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Abstract: A review of studies on the electroplastic effect on the deformation process in various
conductive materials and alloys for the last decade has been carried out. Aspects, such as the
mode and regimes of electric current, the practical methods of its introduction into materials with
different deformation schemes, features of deformation behavior accompanied by a pulsed current of
different materials, structural changes caused by the combined action of deformation and current,
the influence of structural features on the electroplastic effect, changes in the physical, mechanical,
and technological properties of materials subjected to plastic deformation under current, possible
mechanisms and methods of physical and computer modeling of the electroplastic effect, and potential
and practical applications of the electroplastic effect are considered. The growing research interest
in the manifestation of the electroplastic effect in such new modern materials as shape-memory
alloys and ultrafine-grained and nanostructured alloys is shown. Various methods of modeling the
mechanisms of electroplasticity, especially at the microlevel, are becoming the most realistic approach
for the prediction of the deformation behavior and physical and mechanical properties of various
materials. Original examples of the practical application of electropulse methods in the processes of
drawing, microstamping, and others are given.

Keywords: pulsed current; deformation; electroplastic effect; deformation behavior; microstructure;
properties; mechanisms of electroplasticity; modeling

1. Introduction

The physical phenomena that occur when a pulsed current is applied to solid metal
materials are well known. These include the thermal effect, the appearance of a magnetic
field (and, as a result, skin and pinch effects), vibration, etc. [1]. Often, such phenomena
occur simultaneously. The most notable among the listed effects is the thermal effect, which
is often used in electric pulse treatment (EPT) technologies to change various properties
due to the structural changes associated with the effect [2,3]. Note that EPT usually refers to
technologies in which the object is not subjected to external deformation treatments. In the
case of a combined effect on the material of simultaneously pulsed current and plastic defor-
mation (for example, rolling, drawing, pressing, bending, tension, and compression), such
processes are called electrically assisted manufacturing (EAM) or electroplastic deformation
(EPD) in contrast to EPT. Those processes will be discussed in detail in this review.

The EPD is based on all the above mechanisms in interaction with plastic deformation
(that is, with the movement of dislocations), which can be enhanced, leading to increased
deformability and carried out at lower stresses due to the occurrence of the electroplastic ef-
fect (EPE) [4]. EPE is a phenomenon that depends on many external and internal factors [5].
The external factors include those associated with deformation. They are the scheme of
the stressed strain state, strain rate, strain temperature, pulse-current modes, and regimes.
Factors, such as the material, its structure, and phase composition, are internal factors.
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Unlike many other reviews [6,7] related to one of the areas in the field of EPE, this
review presents several important aspects in a comprehensive manner, allowing for an
overview of the main problems in the study and application of EPE.

External and internal factors affecting the deformation behavior and mechanical
properties of various materials, the effect of EPD on the microstructure and properties
and vice versa, and the effect of microstructure features on EPE are considered in this
discussion. In particular, attention is paid to the effect of grain size in the nanoscale,
dynamic recrystallization [8], crystallographic texture [9], effect on dislocation density [10],
phase transformations [11], and aging effects [12].

Information on modeling and the most accepted EPE mechanisms is given [6,13]. The
importance of the transition of modeling from the macrolevel to the micro- and atomic scale
with the use of molecular dynamics methods and ideas about new defects in the crystal
lattice is emphasized.

Examples are given on the application of pulsed electric current to traditional metal
forming processes such as rolling, drawing, stamping, and dimensional processing [14], as
well as to new technologies of sintering [15], friction welding, pressure welding, additive
technologies, and microforming.

The benefit from the use of EPE in this area is primarily associated with an increase
in deformability [16], a decrease in the applied forces and temperature of deformation
(from high to moderate and even room temperature), and the possibility of combining
deformation and heating. In some cases, an increase in functional properties associated
with an improvement in the uniformity of the structure can be observed.

Overall, the review considers external and internal factors affecting the deformation
behavior, microstructure, and properties of different materials. Information on modeling,
the most accepted EPE mechanisms, and application examples are also provided.

2. Methods of Current Introduction

For the study or application of EPE, it is important to understand and regulate the
influence of many external factors. Such factors should include the source (generator) of
current pulses, the current mode and current regimes, and methods of current supply.

Today, three main modes of electric current are known—direct, alternating, and pulsed.
Below, we will consider the factors related to pulse current, since the first two modes are
less effective for the practical application of EPE. A feature of the pulse current is the
variety of adjustable parameters. These include direction, density, frequency, duration,
duty cycle, and pulse shape. The passage of pulsed current is accompanied by various
phenomena: thermal effect, electro- and magnetoplastic effects, electric and magnetic fields,
and vibration. These phenomena are well studied and find practical applications. One of
them, namely EPE, is considered an alternative to heat treatment, as well as deformation
methods of structure materials [17].

The source of the pulse current is a generator on a thyristor converter [18], the
schematic diagram and appearance of which are shown in Figure 1. The most impor-
tant technical characteristics of the generator are the value of the maximum output current
Io, the period T (or the frequency ν), and the minimum pulse duration tp (Figure 2). Various
pulse forms are shown in Figure 2b. Currently, known commercial generators with a power
of <60 kW have an output of Io = 1–5 kA, a frequency of 1–1000 Hz, and a pulse duration of
tp = 1–100,000 µs at a voltage of 10–15 V. [Montecchio Maggiore, Vicenza, Italy; LLC NPCC
“Cursor” RF 142184 Klimovsk-4 Moscow region] [19,20].

Another parameter of the pulse current is the duty cycle Q = T/tp = 1/ (υ × tp) (T is
the period, s; υ is the pulse frequency, Hz; tp is the pulse duration, s). A multiple increase
in the duty cycle Q >> 1 actually means the transition of the pulse-current mode to the
single pulse mode with minimal thermal effect of the current or even the absence of it.
Accordingly, a decrease in the duty cycle up to Q = 1 means the action of a multi-pulse
current, which should contribute to an increase in the deformation temperature from room
to high.
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Figure 1. Pulse-current generator: (a) electrical scheme; (b) appearance [18]. 
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Figure 2. Pulse-current parameters (a) and possible pulse forms (b). 

Studies on the effect of pulse-current duty cycle on EPE are extremely rare and are 
devoted to applied issues of application to high-speed rolling [20] or to the EPE depend-
ence under tension in coarse-grained (CG) and ultrafine-grained (UFG) titanium [21,22]. 
For a wide range of duty cycles, it was shown that pulsed current during the tension of 
CG titanium can lead not only to traditional softening but also to hardening [21]. How-
ever, with a low-duty cycle in both types of titanium, only a decrease in flow stresses 
occurred [22].  

The direction and polarity of the current are also considered important factors. It is 
known from practice that the direction of the pulse current can coincide, be opposite to 
the direction of deformation (rolling and drawing), or even be oriented at an angle (bend-
ing and stamping) [23]. It is assumed that the EPE is maximal when the electron drift 
velocity coincides with the direction of the external force. In addition, the influence of 
polarity on the EPE was demonstrated, which indicates the presence of the “electron 
wind”. In this case, the EPE dependence was linear, not quadratic, for the thermal effect 
[20,24,25]. This was especially well manifested in relaxation experiments on a Zn single 
crystal with a size of ∅1 × 30 mm2 using tension at a temperature of 78 K and a current 
density of 400 A/mm2 (Figure 3). It is also noted that unipolar pulses have a stronger effect 
on deformable crystals than bipolar pulses with the same total pulse area, and, accord-
ingly, the same thermal effect [20].  

Figure 1. Pulse-current generator: (a) electrical scheme; (b) appearance [18].
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Studies on the effect of pulse-current duty cycle on EPE are extremely rare and are
devoted to applied issues of application to high-speed rolling [20] or to the EPE dependence
under tension in coarse-grained (CG) and ultrafine-grained (UFG) titanium [21,22]. For
a wide range of duty cycles, it was shown that pulsed current during the tension of CG
titanium can lead not only to traditional softening but also to hardening [21]. However, with
a low-duty cycle in both types of titanium, only a decrease in flow stresses occurred [22].

The direction and polarity of the current are also considered important factors. It is
known from practice that the direction of the pulse current can coincide, be opposite to the
direction of deformation (rolling and drawing), or even be oriented at an angle (bending
and stamping) [23]. It is assumed that the EPE is maximal when the electron drift velocity
coincides with the direction of the external force. In addition, the influence of polarity
on the EPE was demonstrated, which indicates the presence of the “electron wind”. In
this case, the EPE dependence was linear, not quadratic, for the thermal effect [20,24,25].
This was especially well manifested in relaxation experiments on a Zn single crystal with
a size of ∅1 × 30 mm2 using tension at a temperature of 78 K and a current density of
400 A/mm2 (Figure 3). It is also noted that unipolar pulses have a stronger effect on
deformable crystals than bipolar pulses with the same total pulse area, and, accordingly,
the same thermal effect [20].

It is necessary to note an important requirement for the maximum current produced by
the pulse generator. The analysis of articles on the study of EPE in various materials shows
that the minimum current density at which there is a noticeable decrease in deformation
forces depends on the alloy’s nature and its electrical resistivity. This leads to the concept of
a critical (threshold) current density jcr when EPE occurs [26]. It is about 10–500 A/mm2 in
materials with high resistivity and more than 1000 A/mm2 in materials with low electrical
resistance (copper and aluminum). As a result, for example, for copper billets with a
cross-section of about 10 mm2 a generator producing a current of at least I = 10,000 A will



Materials 2023, 16, 6270 4 of 20

be required. Consequently, there is a limit to the use of pulsed current. Hence, electroplastic
rolling will be possible only in semifinished products of thin cross sections.
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Figure 4. An example of clamping devices for tensile tests made of (a) copper [19]; (b) ceramics [27]. 

Figure 3. Time dependence of stress relaxation in a Zn single crystal: 1—without current; 2—with
current of different directions (∩—unipolar pulses, ∪—bipolar pulses) [20].

Let us consider the features of introducing current into a material, which depends on
the purpose of the study or practical application. In the case of studying the behavior of
materials in the processes, such as tension, compression, bending, etc., special clamps (or
devices) are used to avoid sparking. As a rule, they are made of copper [19] or ceramics
(Figure 4) [27]. If the use of current during rolling (or drawing) processes is considered,
then the schemes shown in Figure 5 are used. In this case, the current is supplied from roll
to roll (Figure 5a) [28] or using sliding contacts (Figure 5b) [20].
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The modes and regimes of the pulsed current considered above, as well as the methods
of its introduction into the workpieces, are the most important EPD parameters. They regu-
late the ratio of the contributions of various mechanisms and, accordingly, the technological
efficiency, structure, and operational properties of deformable materials.
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3. Deformation Behavior

In contrast with the usual mechanical properties of materials subjected to EPD, the
behavior in the process of deformation accompanied by a pulsed current is of particular
interest. It is associated with the possibility of visual in situ observation of the loading
curve and a deeper understanding of the current effects. The traditional method is tension,
which allows adjustment of the parameters for both deformation and the current. The
first experiments were performed by the tension of Zn single crystals with single-current
pulses. At the same time, downward stress jumps were observed, both in the elastic and
elastic–plastic deformation region (Figure 6a) [20]. An increase in the pulse frequency at
the same rate of tension led to a decrease in the amplitude of a single jump, the total force,
and the coefficient of deformation hardening, which the authors explained by the depletion
of the dislocation structure created by active loading of the crystal.
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j = 6 A/mm2.

Single-current pulses, in contrast with multipulse and direct current, are capable of
causing the effects of strengthening and increasing plasticity, which are clearly visible for an
hcp titanium polycrystal (Figure 6b) [5]. A change in the current mode from single pulses
to multipulse/direct current sharply reduces the plasticity of polycrystalline titanium.
Possible reasons for the decrease in ductility in titanium could be low thermal conductivity
and strong neck formation, which contribute to a sharp increase in the current density
and, as a consequence, temperature. The hardening effect from a single-current mode is
greater, when greater the number of current pulses. Recently, a similar hardening effect
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at sufficiently low pulsed current densities j = 5 A/mm2 was observed in the Ti-7Al alloy,
which is uniquely suited for uncoupling Joule heating and EPE [10]. The authors believe
that strengthening can be caused by the cross slip of dislocations and twinning.

The original and traditionally investigated EPE in structurally stable metals and alloys
manifests itself in the form of downward stress jumps in tensile curves. However, in
metastable shape-memory alloys (SMAs) that undergo strain-induced transformations,
single-current pulses at different tension stages can lead to the opposite direction of stress
jumps. For example, in coarse-grained (CG) TiNi alloys, the sequence of upward and
downward jumps changes depending on the phase composition (Figure 7) [5]. In the
Ti49.3Ni50.7 alloy, which is austenitic at room temperature, the stress jumps are directed
upward at the pseudo-yielding stage and are caused by the direct A→M transformation.
On the contrary, the work-hardening stage showed the downward stress jumps that are
directly related to EPE. In the Ti50Ni50 alloy, which is martensitic at room temperature, the
stress jumps are directed downward at the stage of martensite reorientation and are caused
by typical EPE. An increase in deformation leads to the reverse M→ A transformation
and, accordingly, to the shape-memory effect (SME). The difference in the stress jumps
amplitude at the same current regime is associated with the morphology of the A and M
phases, which are equiaxial and lamellar, respectively.
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Most EPE studies are performed on materials in a crystalline state with a large grain
size. Due to the differences in amorphous and nanocrystalline materials, as well as their
need for deformation treatment, the effect of structural state and grain size on EPE is of
interest. In Figure 7b, an example of tension curves by a single pulse current is given for
a melting FeSiB spun film in the amorphous and nanocrystallized state with a grain size
of 10 nm achieved by annealing at 700 ◦C for 10 ms. Even though the thermal effect is
3–4 times greater in the amorphous state (due to the higher electrical resistivity [29]), EPE
appears only in crystalline film. This is consistent with the proposed EPE mechanism of
electron wind, which is realized only in the presence of mobile dislocations. It is known
that there are no dislocations in the amorphous state. Something similar was observed on
an amorphous cobalt-based alloy under current density j = 4 × 103 A/mm2. In this case,
the authors explained the effect by structure relaxation [30].

Recently, a large number of publications have appeared on the relaxation phenomena
of structure and deformation at the moment of stopping the test without current [31,32] or
transmission of single-current pulses observed on tensile curves [33]. In almost all cases,
relaxation contributed to the improvement of plasticity.

As mentioned earlier, the pulse-current duty cycle, as one of the important parameters,
is emerging in EPE research [21,22,34]. Figure 8 shows the stress–strain curves of aluminum
bronze under the current of different duty cycles and densities. They show that a change in
the duty cycle in the range of 10–20,000 makes it possible to regulate stress reduction at
different current densities [34].



Materials 2023, 16, 6270 7 of 20

Materials 2023, 16, x FOR PEER REVIEW 7 of 21 
 

 

there are no dislocations in the amorphous state. Something similar was observed on an 
amorphous cobalt-based alloy under current density j = 4 × 103 A/mm2. In this case, the 
authors explained the effect by structure relaxation [30]. 

Recently, a large number of publications have appeared on the relaxation phenomena 
of structure and deformation at the moment of stopping the test without current [31,32] or 
transmission of single-current pulses observed on tensile curves [33]. In almost all cases, 
relaxation contributed to the improvement of plasticity.  

As mentioned earlier, the pulse-current duty cycle, as one of the important parame-
ters, is emerging in EPE research [21,22,34]. Figure 8 shows the stress–strain curves of alu-
minum bronze under the current of different duty cycles and densities. They show that a 
change in the duty cycle in the range of 10–20,000 makes it possible to regulate stress re-
duction at different current densities [34].  

  
(a) (b) 

Figure 8. Tensile stress–strain curves under current density 1600 А/mm2 (a) and 200 А/mm2 (b) at 
duty cycle: 1—no current; 2—q = 20,000; 3—q = 12,000; 4—q = 4000; 5—q = 100; 6—q = 20; 7—q = 10 
[34]. 

As follows from the above examples, the deformation behavior of materials under 
tension accompanied by a pulsed current can vary from typical, often observed, softening 
to a weak, but noticeable, hardening. In this case, plasticity, as a rule, decreases due to 
the formation of a neck. The electroplastic effect exists in the form of the flow stresses or 
the amplitude of stress jumps decreasing. It rises with an increase in the duty cycle, and 
achieves a current density above the critical one. 

4. Microstructure Features 
The physical basis of EPD is the interaction of pulsed current (or “electron wind”) 

with defects in the crystal lattice during the deformation of materials (EPE), as well as the 
occurrence of concomitant thermal and pinch effects. Therefore, it is of particular interest 
to study the features of the microstructure under the simultaneous influence of plastic 
deformation and pulsed current. A comparison of structural features during deformation 
with current and without current will allow a better understanding of the accompanying 
effects nature. 

The electrical and thermal energy supply usually leads to structural rearrangements, 
such as a decrease in dislocation density [35], the appearance of twins [36], dynamic re-
crystallization [37], grain refinement [38], the evolution of crystallographic texture [39], 
and the formation of oriented microstructures [40,41], as well as the redistribution of in-
clusions and the effects of aging [42]. 
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(b) at duty cycle: 1—no current; 2—q = 20,000; 3—q = 12,000; 4—q = 4000; 5—q = 100; 6—q = 20;
7—q = 10 [34].

As follows from the above examples, the deformation behavior of materials under
tension accompanied by a pulsed current can vary from typical, often observed, softening
to a weak, but noticeable, hardening. In this case, plasticity, as a rule, decreases due to
the formation of a neck. The electroplastic effect exists in the form of the flow stresses or
the amplitude of stress jumps decreasing. It rises with an increase in the duty cycle, and
achieves a current density above the critical one.

4. Microstructure Features

The physical basis of EPD is the interaction of pulsed current (or “electron wind”)
with defects in the crystal lattice during the deformation of materials (EPE), as well as the
occurrence of concomitant thermal and pinch effects. Therefore, it is of particular interest
to study the features of the microstructure under the simultaneous influence of plastic
deformation and pulsed current. A comparison of structural features during deformation
with current and without current will allow a better understanding of the accompanying
effects nature.

The electrical and thermal energy supply usually leads to structural rearrangements,
such as a decrease in dislocation density [35], the appearance of twins [36], dynamic
recrystallization [37], grain refinement [38], the evolution of crystallographic texture [39],
and the formation of oriented microstructures [40,41], as well as the redistribution of
inclusions and the effects of aging [42].

The current slows down the deformation processes and acts on dislocations clusters,
slowing down the destruction processes and, thereby, increasing the deformability. Dis-
locations arising during deformation accumulate near the grain boundaries, which is an
obstacle to the movement of subsequent dislocations [43]. The energy impact caused by
electric current can weaken the strength of interatomic bonds, affecting the movement and
annihilation of some dislocations. Hence, an increase in plasticity occurs when the flow
stress decreases during deformation [44]. In [45], there is also a decrease in the dislocation
density in the Ti-6Al-4V alloy deformed with current compared to deformation (bending)
without current (Figure 9).

The work [36] describes the formation of twins and dislocation slip as two competing
mechanisms during deformation with applied current. Which of the mechanisms prevails
largely depends on the used parameters, including the frequency of electrical pulses. It is
shown in [46] that an essential criterion responsible for the difference between the twins
resulting from deformation and the additional application of electric current is the place
of nucleation of the twins and the location (distribution pattern) of the twins in the grain
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volume. When only mechanical load is introduced, the twins grow primarily at the grain
boundaries, forming coarse twins (Figure 10a) and insignificant parts of small twins. When
an electric current is applied, strips of thin and small twins are formed inside the grain
volume (Figure 10b).
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Studies of crystallographic texture show that electropulse action during plastic de-
formation stimulates the process of recrystallization and twinning with a change in the
orientation of fiber distribution compared to other heat treatments [47].

A number of studies show that electrical current can contribute to dynamic recrys-
tallization during deformation [48]. In [28] the structure of pure titanium was observed
during rolling with current and recrystallized grains with an average size of 8–12 µm were
found after such treatment. Recrystallization can be controlled by reduction and current
force in order to obtain the necessary grain sizes without postdeformation annealing op-
erations. Studies on a TiNi-based shape-memory alloy show the possibility of creating
a nanostructured state by varying the recrystallization temperature [49] and controlling
phase transformations when using current during rolling deformation [50]. In particular,
the effect of rolling with current on the temperatures of martensitic transformations is
shown. The relaxation mechanism of the current action is noted, which consists of a lower
intensity of deformation processes compared to cold rolling without current. For example,
it is shown that while the cold rolling of a TiNi alloy to the level of true strain e = 0.7 leads
to a suppression of the martensitic transformation, rolling with current to the same level
of deformation allows the martensitic transformation to take place (Figure 11a) [51]. At
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the same time, postdeformation annealing leads to the formation of a nanoscale structure
(40–50 nm) (Figure 11b).
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The structure refinement effect, when using a combination of rolling and current, was
also shown in pure zirconium [52] and brass [53]. It has been observed that the impact of
the pulse current leads to recrystallization with subsequent grain growth. The average
grain size in the recrystallized material was 0.5 µm, which indicates that cryogenic rolling
in combination with current is suitable for obtaining the ultrafine-grain microstructure of
Cu-30Zn brass.

A number of papers are related to the study of the electrical current effect in the
deformation process on the dissolution of secondary phases or particle formation and
aging. Thus, paper [54] shows the possibility of additional structure refinement due to the
particle formation. Work [42] describes the structural changes in 6016 aluminum alloy in
various initial states (quenched, annealed, and naturally aged) during tension with and
without current. The authors noted brittle intergranular fracture in all states; however,
they observed some differences in fracture for specimens under tension with and without
current (Figure 12). After applying the current, intergranular delamination occurs less
frequently and the discontinuous edges become longer. There is also a decrease in the
number of particles of the second phases when applying current or a possibility of their
crushing and grinding in the case of tension with current.

The fracture nature of TC11 titanium alloy under tension was investigated by the
authors in [55]. It is noted that the surface after tension without current contains a large
number of small and shallow dimples, whereas the fracture of the sample during tension
with a pulsed current contains large and deep cups, and the size of the cups increases with
the increasing current density (from 0 to 15 A/mm2).

In addition, the use of pulsed current improves the distribution of macro- and mi-
crodefects and, in some cases, can reduce or eliminate these defects in many metals
and alloys [56].

Note, that the concepts of “deformation with current—microstructure” are interde-
pendent and affect each other. In particular, the variation of the initial phase composition,
grain size, etc. will influence the deformation behavior and related effects. Thus, in [57],
the influence of grain size and current density on annealed pure copper in the process of
deformation with current is investigated. It has been shown that the effect of stress reduc-
tion decreases with increasing grain size. It was demonstrated in [58,59] that a decrease in
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grain size increases Joule heating and increases the reduction of tensile stresses with the
current in brass and Ti-6Al-4V alloy.
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It should also be noted that the authors, who do not set a task of heating with electrical
current, do not observe significant structural changes, in particular grain growth under
the simultaneous influence of current and deformation. That confirms the presence of an
athermal component of the electroplastic effect [60].

Thus, as a rule, the observed structural features during deformation with current are
local in nature and relate, for example, to small differences in grain misorientation or to the
morphology of the formation of twins [46]. This fact leads to an additional research interest
but also contributes to complications in understanding and explaining the nature of the
electroplastic effect, which, despite the variety of works on this topic, still remains open.

5. Physical–Mechanical and Technological Properties

One of the most important technological properties, which is influenced by deforma-
tion with current, is deformability. This parameter is primarily of interest to researchers
studying EPE. Due to the increase in deformability, pressure treatment becomes possi-
ble without increasing the temperatures of brittle materials that are difficult to deform
under normal conditions. A number of studies show that deformation with current can
achieve better deformability of titanium alloys [61,62], magnesium alloys [16,27,63,64], alu-
minum [65,66], shape-memory alloys based on TiNi [67,68], and some other materials [69].

A decrease in the flow stress under the pulsed current can lead to an increase in the
relative elongation of the material [70]. The paper [28] indicates a decrease in the limiting
thickness of the titanium sheet during rolling with current compared to cold rolling, which
also depends on the deformation rate, i.e., deformability decreases with increasing speed
when other parameters remain unchanged. It was shown in [71] that the difference in
elongation can reach 3–5% during tension with a current of low densities (5–10 A/mm2)
compared to tension without current in AA1050 aluminum alloy. In addition, a number
of researchers are studying the increase in deformability with current using nonstandard
test schemes, for example, shear deformation of the Ti64 alloy [72]. In [45], an increase in
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deformability of up to 52% was observed in Ti64 alloy using bending deformation under
the influence of a pulsed current.

An increase in strength with a simultaneous increase in plasticity is achieved by a
combination of deformation and current, usually due to more intensive refinement of the
microstructure. Thus, in [52], an increase in the tensile strength of pure zirconium from 450
to 600 MPa was demonstrated using a combination of rolling with current and subsequent
low-temperature annealing. At the same time, the preservation of high plasticity (about
25%) was noted. Combined processing, including rolling with current and aging, was
studied in the AZ91 alloy. The tensile strength, yield strength, and elongation to fracture
were improved by 11–12%, 10%, and 70–75%, respectively [73].

However, some researchers note a decrease in plasticity under the action of current,
but these effects are found in alloys disposed to aging [42]. The microhardness (Figure 13a)
of naturally aged 6016 aluminum alloy was reduced by a combination of rolling and current.
The parameter d in Figure 13 is the distance from the edge of the fracture along the rolling
direction after a tensile test. However, in the case of the state after quenching from 525 ◦C
in the water, the applied current led to an intensification of the aging process without
reducing its plasticity at the selected current regimes, as well as to an increase in strength
and microhardness (Figure 13b) [42]. However, strength and ductility decreased for the
alloy after natural aging, as shown in this study.

Materials 2023, 16, x FOR PEER REVIEW 11 of 21 
 

 

5. Physical–Mechanical and Technological Properties 
One of the most important technological properties, which is influenced by defor-

mation with current, is deformability. This parameter is primarily of interest to research-
ers studying EPE. Due to the increase in deformability, pressure treatment becomes pos-
sible without increasing the temperatures of brittle materials that are difficult to deform 
under normal conditions. A number of studies show that deformation with current can 
achieve better deformability of titanium alloys [61,62], magnesium alloys [16,27,63,64], 
aluminum [65,66], shape-memory alloys based on TiNi [67,68], and some other materials 
[69]. 

A decrease in the flow stress under the pulsed current can lead to an increase in the 
relative elongation of the material [70]. The paper [28] indicates a decrease in the limiting 
thickness of the titanium sheet during rolling with current compared to cold rolling, 
which also depends on the deformation rate, i.e., deformability decreases with increasing 
speed when other parameters remain unchanged. It was shown in [71] that the difference 
in elongation can reach 3–5% during tension with a current of low densities (5–10 A/mm2) 
compared to tension without current in AA1050 aluminum alloy. In addition, a number 
of researchers are studying the increase in deformability with current using nonstandard 
test schemes, for example, shear deformation of the Ti64 alloy [72]. In [45], an increase in 
deformability of up to 52% was observed in Ti64 alloy using bending deformation under 
the influence of a pulsed current. 

An increase in strength with a simultaneous increase in plasticity is achieved by a 
combination of deformation and current, usually due to more intensive refinement of the 
microstructure. Thus, in [52], an increase in the tensile strength of pure zirconium from 
450 to 600 MPa was demonstrated using a combination of rolling with current and subse-
quent low-temperature annealing. At the same time, the preservation of high plasticity 
(about 25%) was noted. Combined processing, including rolling with current and aging, 
was studied in the AZ91 alloy. The tensile strength, yield strength, and elongation to frac-
ture were improved by 11–12%, 10%, and 70–75%, respectively [73]. 

However, some researchers note a decrease in plasticity under the action of current, 
but these effects are found in alloys disposed to aging [42]. The microhardness (Figure 
13a) of naturally aged 6016 aluminum alloy was reduced by a combination of rolling and 
current. The parameter d in Figure 13 is the distance from the edge of the fracture along 
the rolling direction after a tensile test. However, in the case of the state after quenching 
from 525 °C in the water, the applied current led to an intensification of the aging process 
without reducing its plasticity at the selected current regimes, as well as to an increase in 
strength and microhardness (Figure 13b) [42]. However, strength and ductility decreased 
for the alloy after natural aging, as shown in this study. 

  
(a) (b) 

Figure 13. Microhardness of 6016 aluminum alloy after deformation with and without current: (a) 
natural aging; (b) quenching (525 °C/water) [42].  

Figure 13. Microhardness of 6016 aluminum alloy after deformation with and without current:
(a) natural aging; (b) quenching (525 ◦C/water) [42].

The effect of various combinations of current and drawing deformation on the me-
chanical properties of 308 L stainless steel was investigated in [47]. It is shown that the
samples have the highest hardness after drawing without and with short-term annealing.
The initial undeformed samples, as well as samples after drawing with subsequent electric
pulse treatment, or after standard annealing, demonstrate a lower, but similar, hardness. A
simultaneous exposure to current during the drawing process leads to the greatest decrease
in hardness (Figure 14a).

The above work [47] also demonstrates the effect of these treatments on electrical
resistance (Figure 14b). It can be seen that the resistivity after simultaneous exposure to
drawing and current is significantly higher than in the initial material state and is at the
level of a deformed material. Note the significant difference in electrical resistance that
depends on the sequence of current input: current treatment after deformation significantly
reduces this value.

In [45], the authors note a decrease in the friction coefficient under the action of current
pulses during deformation by bending of the Ti-6Al-4V alloy. In study [74], a decrease in
the adhesion (molecular) component of the friction coefficient, as well as a reduction in
gripping during the friction of the TiNi shape-memory alloy after rolling with current, was
noted. However, the role of current in this paper is not obvious and the results are related
to the structure refinement.
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The effect of current on fatigue properties is demonstrated in [75]. It is shown that
the introduction of current can significantly increase the number of cycles to failure (from
15,000 to 18,000) for steel.

In a number of papers, the functional properties of shape-memory alloys and their
dependence on the introduction of current during deformation were studied [76,77]. There
is an increase in reversible deformation, reactive stresses, and superelastic properties
compared to rolling without current. In work [78], an increase to 90–96% in the shape
restoration coefficient was shown when rolling with a current is performed to e = 1. An
increase in the e above one does not have a significant effect. The effect of superelastic
behavior after rolling with simultaneous exposure to pulsed current was found in Ti50.0
Ni50.0 alloy.

Thus, the simultaneous effect of deformation and current can have a significant impact
not only on the technological properties (increase in deformability) but also be one of the
methods to control the mechanical and functional properties (electrical, shape-memory
properties, etc.) in alloys with different natures.

6. The Mechanisms and Modeling of EPE

Despite the growing interest in EPE-related problems, the nature of the effect remains
completely unexplored, and the proposed mechanisms are theoretical. The formulation of
a physical experiment explaining the essence of EPE is difficult (many mechanisms and the
complexity of separating the thermal and athermal components). Therefore, a number of
papers are related to modeling the accompanying EPE effects.

A recent review of the current mechanisms of electroplasticity [79] confirms that there
is still no unified theory of this phenomenon. Moreover, there are seven confirmed operating
mechanisms (the «electronic wind», inertia, thermal fluctuation, magnetoplasticity, hot
dislocations, dynamic deformation aging, and absence of EPE) and the same number of
previously known phenomena unrelated to EPE (Joule heating, thermal expansion, thermal
softening, temperature gradient, pinch effect, magnetostriction, and just experimental data).
The authors of the review adhere to the point of view that a unified theory of EPE can hardly
be created in the near future only on the basis of experimental data; intensive research
based on modeling is required.

The authors of another review on the physical nature of electroplasticity [44], based on
taking into account grain boundaries as defects, the finite element method, and experimen-
tal data, believe that the charge imbalance near defects sharply weakens the atomic bond
under the action of an electric current. Therefore, microscale modeling of the temperature
near the defects by the FE method is necessary. This approach was confirmed by measuring
the elastic modulus, reflecting the bond strength of atoms.
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Mathematical models often describe the behavior of a material during deformation
with an electric current based only on the heating effect. The range of works considering
other factors is quite limited.

In [80], the temperature distribution modeled during the tension of the AZ31 alloy
using an electric current agrees well with experimental results. It was assumed that all
the applied electrical energy contributes to heating. However, it is noted that, along with
volume heating, the so-called microheating takes place. It depends on the inhomogeneity of
the structure. Microheating is difficult to estimate, but, in combination with macroheating,
this is enough to explain the EPE. Despite the accuracy of temperature determination, the
authors [81,82] failed to accurately simulate the stress during deformation with current
without the athermal component of the EPE. In [83], using a model of crystal plasticity, it
was shown that, apparently, magnetic depinning is the most reasonable mechanism for
explaining electroplasticity.

In [84], a common model including the effect of the strain rate was used. They found a
correlation between the sample temperature and the applied current density in the form
of T ≈ j2. A model based on localized Joule heating and the Hall–Petch ratio is presented
in [85]. They noticed that the Hall–Petch effect, when using tension with current, was less
compared to heating in a furnace. Their study concluded that the mechanism underlying
the observed effects cannot consist solely of thermal softening. In a similar work [86], the
effect of grain size and sample size on the behavior during thermal softening of AZ31
magnesium alloy was investigated. The authors proposed a semiempirical model that
could successfully predict the relationship between the softening parameter and the current
density for five technical metals. The proposed model could also accurately estimate the
critical current density at which EPE is observed. A comprehensive review of electroplastic
models based on Joule heating can be found in [87].

In [88], the authors think that heating is insufficient to explain the causes of EPE
and include the effect of electron wind to explain the phenomenon of electroplasticity in
the AZ31 alloy. They analytically assessed and showed that Joule heating prevails in the
electroplastic effect, and the effect of the electron wind is relatively small. In [89], a common
model was proposed using an internal state variable linking a thermoelastic/viscoplastic
damage model and electromagnetic phenomena. In [66], a model based on the calculation
of changes in dislocation density is proposed. In [90,91], a similar attempt was made using
the dislocation density in the model for heat-resistant alloys, and the effect of grain size
was also taken into account. The proposed model makes it possible to accurately predict
the drawing force required.

The key observation during deformation by electric current is a steady drop in the
flow stress and the effect of thermal softening depending on the stress–strain ratio and
the restoration of properties when the current is switched off. These points are discussed
in [44,92]. In [92], a model of EPE under tension based on the finite element method
using the ABAQUS® program is described. It is shown that it is pertinent to model the
electroplastic phenomenon as the superposition of rate-dependent and rate-independent
components of flow-stress evolution. The important characteristics of electric-assisted
deformation reported in the literature, such as an instantaneous stress drop, recovery during
the removal of electric current, and long-range softening, are predicted successfully using
the dislocation density-based constitutive model. The implemented model is shown to
simulate the experimental data very well in both continuous and pulsed current conditions
(Figure 15).

In [93], the authors claim that heating and the mechanisms of the “electron wind”
are sufficient to explain the stress decrease in titanium and offer their own explanation
(scattering of dislocations by thermal phonons and electrons).
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Thus, over the past 10 years, a significant number of papers on EPE modeling have
appeared. This is due to the desire of researchers to better understand the nature of
the effects since the direct staging of experiments is sometimes difficult due to many
mechanisms being involved in EPE (Joule heating, electron wind, pinch, skin effects, etc.).
At the same time, a distinctive feature of the studies in recent years is the emphasis on
modeling the athermal mechanisms of EPE. However, a significant disadvantage of all
modeling work is the practical lack of approaches that determine these effects in fine-
grained and nanostructures, which today is one of the most important areas of research in
physical materials science. The creation of EPE models at the nanoscale or atomic levels is
relevant since the main proposed mechanisms of nonthermal nature take place at this scale.
It should also be noted that, despite the variety of works on EPE modeling, there is a lack
of views on the nature of the accompanying phenomena.

7. Application of EPE

Let us consider several areas of potential application of EPE. The main direction for
use can be considered as a combination of electric pulsed current and metal forming for
manufacturing of semifinished products of different shapes (rod, wire, sheet, and foil) from
structural metals and alloys [20].

The method of electroplastic cold rolling has become the most widespread. It was
applied to materials based on titanium [28,45], aluminum [94–96], magnesium [97], TiNi
shape-memory alloys [67,98], and steels [99]. The benefit of combining external influences
was observed in an increase in deformability, reduction of force, and improvement of
productivity (by reducing the number of technological operations). These effects are not
achieved in noncurrent processing. In some cases, the electroplastic rolling improved the
surface quality by reducing roughness and increasing the mechanical properties. It was
shown that the use of EPE was especially important for hard-to-form or brittle metals, for
example, for tungsten and its alloys [20,100].

Drawing with current has demonstrated effects similar to rolling with current [20,101].
Electroplastic deformation has a significant impact on the physical and mechanical char-
acteristics of the product. Thus, the elongation increases, the number of kinks increases,
and the time resistance slightly decreases. Electroplastic drawing leads to a decrease in
resistivity as well. This fact opens up certain possibilities in simplifying the technologi-
cal process of manufacturing aluminum wire with improved characteristics by replacing
conventional drawing by electroplastic drawing. This change will allow the exclusion
of energy-consuming annealing operations from the technological cycle. In addition, the
proposed drawing technology, in comparison with the usual one, reduces the deformation
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forces. It leads not only to a reduction in energy costs but also increases the life of the mill,
including the wear resistance of the deformation parts of the drawing.

A potentially promising direction for using EPE could be the technology of obtaining
microwires with a giant magnetic impedance [102,103], where the combination of the
thermal effect of current and plastic deformation is an effective technological way.

It is known that pulsed current is used in higher speed processes, such as stamping and
bending [104], when not only deformability increases but also springiness decreases [23].

In addition to metal forming processing or turning, other original technological solu-
tions using pulsed current are known. These include cutting [105–107], pressure welding
of metals [108], equal-channel angular pressing [109], and the possibility of structural
refinement [3]. We also note the recently published review of the directions of EPE appli-
cation [6] and the specific application of deep drawing technology using electric current
on the example of an Al–Mg alloy (Figure 16) [110]. Figure 16 also shows examples of
the possible use of pulsed current in microforming processes to produce elements with
microsurface features [111].
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Currently, several dozen machine tools and metalworking machines have been cre-
ated on the basis of EPE in different countries. One example is a mill designed and
created in Russia by the order of South Korea for rolling a strip of stainless steel with
a cross section of 2 × 100 mm2 to a thickness of 0.3 mm at a speed of 0.5 m/s without
intermediate annealing [112].

Summarizing the above-mentioned applications in industry, we can note a wide range
of studies and potential methods aimed at intensifying technologies and improving the
quality of structural materials. However, there are relatively few really working technolo-
gies that are commercially in demand. This is due to the limitation of devices (generators)
in terms of the maximum pulse-current density, and, consequently, the cross section of the
processed products, as well as the forced low deformation rate in production processes.

8. Conclusions

This review has been prepared for a better understanding of the progress that has been
made in the field for the knowledge, understanding, and application of the phenomenon of
electroplasticity in different materials. Over the past few years, it has become clear that the
interest of scientists in the manifestation of electroplasticity has significantly increased. The
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number of published articles in the world on this topic is growing and contains more than
a hundred per year.

Among the studied external and internal factors that strongly influence the effects
of current in conductive materials, new ones have appeared; for example, the pulse-
current duty cycle and grain size in a wide range, which expand our understanding of the
electroplastic effect’s nature. Studies of the EPE in materials with shape memory and the
use of current modes that stimulate the relaxation phenomena without significant heating
are of particular interest.

The observed structural features during deformation with current are local in nature.
There are small differences between microstructure after deformation with and without
current. This fact leads to additional interest from researchers but also complicates the task
of understanding and explaining the electroplastic effect’s nature, which remains open to
this day.

The simultaneous effect of deformation and current can have a significant impact on
the technological properties (increase in deformability) and also can be one of the ways
to control the physical, mechanical, and functional properties (electrical, shape-memory
properties, etc.) of alloys of different natures.

Due to the variety of emerging and interacting phenomena accompanying the combi-
nation of deformation with current, the necessity of creating a unified theory of electroplas-
ticity becomes clearer. In this regard, modeling, especially at the micro-, nano-, and atomic
levels, is an extremely important trend for fundamental and applied EPE research.

As for the use of electroplasticity, we can note a relatively small number of such
examples in real industry, compared with research. In most cases, this is due to the
insufficiently high technical characteristics of pulse generators and low deformation rate.
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