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Abstract: Durable concrete significantly reduces the spalling caused by chemical damage. The
objective of current research is to substitute cement with supplementary such as fly ash (FA), ground
granulated blast furnace slag (GGBS), and alccofine (AF). Additionally, the impact of nano-silica (NS)
and silica fumes (SF) on the GPC durability when cured at various temperatures has been attempted.
In order to perform this, GPC samples were produced by combining NS and SF at proportions of 0.5%
NS + 5% SF, 1% NS + 10% SF, and 1.5% NS + 15% SF, and then cured at temperatures of 27 ◦C, 60 ◦C,
90 ◦C, and 120 ◦C, respectively. In this research, all concrete specimens were continuously immersed
for twelve weeks under four different chemicals, i.e., HCl (2%), H2SO4 (2%), NaCl (6%), and Na2SO4

(6%). The influence of chemical attack on the qualities of concrete was examined by evaluating the
water absorption, sorptivity, loss of mass, and loss of GPC strength. The durability aspect is also
studied by visual appearance and mass loss under harmful chemical attack. The combination of GPC
with integrated NS and SF affords great resistance against chemical attacks. The percentages of these
two components are 1.5% and 15%. For GPC specimens, when cured at 90 ◦C, the resultant strength
is found at its maximum.

Keywords: nano-silica; alccofine; durability; geopolymer concrete; silica fumes

1. Introduction

Construction material used in large amounts nowadays is cement concrete, and con-
crete deterioration due to sulfate and chloride attacks is very much observed worldwide [1–5].
After the sulfate attack, the permeability and porosity of the concrete surface are increased
due to the release of hydroxide and calcium ions from the matrix. This ends up in deterio-
rated concrete [6]. Concrete deteriorates after the chemical reactions that take place between
the harmful acidic environment and the calcium present in concrete [7]. Cement production
is the leading cause of the release of half of the harmful gases in the atmosphere, mainly
CO2 [8]. To reduce the excess release of CO2, new greener material, i.e., alkali-activated
geo-polymerised concrete, is introduced in the industry of construction worldwide [9]. This
type of green concrete is manufactured after alkaline-activated source materials, which have
binding properties as well, such as FA, GGBFS, volcanic pumice dust (VPD), palm oil fuel
ash (POFA), and quarry dust [10–15]. Its workability is less as an alkaline solution is added,
which is a viscous basic solution, so it is important to add a superplasticiser to improve its
workability [16,17]. Geopolymerisation is responsible for the strength of GPC; on the other
hand, the heat of hydration is responsible for strength in conventional concrete (CC) [18,19].
Using GPC in construction also helps solve the problem of disposing of different kinds
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of industrial waste [20,21]. The movement of ions into the concrete after exposing the
surface to harmful chemicals results in deteriorated concrete, and GPC proves to be a better
material than CC in terms of durability [22]. Many researchers observed that GPC has
low penetrability of chloride ions and high resistance to the sulfate attack as well [23–25].
The durability of GPC is enhanced after partially replacing FA with GGBS [26,27], silica
fumes [28,29], and [30–32]. SF is a byproduct obtained during the production of silicon
metal and is very much used as an admixture due to its pozzolanic property, which ulti-
mately improves the GPC performance [33]. The polymerisation process is increased by
the Si–Al phase, and Si content rises after incorporating nano-materials such as NS, SF,
nano-clay, nano-alumina, and nano-metakaolin in GPC [34–36]. Using air agents during
the mixing process makes the GPC light in weight [37]. The porosity of GPC is very much
reduced after replacing the source material with silica fumes (SF) [7,38,39]. The study
reveals that the durability of GPC is significantly improved after incorporating NS and
SF individually in it [7,33,40,41]. In the examination of sorptivity in GPC infused with SF
up to 10%, both under ambient and elevated curing temperatures, a discernible pattern
emerged [42]. The inclusion of SF within GPC was associated with a reduction in capillary
suction. Interestingly, the introduction of SF did not yield any observable impact on the
initial sorption of GPC that underwent high-temperature curing. Furthermore, it was ob-
served that specimens cured under ambient temperatures exhibit notably lower sorptivity
rates when compared to those subjected to elevated temperature curing. The incorporation
of SF yielded the noteworthy effect of diminishing sorptivity while concurrently enhancing
the durability performance of GPC [43]. Fly ash-based GPC exhibits notable chemical
resistance and remarkable durability. An intriguing observation was made regarding the
strength loss in GPC containing 20% SF following exposure to sulfate and chloride attacks,
which was found to be considerably minimal compared to the controlled GPC [7].

Still, the study of the durability of GPC after incorporating NS and SF combination
has little literature. The objective of this study is to check the influence of SF and NS
addition on (a) GPC properties, particularly in the presence of HCl, H2SO4, NaCl and
Na2SO4 on GPC specimens, (b) different curing temperatures, and (c) chemical attack on
the properties of concrete due to exposure evaluated. To attain the stated objective, three
different mix proportions were formulated, namely 0.5% NS + 5% SF, 1% NS + 10% SF,
and 1.5% NS + 15% SF, while keeping other parameters constant. The three varied mix
samples underwent curing at different temperatures—27 ◦C, 60 ◦C, 90 ◦C, and 120 ◦C—to
investigate the impact of curing temperature on the enduring properties of GPC. Within
this investigation, the resilience of GPC infused with NS + SF was evaluated through
continuous immersion of GPC specimens in a solution of HCl (2%), H2SO4 (2%), NaCl (6%),
and Na2SO4 (6%). Subsequent to immersion, assessments were conducted to ascertain
water absorption, sorptivity, mass loss and strength reduction.

2. Experimental Program
2.1. Materials Used in GPC

Three different source materials were used to produce GPC, i.e., FA, GGBS and Alc-
cofine (AF). FA with less calcium content was obtained from N.B. Constructions Private
Limited, Rajasthan (India), which satisfies all the specifications in IS 3812:2013 [44]. GGBS
was obtained from Prime Cement Private Limited, Behror (India), which meets all the
specifications in IS 12089:1987 [45]. SF was obtained from Amorphous Chemicals Private
Limited, New Delhi, India, which satisfies all the specifications in IS 15388:2003 [46]. Al-
ccofine (AF) 1203 and NS were obtained from Subhavana Industries, Faridabad (India).
Alccofine 1203 is ultrafine slag with low calcium silicate content. The different types of
oxides present in FA, GGBS, SF, AF and NS are shown in Table 1. Granite aggregates of
grading 7 mm, 10 mm, and 20 mm were used as coarse aggregate (CoAg), confirming
the specification of IS 383:1970, and Badarpur sand was used as fine aggregate (FiAg),
confirming the specifications of IS 383:1970 [47]. Alkaline solutions were prepared after
mixing the NaOH and Na2SiO3. These two alkaline chemicals were obtained from Babu
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Ram & Sons Private Limited, Tilak Nagar, New Delhi (India). Sodium silicate is a yellow-
colour jelly liquid with a specific gravity of 1.5. Sodium naphthalene formaldehyde-based
superplasticiser (SP) in the powdered form was used to increase the workability of GPC,
which was obtained from Babu Ram & Sons Private Limited, Tilak Nagar, New Delhi, India.
Sodium silicate consists of SiO2 (29.29% wt.%), Na2O (13.99 wt.%), and water (56.72 wt.%).
Table 2 shows the physical characteristics of the material used. The microstructural images
of FA, GGBS, AF, and SF are shown in Figure 1.

Table 1. Different types of oxides are present in FA, GGBS, SF, AF, and NS.

Sample (%) SiO2 Fe2O3 CaO Al2O3 MgO K2O Na2O SO3 P2O5 TiO2 LOI a

FA 49 12.5 2.79 27.25 0.89 0.46 0.32 0.38 0.98 1.54 0.64
GGBS 32.46 0.61 43.1 14.3 3.94 0.33 0.24 4.58 0.02 0.55 0.09

SF 85 1.5 0.8 1.1 2.5 0.9 1.3 1.3 - - 2.8
AF 35.3 2.20 35.20 26.4 - - - 0.90 - - -
NS 92 - 0.70 - - 0.25 - 0.80 - - 2.42

a = loss on ignition.

Table 2. The physical characteristics of FA, GGBS, AF, FiAg, and CoAg used.

Property FA GGBS AF SF CoAg FiAg

Specific gravity 2.41 3.12 2.89 2.20 2.89 2.61
Water Absorption (%) - - - - 0.98 1.35

Fineness Modulus - - - - - 3.017
Specific surface area (m2/kg) 412 407 1200 - - -
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2.2. Design Proportions for Mixture of GPC

In the course of this study, we formulated four distinct variants of geopolymer con-
crete mixes, denoted as G1A, G2A, G2B, and G2C. Among these, G1A represents the
controlled geopolymer concrete mix. On the other hand, G2A, G2B, and G2C were devel-
oped by introducing additives—0.5% NS + 5% SF, 1% NS + 10% SF, and 1.5% NS + 15%
SF, respectively—while maintaining uniformity in all other parameters. The specific value
of these constant parameters is detailed in Table 3. Three precursors were used in this
research: FA/GGBS/AF in the ratio of 35% FA:50% GGBS:15% AF. All four types of GPC
were activated in a 16 M concentrated NaOH solution. A ratio of Na2SiO3: NaOH was
kept equal to 2.5 for all GPC mixes, and w/b (water:binder) ratio was the same for all
GPC mixes. The content of the superplasticiser was kept the same for all GPC mixes. The
activator liquid-to-source material ratio was maintained at 0.35, and w/s (water/solid) was
observed at 0.16 for all the mixes.

Table 3. The specific values of constant parameters for each GPC mix (kg/m3).

Mix FA GGBS AF NaOH Na2SiO3 SP CoAg FiAg

GPC 149.17 213.1 63.93 42.6 106.6 6 1276.8 547.8

2.3. Methodology

Durability refers to a concrete’s capacity to withstand deterioration over its lifespan,
stemming from chemical attack and abrasion. To assess the durability of geopolymer
concrete, cubical specimens were meticulously prepared and cured for 28 days under
controlled conditions. Subsequently, these specimens were exposed to various chemicals
for another 62 days, thereby resulting in an aging period spanning 90 days. This exami-
nation considered the impact on compressive strength and weight alterations, compared
to controlled GPC cured for 90 days using tap water. The choice of 90-day curing du-
ration was influenced by prior research findings [12,48]. Durability and change in the
strength of GPC after adding NS and MS in combination were studied; for this purpose,
four different types of the mix proportion were prepared and cast in a cubical mould
with 150 mm × 150 mm × 150 mm in size. In this study, four different types of chemicals
were used to study the durability of GPC, i.e., hydrochloric acid (HCl), sulphuric acid
(H2SO4), sodium chloride (NaCl), and sodium sulfate (Na2SO4). Four tests, i.e., mass loss,
water absorption, sorptivity, and compressive strength, were tested for GPC after chemical
exposure for 90 days. The concentration of chemicals was maintained by replacing it after
every 30 days. All four different mix types were also cured under tape water conditions.
All types of GPC mix were cured at 27 ◦C, 60 ◦C, 90 ◦C, and 120 ◦C for one day in an oven
to investigate the durability of GPC cured at different temperatures.

2.3.1. Mass Loss

The casted GPC cube with a size of 150 mm × 150 mm × 150 mm was weighed in
dry and wet conditions to study the variation in the GPC weight. The dry weight GPC
specimens were determined by keeping the specimens in the open air after one day of heat
curing in the oven and weighted on the weighing machine (wi,dry). However, in wet weight
determination, oven-cured specimens were cured in water for 1 week, and then again, the
weight gave initial wet weight (wi,wet). After determining the initial dry and wet weight,
all the GPC specimens were placed in a chemical solution. The second weight (ws,wet) was
specified on the day of testing by measuring the specimen weight just after cleaning the
specimen. The second dry weight (ws,dry) was determined by considering the specimen
after drying the specimen at room temperature.

2.3.2. Water Absorption

The water absorption test was conducted on a 150 mm hard concrete cube in this study
as per BS 1881: Part122, 1983 [49]. Initially, cubes were dried at 100 ◦C for 1 day, left at room
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temperature for 1 day, and then we measured the initial weight W1. After that, cubes were
immersed in water and weighed at 1 h, 12 h, 24 h, 72 h intervals, giving the final weight W2.
During this test, water was absorbed by GPC only through pores during immersion and
discharged during drying in an oven. Water absorption is determined from Equation (1).

Water Absorption(%) =
W2 − W1

W1
× 100 (1)

2.3.3. Sorptivity

The measure of the capability of GPC to percolate water through pores and transmit
under capillary action is known as the sorptivity of concrete. Sorptivity is an important
feature in studying the durability characteristics of GPC as it connects to the rate of liq-
uid penetration into the concrete. In this study, sorptivity is determined before and after
the chemical exposure to determine the influence of chemical exposure on the penetrat-
ing surface of the concrete. In order to perform the sorptivity test, a GPC cube of size
150 mm × 150 mm × 150 mm was prepared and dried in an oven for 1 day at a tempera-
ture of 60 ◦C and then kept left at room temperature for 1 day for cooling. After that, all
the peripheral surfaces of the cube, including the top, were covered with tape except the
base to protect from water entry from the sides and the top of the cube. The specimen was
left in a container with water up to 3–5 mm from the base of the cubes. After 7 days, the
specimens’ weight was measured to calculate the quantity of water absorbed. The bottom
surface of the cube, exposed to chemicals, was wiped with a cloth before measuring the
weight of the specimen. Sorptivity is then calculated with Equations (2) and (3) [50].

S =
I

t1/2 (2)

I =
∆mt

a × d
(3)

where t is the time of exposure of the specimen surface to the liquid, ∆mt is the variation in
the mass of the specimen due to penetration of liquid, a is the area of the cube base in mm2,
and d is the water density.

2.3.4. Compressive Strength

The compressive strength of GPC was examined on 150 mm × 150 mm × 150 mm
cubes in accordance with IS: 516-1959 [51]. All four mix types were cast in moulds and then
placed in an oven for 1 day at a temperature of 27 ◦C, 60 ◦C, 90 ◦C, and 120 ◦C and then left
for 1 day for cooling at room temperature. Specimens were then placed in all four chemical
solutions, i.e., sulphuric acid (2%), hydrochloric acid (2%), sodium chloride (6%), and
sodium sulfate (6%), along with one tape water curing tank for comparison of strength loss
due to chemical exposure. The compressive strength of GPC was examined after 28 days,
56 days, and 90 days of continuous immersion of the specimen in harmful chemicals.

3. Results and Discussion
3.1. Visual Appearance of Exposed GPC Specimens

GPC exposed to the chemical attack showed no deterioration during exposure to the
solution of NaCl and solution of Na2SO4 but offered the formation of a 2 to 3 mm thickness
white layer. This white layer is due to Na2CO3 formation after exposure to the solution of
NaCl and Na2SO4. This white layer was observed after taking out the specimen from the
chemical solution, cleaning the specimen with cloth, and exposing it to air, which is also
observed in previous research [52,53]. The formation of Na2CO3 is due to the reaction of
NaOH and CO2 in the atmosphere. It was observed that this sodium hydroxide leached
out from the GPC after exposure to the chemicals [52]. The effect on the appearance of GPC
is more by the HCl and H2SO4 as a comparison to the formation of GPC exposed to NaCl
and Na2SO4.
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3.2. Density of GPC

In this research, we studied the density of GPC when it was exposed to different
conditions: tap water curing, 6% NaCl, 6% Na2SO4, 2% HCl, and 2% H2SO4 chemical
solutions for 90 days. The results are shown in Figure 2a–e. In Figure 2a, we see that adding
NS + SF combination generally increases the GPC density at all temperatures during tap
water exposure. In addition, increasing curing temperature up to 90 ◦C boosts density,
which then starts decreasing. Similarly, Figure 2b,c show a similar pattern for GPC exposed
to NaCl and Na2SO4, respectively, with density increasing up to 90 ◦C and then decreasing.
For Figure 2d, with 2% HCl exposure, the density rises with NS + SF at 27 ◦C but stays
similar at higher temperatures. Finally, Figure 2e, displaying 2% H2SO4 exposure, shows
density changes similar to 2% HCl exposure. Density generally increases with higher
NS + SF percentages across various curing temperatures. Cevik et al. studied the impact of
the temperature of curing on the change in mass after incorporation of NS (3%) in FA-based
GPC, and it was observed that there is a gain in the mass of NS-incorporated GPC up to
1.3% exposed to chemical attack [41]. Similar results are observed by the other researcher in
which an increase in the weight of GPC is observed after exposure to sulphate and chloride
attack [54,55]. Law et al. studied the influence of the incorporation of NS on the density
of GPC, and it was observed that nano-particles fill the pores of GPC and produce much
denser GPC [56].
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3.3. Water Absorption

In this study, we looked at water absorption in GPC with various treatments: curing
at 120 ◦C, 90 ◦C, 60 ◦C, and 27 ◦C. In Figure 3a, for GPC cured at 27 ◦C, water absorption
reduces as the NS + SF combination increases. Similar behaviour is seen in Figure 3b for
GPC cured at 60 ◦C, where more NS + SF leads to less water absorption. This is because
materials fill concrete gaps, making it less porous. Figure 3c,d reveal the same trend for GPC
cured at 90 ◦C and 120 ◦C. Higher curing temperatures consistently result in lower water
absorption. Gupta et al. studied the penetration of chloride ions and water absorption of
GPC after incorporating a different percentage of SF, and it was noted that chloride ion
penetration and water absorption are reduced by 26% and 23% after the incorporation of
10% SF in GPC which is similar to current research [57]. Nuaklong et al. studied the impact
of the incorporation of NS on the water absorption of FA-based GPC in comparison with
OPC using recycled aggregate. It was noted that water absorption is reduced after the
incorporation of NS in GPC. However, during the incorporation of NS in GPC, it was noted
that in NS-incorporated FA-based GPC, water absorption is increased with an increase in
the percentage of NS up to 3% [58]. Jalal et al. studied the impact of the addition of NS
and SF on the water absorption properties of self-compacting concrete (SCC), and it was
observed that water absorption decreased by 35% and 31% after the incorporation of 2%
NS and 10% SF, respectively [59]. Jalal et al. also studied the addition of 2% NS + 10% SF
combination in SCC and observed that water absorption is decreased by 46% due to the
addition of NS + SF combination compared with controlled GPC [59]. Adak et al. studied
the impact of the incorporation of NS on water absorption of GPM undergoes ambient as
well as heat curing, and it was noted that GPM cured at ambient temperature shows low
water absorption and chloride penetration after incorporation of 6%NS in comparison with
heat curing GPM [60].

3.4. Sorptivity

The mechanism of movement of water within GPC cured at different temperatures is
given by sorptivity, which is shown in Figure 4a–d. Secondary absorption is also controlled
by reducing air voids after adding nano- and micro-silica, whereas initial absorption is due
to the application of forces during capillary action. The sorptivity of different GPC cured at
different temperatures is shown in Figure 4a–d. It is evident from the result that sorptivity
is decreased with an increase in time. It was noted that sorptivity decreases after adding
nano- and micro-silica in GPC for all curing temperatures. At an early age, the difference in
sorptivity is not much for all GPC cured at different temperatures because absorption at an
early age is due to capillary forces. The secondary age difference in sorptivity is very much
due to the filling of pores by the NS and SF for all curing conditions.

Deb et al. studied the sorptivity of geopolymer mortar (GPM) after incorporation of
NS in FA/GGBS-based GPM, and it was observed that the porosity of GPM is reduced just
after incorporating 2% NS, which results in a decrease in sorptivity [61]. This decrease in
sorptivity is due to the particle packing property of NS in the gaps of binder particles, an
increase in the polymerisation rate and the production of a more aluminosilicate network.
Their et al. studied the impact of adding NS and steel fibre in FA-based GPC. It was noted
that the sorptivity of GPC is significantly decreased with an increase in the percentage of
NS up to 2%. Still, the sorptivity of GPC is increased when we fix the NS percentage and
increase the steel fibres percentage [62]. Saini et al. studied the impact of adding different
percentages of NS in GGBS-based self-compacting GPC and noted that sorptivity is reduced
with an increase in the percentage of NS [63].

3.5. Compressive Strength under Exposure to the Chemicals

During this study, we tested the strength of different GPC samples that were heated at
different temperatures. We looked at how the strength changed after they were exposed to
chemicals for 90 days. We also compared this with GPC samples that were just exposed to
tap water for the same time. When GPC was cured at 27 ◦C and exposed to chemicals, its
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strength decreased, as shown in Figure 5a. The same kind of decrease was seen in GPC
cured at 60 ◦C, as seen in Figure 5b. We also conducted similar tests for GPC cured at
90 ◦C and 120 ◦C, shown in Figure 5c,d. In all cases, the strength decreased when the GPC
was exposed to chemicals. This decrease was more noticeable for acids such as HCl and
H2SO4 compared to salts such as NaCl and Na2SO4. Among all the chemicals, H2SO4
had the most negative impact on GPC compressive strength. Bakharev et al. studied the
effect of exposure of GPC to acidic media on the compressive strength of GPC, and it
was observed that compressive strength is reduced after exposure to acidic media due to
depolymerisation of aluminosilicate network [64]. The bridge of oxy-aluminium of the
aluminosilicate network is destroyed in acidic media, resulting in compressive strength
loss of GPC [65]. Many researchers studied the strength performance of FA/GGBS-based
GPC in comparison with ordinary portland concrete (OPC) exposed to chemical attack, and
it was observed that GPC has greater acid resistance [7,66]. Sothornchaiwit et al. studied
the impact of the temperature of curing and the percentage of incorporation of SF on GPM
compressive strength, and it was noted that the compressive strength of GPM exposed to
sulphates is decreased with an increase in curing temperature [67]. A similar result was
observed during the study of metakolin-based GPC after the incorporation of SF exposure
to chemical attack, and it was noted that lowering of compressive strength due to chemical
attack decreases with an increase in the percentage of SF [68].
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4. Cost Analysis of GPC

In this section, we studied the cost of production of 1 m3 FA-based GPC for G40 having
strength 40 MPa and compared it with the cost of production of 1 m3 OPC of M40 grade
using IS, ACI, and DOE codes in Indian rupees (Rs). The quantity of material used in the
production of GPC and OPC using different codes, along with their corresponding cost,
are given in Table 4. The major ingredient of GPC is source material, which is the waste
product of various industries, so its cost is negligible, including only transportation costs.
The costlier ingredient of GPC is sodium hydroxide and sodium silicate, used as an alkaline
activator in GPC. Hence, getting this material from waste stream material is important
to minimise the production cost [69]. It is clearly shown in Table 4 that the cost of GPC
is less than the cost of OPC designed using ACI and DOE codes, but the cost of GPC is
a little more than that of OPC designed using IS codes. It is also noted from Table 4 that
the maximum cost is obtained when we use the ACI method of designing OPC, and the
minimum cost is obtained when we use the IS method for designing a mixed proportion
of OPC. It was observed by many researchers that the cost of GPC is lesser than OPC due
to the usage of waste material, and some researchers also observed that the cost of GPC
is 1–2% higher than OPC [70,71]. Akhtar et al. studied the ecological footprint of GPC in
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comparison with OPC for M30 grade, and it was noted that the cost of concrete designed
using DOE codes gives the minimum cost value, and the cost of GPC is less than the cost of
OPC designed using IS codes [72].

Table 4. Cost Analysis of production of 1 m3 FA-based GPC (G40) and OPC (M40) using IS, ACI, and
DOE codes.

S. No. Material
Rate in
Rs./Kg

GPC G40 IS M40 ACI M40 DOE M40

Quantity Cost Quantity Cost Quantity Cost Quantity Cost

1 OPC 6.56 0 0 400 2624 356 2335.36 264 1731.84
2 Fly Ash 1.45 426.2 216.29 0 0 0 0 0 0
3 Coarse Aggregate 0.6 1276.8 766.08 1230 738 1170.8 1943.52 1359.8 2257.26
4 Fine Aggregate 1.4 547.8 766.92 410 574 714.8 1000.72 698.8 978.32

5 Sodium
hydroxide 25.5 42.6 1086.3 0 0 0 0 0 0

6 Sodium Silicate 10 106.6 1066 0 0 0 0 0 0
7 Super Plasticizer 100 6 600 1.5 150 1 100 1.5 150

Total cost (Rs.) 4501.59 4086 5379.6 5117.42

Note: A Rupees (abbreviated as Rs) is a unit in the Indian numbering system (1 USD equal 84 Rupees as on 27
May 2023).

5. Conclusions and Future Prospects

The outcome of replacing cement with supplementary material such as FA, GGBS,
and AF in a fixed proportion using an alkaline activator reported in this paper can be
summarised as follows:

• The addition of the NS + SF combination exhibited a consistent influence on the
density of GPC specimens across different curing temperatures and chemical expo-
sures. An upward trend in density was observed with the introduction of the NS + SF
combination, indicating a potential to enhance the material’s compactness.

• The density response of GPC to different curing temperatures was notable. The density
of GPC demonstrated an incremental trend with increasing curing temperature up to
90 ◦C, followed by a subsequent decrease. This indicates a complex interplay between
temperature and material density.

• The density behaviour of GPC under various chemical exposures—NaCl, Na2SO4,
HCl, and H2SO4—was consistent. Chemical attacks led to a reduction in density,
indicating material deterioration. The magnitude of density decrease was observed to
be in the range of 8.20% and 12.42% across the different curing temperatures.

• The reduction in water absorption, consistent across all NS + SF combinations at
higher curing temperatures, accentuates the capacity of elevated curing temperatures
to promote non-porous characteristics within the GPC matrix. Decline reflection in the
water absorption as the curing temperature elevates to 90 ◦C and 120 ◦C, highlighting
the consistent trend of improved moisture resistance.

• Quantifying the magnitude of impact, the data illustrates the percentage decrease in
water absorption for various curing temperatures and NS + SF combination percent-
ages. It is evident that higher NS + SF proportions and elevated curing temperatures
yielded more pronounced reductions in water absorption percentages, reinforcing the
moisture-resistant attributes of GPC.

• A noteworthy trend emerges with sorptivity decreasing over time. It is particularly
striking that the impact of NS and SF additives consistently contributes to reducing
sorptivity across all curing temperatures. It becomes evident that the effect of sorptivity
reduction is more pronounced with increased curing duration.

• At an early age, the disparity in sorptivity across GPC specimens cured at varying
temperatures is less pronounced due to the predominant influence of capillary forces.
However, the divergence becomes more pronounced over time. The secondary age
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difference in sorptivity is attributed to the additive-driven filling of pores with NS and
SF, a phenomenon consistent across different curing conditions.

• Adding NS and SF combined proportions contributes to enhanced compressive
strength across all curing temperatures. Furthermore, it is evident that GPC’s com-
pressive strength is more resilient against exposure to NaCl and Na2SO4 compared
to the corrosive effects of acids (HCl and H2SO4). Among the chemicals tested,
H2SO4 emerges as the most detrimental, leading to significant compressive strength
deterioration.

• The role of NS and SF combined proportions in augmenting compressive strength
across curing temperatures highlights the potential for improved structural integrity.
These findings offer valuable insights into developing concrete structures that can
effectively withstand chemical challenges, fostering the advancement of durable and
sustainable construction practices.
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4. Karakoc, M.B.; Türkmen, İ.; Maraş, M.M.; Kantarci, F.; Demirboğa, R. Sulfate resistance of ferrochrome slag based geopolymer

concrete. Ceram. Int. 2016, 42, 1254–1260. [CrossRef]
5. Paruthi, S.; Khan, A.H.; Kumar, A.; Kumar, F.; Hasan, M.A.; Magbool, H.M.; Manzar, M.S. Sustainable cement replacement using

waste eggshells: A review on mechanical properties of eggshell concrete and strength prediction using artificial neural network.
Case Stud. Constr. Mater. 2023, 18, e02160. [CrossRef]

6. Valencia Saavedra, W.G.; Angulo, D.E.; Mejía de Gutiérrez, R. Fly ash slag geopolymer concrete: Resistance to sodium and
magnesium sulfate attack. J. Mater. Civ. Eng. 2016, 28, 04016148. [CrossRef]

7. Okoye, F.N.; Prakash, S.; Singh, N.B. Durability of fly ash based geopolymer concrete in the presence of silica fume. J. Clean. Prod.
2017, 149, 1062–1067. [CrossRef]

8. Paruthi, S.; Husain, A.; Alam, P.; Khan, A.H.; Hasan, M.A.; Magbool, H.M. A review on material mix proportion and strength
influence parameters of geopolymer concrete: Application of ANN model for GPC strength prediction. Constr. Build. Mater. 2022,
356, 129253. [CrossRef]

9. Shi, C.; Jiménez, A.F.; Palomo, A. New cements for the 21st century: The pursuit of an alternative to Portland cement. Cem. Concr.
Res. 2011, 41, 750–763. [CrossRef]

10. Ahmed, H.U.; Mohammed, A.A.; Rafiq, S.; Mohammed, A.S.; Mosavi, A.; Sor, N.H.; Qaidi, S.M. Compressive strength of
sustainable geopolymer concrete composites: A state-of-the-art review. Sustainability 2021, 13, 13502. [CrossRef]

11. Kabir, S.; Alengaram, U.J.; Jumaat, M.Z.; Sharmin, A.; Islam, A. Influence of molarity and chemical composition on the
development of compressive strength in POFA based geopolymer mortar. Adv. Mater. Sci. Eng. 2015, 2015, 647071. [CrossRef]

12. Albitar, M.; Visintin, P.; Mohamed Ali, M.; Drechsler, M. Assessing behaviour of fresh and hardened geopolymer concrete mixed
with class-F fly ash. KSCE J. Civ. Eng. 2015, 19, 1445–1455. [CrossRef]

13. AL-Kharabsheh, B.N.; Moafak Arbili, M.; Majdi, A.; Ahmad, J.; Deifalla, A.F.; Hakamy, A.; Majed Alqawasmeh, H. Feasibility
study on concrete made with substitution of quarry dust: A review. Sustainability 2022, 14, 15304. [CrossRef]

https://doi.org/10.3390/polym14050868
https://www.ncbi.nlm.nih.gov/pubmed/35267691
https://doi.org/10.1016/j.ceramint.2017.06.042
https://doi.org/10.1016/j.ceramint.2015.09.058
https://doi.org/10.1016/j.cscm.2023.e02160
https://doi.org/10.1061/(ASCE)MT.1943-5533.0001618
https://doi.org/10.1016/j.jclepro.2017.02.176
https://doi.org/10.1016/j.conbuildmat.2022.129253
https://doi.org/10.1016/j.cemconres.2011.03.016
https://doi.org/10.3390/su132413502
https://doi.org/10.1155/2015/647071
https://doi.org/10.1007/s12205-014-1254-z
https://doi.org/10.3390/su142215304


Materials 2023, 16, 6332 16 of 18

14. Alraddadi, S.; Assaedi, H. Characterization and potential applications of different powder volcanic ash. J. King Saud Univ. Sci.
2020, 32, 2969–2975. [CrossRef]

15. Zeyad, A.M.; Khan, A.H.; Tayeh, B.A. Durability and strength characteristics of high-strength concrete incorporated with volcanic
pumice powder and polypropylene fibers. J. Mater. Res. Technol. 2020, 9, 806–818. [CrossRef]

16. Topark-Ngarm, P.; Chindaprasirt, P.; Sata, V. Setting time, strength, and bond of high-calcium fly ash geopolymer concrete. J.
Mater. Civ. Eng. 2015, 27, 04014198. [CrossRef]

17. Nuruddin, M.F.; Demie, S.; Ahmed, M.F.; Shafiq, N. Effect of superplasticizer and NaOH molarity on workability, compressive
strength and microstructure properties of self-compacting geopolymer concrete. Int. J. Geol. Environ. Eng. 2011, 5, 187–194.

18. Haustein, E.; Kuryłowicz-Cudowska, A.; Łuczkiewicz, A.; Fudala-Książek, S.; Cieślik, B.M. Influence of cement replacement with
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