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Abstract: In pipes made of HDPE used in city water supply networks, a specific type of failure is
commonly noted, called the parrot’s beak failure. It requires expensive intervention. The prediction
and study of the development of this defect, therefore, requires thorough research. In this work,
the finite element method is used to study the mechanism of the occurrence and development of
this defect. Two examples of the calculation for the concrete case of some tubes used in a water
supply network are presented. This study is important for the designers of such networks, to predict
and prevent the occurrence of this defect that can lead to unwanted network downtime and high
repair costs.
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1. Introduction

Water supply networks exist in all human settlements, and the tubes used in these
supply networks represent a very important element in the creation of these networks.
Drinking water distribution systems play a particularly important role. These are made up
of pipe networks, storage basins, pumps, and other accessories necessary for the proper
functioning of the system. There must also be a command and control system that must
meet multiple requirements.

Such a system is served by numerous pipes, with very large diameters at the entrance
to the system, starting from the water purification stations and continuing with pipes of
increasingly smaller diameters, which go to the final consumers. Towards the point of
public use, these pipes have a diameter of approximately 150 mm, thus allowing for the
connection with the final consumers (public buildings, houses, industrial consumers, etc.).
Worldwide, the total length of these pipes is enormous, so the importance of their design
and manufacture is huge. Thus, the efforts made by researchers to study the behavior
of pipes during water transport is justified. These pipes must meet many conditions,
withstand high loads, and have a long service life, as repairs are very expensive.

Pipes for transporting water have been made, throughout history, from different
materials, corresponding to the level of technological development of the society. At the
moment, pipes made of asbestos cement, cast iron, ductile iron, plastic, reinforced concrete,
and steel are in service.

The creation of polyethylene (PE) has offered multiple advantages to this field: high-
volume and low-price production; simple modeling; the possibility of ensuring a simple
and integrated design (multifunctional components, such as couplings and fittings); simple
transport, handling, and assembly; easy maintenance; good mechanical resistance and
resistance to seismic events; chemical and corrosion resistance; a very good lifespan; very
good operation at low temperatures; and the possibility of recycling the materials after
use. At the moment, pipes made of high-density polyethylene (HDPE) represent the
ideal solution for human water supply systems. The first applications date back to the
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1960s. HDPE proved to be a hard, very resistant material with long durability, very good
handling, and an excellent price (the lowest lifetime cost among the previously mentioned
materials [1]).

HDPE is currently the standard material used in water transport, and represents a
modern and economical solution, as well as being the most suitable plastic [1,2]. Tubes and
fittings manufactured from this material have the appropriate mechanical properties, a long
life, and low manufacturing and maintenance costs. The manufacture of these materials is
in its third generation [3]. Pipes made of these materials have good mechanical properties,
being able to withstand variable loads, as currently happens in the case of water supply
networks. Their fracture, in the case of the ductile fracture mode, is in the form of a parrot’s
beak [4,5].

The mechanical behavior of HDPE was presented in [6]. That study was occasioned
by a practical requirement; namely, the need to replace and modernize the water network
of a city with 300,000 inhabitants. Experimental measurements allowed for the mechanical
identification of the materials used. The calculations were performed for two cases, for a
pipe buried in the ground and for a pipe supported in a concrete massif. The advantages
offered by the second solution were argued for in the work. The finite element method
(FEM) was the tool used for modeling.

A frequently encountered phenomenon in the study of pipeline systems under pres-
sure is the so-called water hammer. This phenomenon can lead to great damage, start
a process of plastic deformation in the tube, or even cause the failure of the pumping
system. One paper [7] proposed the use of a constructive solution that led to a reduction
in the effects that the battering ram can have. This was accomplished by inserting an
additional pipe. Experimental checks showed that the added polymer pipe could ensure
a significant damping of the overvoltage that occurs when the mentioned phenomenon
occurs. This effect must be studied because additional loads entering into the system can
lead to a parrot’s beak failure. The reliability of polymer pipes made of HDPE in drinking
water supply networks is an important aspect. Pipe ruptures can occur when there is a
sudden overpressure or defects on the surface of the pipe. A study of this phenomenon
was conducted in [8], and applied to the case of a bad water supply network. The water
hammer effect that occurs in the case of transient liquid flow, although it is a rare event,
can cause serious damage to a water network management system. Numerous studies
have been undertaken to investigate this phenomenon. It was found that the magnitude
of the event is determined by the length of the pipeline. A model that shows this was
presented in [9]. The length of the pipe proved to be the decisive factor in the pressure
increase time. For the different pipe lengths considered in the calculation, it was found
that the differences in pressure increases can reach up to 40%, which is a significant figure
that a designer must take into account. A particular case of a water supply network with
HDPE pipes was studied in [10]. The work justified the use of HDPE instead of the initial
solution, which was tubes made of steel. Thus, a significant reduction in project costs was
achieved, and all the network conditions were fulfilled. The cost, schedule, and risk and
benefit analyses justifying the use of HDPE were presented.

FEM is widely used, and allows for obtaining fast, accurate, and low-cost results for
problems related to the determination of stresses and strains in a deformable body. There
are a number of applications in many fields that have been solved using this method. The
method can be extended to solving the problems of complex structures made up of bars,
plates, or blocks.

The method is well consolidated, and the results obtained in the field have been
concretized in well-known software. For the research carried out in the present work, the
use of plate-type finite elements is required. In this way, information can be obtained quickly
regarding the state of stresses and deformations in the structure. In FEM, a continuous
structure with an infinity of unknowns (the strains or stresses at each point of the structure)
is transformed into a system with a finite number of unknowns (by introducing some nodal
points where the nodal displacements are known or determined). These unknowns define
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the degrees of freedom of the system. For each finite element, defined by its nodes, the
stiffness matrix of the element is calculated, based on some approximations. Then, all the
obtained matrices are assembled into a global stiffness matrix.

A simple analytical model that allows for fast and precise calculations in conditions
where there is heat transfer was presented in [11]. Model verification was performed using
FEM. In that work, different aspects of the problem were studied, such as the effect of the
temperature of the fluid, the temperature of the soil surface, or the depth of the soil on the
pipe temperature. The FEM calculation results validated the proposed model. A study
of the stress and strain distribution of an HDPE pipe reinforced with polyester fibers was
presented in [12] using FEM. The traction, bending, and torsional stresses were determined.
The results obtained theoretically were verified experimentally. Earthquakes can cause the
destruction of some pipelines due to the landslides that can occur. They can dramatically
affect the life of buried pipes. In order to evaluate their effects on pipeline networks, a
study is needed to study the interaction that exists between the soil and pipelines during
an earthquake. This was performed by [13]. The procedures specific to this method, and
an estimate of how the interaction between the soil and the pipe takes place, can provide
useful results to designers. The optimization of a tube system covering underground power
cables was analyzed in [14]. Pipes made of HDPE were filled with a sand–bentonite mixture
to protect them from heavy mechanical loads. In the system, there was also thermal transfer
through a stationary process. Using FEM, the temperature distribution in the soil, the
sand–bentonite mixture, and the cables was determined. The optimal size of the cables
could thus be determined. Other interesting applications of FEM in the analysis of tube
systems used to transport liquids have been presented in [15–28].

The XFEM method has been used in numerous works on pipes and pipe systems, and
there are many applications that have been solved with this method [29–33].

For HDPE, ductile failure occurs with plastic deformation, and brittle failure occurs
with little or no plastic deformation. Brittle failures are thus catastrophic because they occur
without warning. In this paper, a study of the emergence and development of the parrot’s
beak failure, using FEM, is performed. The analysis is performed for two cases: a pipe
elbow bent at 45◦ and a pipe segment. The results confirm that FEM is a convincing model
of the way in which this failure appears and develops, and the obtained results simulate
the real situation well.

2. Models and Methods
2.1. Damage of HDPE Pipes

Knowing that hydraulic loads occur when a pipeline changes direction, a problem
arises in the analytical calculation of the balancing force of the hydrodynamic force.

An analytical calculation for an elbow with a deviation of α = 45◦ is presented in the
appendix. The failure of buried pipes made of HDPE can occur for various reasons:

• Internal conditions (high pressure, rapid pressure variations, the temperature being
too high or too low, and the type of liquid transported);

• Design, installation, or handling errors;
• Inappropriate material or material with initial defects;
• Geothermal activity (movement of the crust or seismic forces);
• Anthropogenic activity (heavy traffic, explosions, or other activities).

The common method of the deterioration of a pipe is the brittle one. A microcrack that
exists after the pipe manufacturing process slowly grows in the wall. The microcracks are
usually oriented along the pipe, and their opening is caused by circumferential stress (which
can be caused by internal pressure or pressure from the outside). The analysis of pipes
made of HDPE (presented in the introduction), established that there are three major modes
of failure: ductile (mode I—Figure 1), brittle (mode II—Figure 2), and brittle/chemical
(mode III).
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Figure 2. Brittle failure [4].

In this work, we deal with the second mode of breaking, namely, the ductile mode.
This mode is not as common as the brittle mode, but it is well known to the maintenance
teams of pressure piping systems, and is called a parrot’s beak failure [34–37]. During
ductile failure, the material undergoes an irreversible plastic deformation on a large scale.
Usually, this defect appears in the area where the wall is thinner. There is an expansion
located on a large area of the pipe. In order to avoid this type of failure, experiments are
carried out on the material to determine its ductile strength over a long time. A ductile
fracture must not occur before 50 years of service of the pipe. Pipe manufacturers have
classified their materials, according to this requirement, into PE80 (MDPE), with a minimum
admissible stress of 8.0 MPa, and PE100 (HDPE), with a minimum admissible stress of
10 MPa. Under these conditions, the lifetime must be a minimum of 50 years at 20 ◦C.

In this work, the occurrence of ductile failure is studied using FEM. This type of failure
is important regarding the long-term service of pipes. While during the occurrence of a
brittle fracture, the load can increase three times compared to the calculated value without
a fracture occurring, for ductile fractures this does not happen, and the calculation must be
performed with great care.

2.2. Experimental Methods for Determining the Mechanical Properties of the Material Used

Due to the fact that there are no test pieces cast under pressure from the same material
as that of the tubes, for the most commonly used tube sizes in the supply network, the test
pieces must be cut from pipes (Figure 3).
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High-density polyethylene samples were cut from the two types of tubes most often
used in the distribution network:

• High-density polyethylene tube with dimensions of Φ63 × 4 mm;
• High-density polyethylene tube with dimensions of Φ90 × 6 mm.

The samples were tested under tension until breaking.
The following distributions should be known by the pipe user:

• Distribution of the longitudinal modulus of elasticity;
• Distribution of stress at the maximum load, depending on the elongation at the

maximum load;
• Force distribution at the maximum load, depending on the deformation at the maxi-

mum load;
• Distribution of the longitudinal modulus of elasticity, depending on tensile strength;
• Distribution of stiffness, depending on the force at the maximum load;
• Distribution of stress at maximum deformation, according to the elongation at maxi-

mum deformation;
• Distribution of the breaking force, depending on the breaking deformation;
• Distribution of the breaking stress, according to the breaking elongation.

These distributions are shown graphically in Figures 4–11. The manufacturer should
also make them known to those who are going to use the tubes in a network.

Based on laboratory measurements, the following conclusions can be drawn:

• As the tube diameter increases, the standard deviation of the values increases;
• The values of Young’s modulus fell between 1500 and 4000 MPa for the high-density

polyethylene samples taken from the 90 × 6 mm tube, and between 1000 and 1400 MPa
for the high-density polyethylene samples taken from the 63 × 4 mm tube;

• The average stress at the maximum load, depending on the elongation at the maximum
load, was around 20 MPa for both types of samples;

• The force at the maximum load for the high-density polyethylene cut from the
90 × 6 mm tube was between 1.2 kN and 1.6 kN, and for the case of the high-density
polyethylene cut from the 63 × 4 mm tube, it was between 0.7 kN and 0.8 kN;

• The most important scattering of values was obtained for the distribution of the
stress at the maximum deformation, according to the displacement at the maximum
deformation for both types of specimens made of high-density polyethylene tubes.
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3. Results
3.1. The Case of Elbow DN 315 Buried in Soil

In what follows, we analyze, via the FEM, two cases of the appearance of a parrot’s
beak-type break, one for an elbow and another for a linear tube, subjected to the usual
pressures found in water transport networks. The mode of the appearance and propagation
of the crack are studied. The geometric model of the DN 315 elbow made of high-density
polyethylene that is unsupported in a concrete anchor mass is shown in Figure 12. The
model will be used to simulate the failure of the elbow. The discretized analysis model is
presented in the same figure.

The discretization of the structural model was performed considering a total number
of 14,985 nodes, and a total number of 12,370 elements, of which 12,174 were parallelepiped
elements of the C3D8R type, and 196 were prismatic elements of the C3D6 type. The
degrees of freedom (DOFs) were the displacements in the nodes (three translations). For
greater accuracy in the representation of the stresses in the bend, in a second version two
elements per thickness were used. The influences of the weight of the concrete and the
elbow and the water column were not considered.
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Figure 12. The geometric model of the unsupported and the discretized analysis model of the DN
315 elbow.

The model required for the analysis has, as the input data, the pressure inside the tube,
taken as the reference pressure perpendicular to the inner wall of the tube; the fittings; and
the tube ends—so that all the degrees of freedom are cancelled out. Abaqus/CAE 6.14-5
with XFEM is used in the numerical analysis of the crack. The simulation is performed
on DN 315 arteries. The tube model is created using an extruded solid body. The chosen
material of the tube is HDPE. The steps followed in the analysis are as follows: create
the solid; create the strip crack; create the section and set material properties; create an
additional crack scheduling step; create a crack interaction; create a unitary assembly from
the solid and crack strip; create embeds; create a load on the inner surface; discretize the
model; choose output calculation parameters; run the simulation; and obtain results.

In the analysis of the tubes, only the stresses and deformations caused by the internal
pressure to which they are subjected in a water distribution network are monitored.

The aspect of the elbow after the ductile fracture, obtained using Abaqus/CAE 6.15-
XFEM, is presented in Figure 13. The stress distribution is shown in Figure 14. The stress
at which the break occurred was 517 MPa > 21.9 Mpa, which is larger than the admissible
stress for the HDPE materials used. The deformations of the elements that discretized the
elbow around the crack are shown in Figure 15.
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3.2. FEM Analysis of the Pressurized HDPE-DN 315 Tube

The tube under analysis has the following as input data:

• The pressure inside the tube, taken as the reference pressure perpendicular to the inner
wall of the tube;

• The fixed ends of the tube and the forces that act on the tube, so that equilibrium
is assured.

The dimensions and material constants are as follows: the outer diameter, Dout = 315 mm;
the inner diameter, Din = 257.00 mm; the wall thickness, Thk = 28.60 mm; the density of the
Dtube material = 970 kg/m3; Young’s modulus of the Etube = 1300 MPa; Poisson’s ratio ν

of the tube = 0.33. The internal pressure in the tube produces radial and circumferential
stresses, as shown in Figure 16.
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To perform the numerical analysis with FEM using ABAQUS 2020, the discretized
model was presented (see Figure 16b). The discretization was performed using C3D8R-type
parallelepiped elements; 2300 elements were generated for the obtained model.

Figure 17 shows the stress distribution obtained after performing the calculation.
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Figure 17. Stress field in tube DN 315 in MPa (von Mises).

The field of displacements is presented in Figure 18.
Abaqus/CAE 6.14-5 with XFEM was used in the numerical analysis of the crack. The

steps followed in the analysis are as follows: solid generation; the creation of a crack strip;
the creation of section and setting material properties; the creation of an additional step for
crack programming; the creation of crack-type interaction; the creation of unitary assembly
from the solid and crack strip; the creation of embeds; the creation of a load on the inner
surface; the discretization of the model; the choice of output calculation parameters; the
execution of the simulation; and the obtaining of results.
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In the analysis of the tubes, only the stresses and deformations caused by the internal
pressure to which they are subjected in a water distribution network were monitored. The
model that created the crack-type interaction, as well as the crack strip, is presented in
Figure 19.
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Figure 19. Tube-crack-analysis model, DN 315.

The break is ductile and resembles the “parrot’s beak” presented previously. After the
calculation, it was found that the stress at which the break occurred was 8563 MPa, a much
higher value than the admissible stress at break for HDPE. The appearance of the crack
after breaking is shown in Figure 20.
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Figure 20. The appearance of the crack after breaking in the DN 315 tube.

The displacements of the finite-element nodes near the crack are shown in Figure 21.
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Figure 21. Displacements and growth of the crack in the wall of the DN 315 tube.

Following the analysis, it can be seen that FEM is a very useful tool for the study of
this type of failure, and it is possible to follow the initiation and the growth of cracks in
tube walls.

4. Discussion and Conclusions

The main objective of this work was to study the development of failure in HDPE
tubes for the case of the formation of the so-called parrot’s beak.

Analyzing the results obtained after the calculations using FEM for the two types
of pipes reveales that this method can well describe the origin and evolution of a crack
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that appears as a result of a parrot’s beak failure. Pipes made of HDPE present significant
advantages compared to other common materials which are currently used: long service life;
cathodic protection; no anticorrosion protection is necessary; low maintenance costs; good
hydraulic properties; easy design, manufacture, and installation; proper sealing at high
pressures; low weight; low logistical costs; and the possibility of making long tube lengths
(and, therefore, fewer connections). It is obvious that, over time, HDPE pipe networks have
come to have impressive resistance properties, ensuring their long-term service. Accidents
and breakages can occur for various reasons, even under these conditions: design and
manufacturing mistakes, mistakes made in the installation of the system, incorrectly chosen
materials, thermal exposure, shocks during operation, chemical exposure, extreme natural
phenomena, soil quality, etc. Malfunctions can lead to explosions, fires, loss of life, and
property damage, so it is very important to address them. As a result, failure analysis must
represent a standard practice in the field.

The parrot’s beak failure represents a second cause of the destruction of water supply
networks; therefore, the establishment of powerful calculation methods is an objective to
which the authors have tried to contribute in the present work.
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