.Y. and K.-L.L.; validation, C.-L.Y. and K.-L.L.; formal analysis, C.-L.Y. and K.-L.L.; investigation, C.-L.Y. and K.-L.L.; resources, C.-L.Y.; data curation, C.-L.Y. and K.-L.L.; writing—original draft preparation, C.-L.Y. and K.-L.L.; writing—review and editing, C.-L.Y. and K.-L.L.; supervision, C.-L.Y.; project administration, C.-L.Y.; funding acquisition, C.-L.Y. All authors have read and agreed to the published version of the manuscript.

Funding: This research work was funded by the National Science and Technology Council of Taiwan under the grant of NSTC 110-2221-E-035-042-MY2.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data presented in this study are available in the article.

Conflicts of Interest: The authors declare no conflict of interest.

References

26. Sun, H.Y.; Kong, X.; Yi, Z.Z.; Wang, Q.B.; Liu, G.Y. The difference of synthesis mechanism between TiSiC\textsubscript{2} and TiAlC\textsubscript{2} prepared from Ti/M/C (M = Al or Si) elemental powders by SHS technique. *Ceram. Int.* 2014, 40, 12977–12981.

40. Yeh, C.L.; Lin, J.Z. Combustion synthesis of Cr-Al and Cr-Si intermetallics with Al2O3 additions from Cr2O3-Al and Cr2O3-Al-Si reaction systems. *Intermetallics* 2013, 33, 126–133.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.