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Abstract: Bound states in the continuum (BIC) have garnered considerable attention recently for
their unique capacity to confine electromagnetic waves within an open or non-Hermitian system.
Utilizing a variety of light confinement mechanisms, nanostructures can achieve ultra-high quality
factors and intense field localization with BIC, offering advantages such as long-living resonance
modes, adaptable light control, and enhanced light-matter interactions, paving the way for innovative
developments in photonics. This review outlines novel functionality and performance enhancements
by synergizing optical BIC with diverse nanostructures, delivering an in-depth analysis of BIC designs
in gratings, photonic crystals, waveguides, and metasurfaces. Additionally, we showcase the latest
advancements of BIC in 2D material platforms and suggest potential trajectories for future research.

Keywords: bound states in the continuum; nanostructures; 2D materials

1. Introduction

Bound states in the continuum (BIC) in photonic structures have emerged as a pivotal
concept with vast applications in optics and photonics [1–3]. By judiciously designing the
potential structure, BIC was first constructed mathematically in 1929 by von Neumann and
Wigner as resonant states existing within the radiation continuum that does not radiate [4].
Since the BIC concept was further refined by Stillinger and Herrick [5], the wisdom has been
widely accepted and applied to various wave phenomena, such as acoustic waves [6–9],
water waves [10–12], and electromagnetic waves [13–15]. After the first observation of
BIC in optical systems [13,16], this nascent topic has witnessed rapid development and
expansion in photonics [17–20].

The high-quality factor, strongly localized field, non-radiative property, unique light
confinement mechanism, and intriguing topological nature of BIC have infused new vigor
into areas such as resonator design [21–24], low-loss optical transmission [18], efficient
nonlinear generation [25,26], and advanced light–matter interactions [27–29] by applying
BIC within diverse nanostructures [30–33]. Figure 1a gives an illustrative representation
of the core features of BIC highlighted in its surrounding circle. The adjacent photonic
structures depict the enhanced properties derived from the incorporation of BIC. In gratings,
BIC can significantly enhance light–matter interactions [34], leading to more efficient
diffraction and light manipulation [35]. Photonic crystals with periodic structures can
leverage BIC to achieve complete bandgap properties, further fine-tuning light propagation
and confinement [36]. Waveguides also benefit from BIC to design long-lived resonances,
optimizing light transmission with minimal loss [18]. Meanwhile, metasurfaces, known
for their ability to manipulate electromagnetic waves on subwavelength scales, can pair
with BIC to realize sharp resonances [37] and improved control over wavefronts [38].
By harnessing BIC’s superior attributes across these nanostructures, researchers have
unlocked new horizons in photonic applications and innovations [1,39]. Furthermore, the
synergy of BIC with 2D materials also enhances the performance of versatile optoelectronic
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devices such as dynamic switching ability [40], harmonic generation efficiency [34], and
photoluminescence (PL) intensity [41] and provides opportunities for observing novel
physical phenomena like polariton-induced nonlinearity [26] and collective behavior of
Bose–Eistein condensate [32].
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Figure 1. (a) A graphical depiction highlighting the core characteristics of BIC (annotated in red)
and the associated enhancement in various photonic structures (annotated in blue). (b) A concise
depiction of the BIC concept, inspired by Ref. [2]. (c) A plot comparing the quality factor against
system parameters, illustrating the differences between symmetry-protected and interference-based
accidental BIC. Adapted with permission from Ref. [42].

In this review, we focus on recent advancements in integrating BIC concepts within
nanophotonics, organizing them by distinct photonic structures to highlight the boosted
functionalities infused with BIC. The fundamental physics of BIC and prevalent analytical
tools are also discussed.

2. Fundamentals of BIC
2.1. Classification of BIC

A burgeoning body of literature has emerged in recent years to discuss the fundamen-
tals of BIC [1,3,39], reflecting the profound interest in this intriguing optical phenomenon.
As demonstrated in Figure 1b, photonic BIC refers to an electromagnetic mode that is
confined to a finite region of space without radiating, similar to a traditional bound state,
but exists within the continuum spectrum of energy or frequencies that only permits ex-
tended states with inevitable radiation loss in the traditional situation [4,5]. We here focus
primarily on the two most prevalent scenarios: symmetry-protected BIC and interference-
based BIC, because the two categories represent the cornerstone of current BIC research.
A comprehensive understanding of their characteristics and underlying mechanisms is
crucial. For other BIC types like separability-induced BIC and inverse-construction-based
BIC, introductions can be found in previous studies [2,5,43,44].

Symmetry-protected BIC. A state qualifies as a symmetry-protected BIC when it cannot
couple to leakage modes due to a symmetry mismatch. Consequently, this state manifests
as a bound state, not radiating even within the continuum band. Figure 2a provides an
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illustrative example of this phenomenon [14]. The systems consist of horizontally aligned
waveguide arrays with two supplementary vertical waveguides (Figure 2a). With careful
design, the horizontally arranged array was optimized to support a guide band with modes
that exhibit symmetry in the y-direction. Conversely, the two vertically aligned arrays
were tailored to support modes with y-directional anti-symmetry, and their frequencies
are precisely located within the guide band. Within the guide band, modes from the
vertically arranged array should ideally transmit within the horizontal array. However,
in practice, a highly localized electromagnetic field was observed in the vertically aligned
arrays, as depicted in Figure 2(a1). Additionally, upon introducing a ∆T = 30 K temperature
gradient into the vertical waveguides to disrupt the y-anti-symmetry, it was observed that
the mode within the vertically arranged array resumed its transmission, as depicted in
Figure 2(a2). Such contrast phenomenon can be explained by the BIC concept in Figure 1a.
In the prior scenario, energy transmission was suppressed due to a y-symmetry mismatch,
leading to a localized bound state even within the continuum guide band. However, once
the y-anti-symmetry of the modes in the vertical arrays is disrupted, they are no longer
protected from the symmetry mismatch, causing them to degrade into resonant states with
mode leakage in horizontal arrays. Currently, the development of symmetry-protected BIC
mainly relies on electromagnetic field modes with specific symmetries in certain periodic
structures such as gratings [45], photonic crystals [46–48], and metasurfaces [49–51]. For
instance, the well-known Γ BIC in photonic crystal with C4v symmetry can be attributed to
C2 symmetry mismatch between odd and even modes at frequencies below the first-order
diffraction limit [52] (ω < 2π/d).

Analogous to the introduction of a temperature gradient in Figure 2(a2), the deliberate
incorporation of defects to disrupt the inherent symmetry causes a perfect symmetry-
protected BIC to degenerate into a quasi-BIC that interacts with continuum modes [53].
This interference between a discrete localized quasi-BIC and a continuum band of states
results in a characteristic Fano resonance lineshape in the transmission spectrum [54] with
a considerable high-quality factor [55–58]. Due to the high-quality factors, the transmission
spectrum presents a sharply defined Fano resonance peak, which has been instrumental
in the development of various sensors [59–62]. In addition, symmetry-protected BIC is
resilient to perturbations that maintain the underlying symmetry, hence exhibiting a greater
tolerance for manufacturing errors; therefore, they have been widely applied in ultra-high
speed light manipulation [30], imaging [63–65], and low-threshold lasers [21,66].

Interference-based BIC. An interference-based BIC arises due to the destructive inter-
ference of individual radiation channels in resonant structures by judiciously tunning
parameters. A unique characteristic of interference-based BIC is its emergence when the
electromagnetic modes lack symmetry [17], as opposed to the previous situation. To achieve
interference cancellation, the number of tunning parameters typically needs to surpass
the radiation channels. However, as the parameter count rises, tuning becomes increas-
ingly complex, making this method more effective with fewer radiation channels [67–70].
Figure 2b illustrates an example involving two radiation channels [71]. Here, one mode
becomes more lossy, while the other displays a total reflection behavior in the spectrum,
characteristic of a BIC state.

According to the spatial relationship among resonant cavities, interference-based BIC
can be subdivided into Fabry–Perot (F-P) type BIC and Fredrich–Wintgen type BIC [2].
F-P BIC originates from destructive interference between two resonant cavities spatially
separated by a specific interval. Given that resonance can be viewed as a perfectly reflective
mirror at its resonant frequency when linked to a single radiation channel, an F-P BIC can be
established by adjusting the distance between two such resonant structures to accumulate a
phase shift equivalent to a whole number multiple of 2π. This BIC is named for its similarity
to the F-P resonator design methodologies and has been observed in various photonic
systems [72,73].

Notably, a specific distance between the two resonances is not a strict requirement.
When two resonances occupy the same spatial location, a BIC can still be realized if they
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are accurately coupled via the same radiation tunnel, as demonstrated by Fredrich and
Wintgen in 1985 [74] using the temporal coupled-mode theory [2,75,76]. This is referred
to as the Fredrich–Wintgen type BIC. This variant of BIC is distinct from the former one
due to the near-total reflection observed close to the intersection of two uncoupled spectral
lines [69,71,77].
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Figure 2. Insights into BIC mechanisms and analytical techniques. (a) Symmetry-protected BIC in
waveguide arrays. (a1): Horizontally aligned waveguide arrays with two supplementary vertical
waveguides. (a2): Visual distinction between the localized field in symmetry-protected BIC and the
mode leakage upon y-symmetry disruption. Adapted with permission from Ref. [14]. (b) Illustration
of interference-based BIC. Upper: Depiction of interference-based BIC highlighted by two radiative
modes. Lower: Resonance transmission variations based on frequency shifts, marking BIC at a peak
reflectance point with red circles. Adapted with permission from Ref. [71]. (c) Multipole expansion
in square lattice metasurfaces. Lower: Dual visuals explaining BIC formations using multipole
expansion. Adapted with permission from Ref. [78]. (d) Topological characteristics of BIC in photonic
crystals. Upper: Breakdown of radiation fields in PhC slabs and the associated nodal lines for
polarization vector components in k-space near BIC. Lower: Calculations of Q-factor and polarization
direction within the k-space. Adapted with permission from Ref. [79].

2.2. Multipole Expansion

The multipole expansion method offers a systematic approach to represent intri-
cate wave fields by decomposing them into localized source terms, including monopoles,
dipoles, and higher-order multipoles [80]. This decomposition not only simplifies complex
fields but also provides a comprehensive insight into wave phenomena. Historically, the
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method has been instrumental in areas such as the Mie scattering theory [81–83], antenna
theory [84,85], and resonance design [86,87].

Analyzing the multipole components of BIC states offers a fresh perspective on the
origins of BIC [78]. The rise of symmetry-protected BIC is linked to the non-transverse
radiation characteristics of the multipole components, and the accidental off-Γ BIC stems
from the destructive interference effect between various multipole orders, as shown in
Figure 2c. Valued for its capacity to highlight dominant multipole modes, the multipole
expansion method has been extensively used in BIC design for metasurfaces and photonic
crystals [37,57,88], which aids in comprehending the far-field radiation behavior of BIC
modes [22,89].

2.3. Topological Origin

Inspired by condensed matter physics, topological photonics aims to design and
harness optical structures that possess unique properties derived from their topological
nature. This field has witnessed significant advancements in recent years [90–92]. Due
to their robustness against fabrication defects and noise, a range of photonic devices
leveraging topological principles has been developed, including topological microcavity
polariton lasers [93,94] and signal transporters facilitated by the terahertz quantum valley
Hall effect [95]. Additionally, the topological method offers a fresh lens to comprehend
the BIC mechanism. Pioneering works have revealed that BIC in photonic crystals aligns
with vortex centers, carrying quantized topological charges in the polarization far-field
space [79] (Figure 2d). Subsequent research has expanded these findings to periodic arrays
of dielectric spheres [96] and one-dimensional (1D) gratings system [89].

The inherent topological properties of BIC in momentum space present a unique
approach to generating high-purity, efficient vortex beams by leveraging its quantized
topological charges and suppressed-side-radiation characteristics [22,97–100]. Further-
more, dynamic switching capabilities have been achieved using a subwavelength-thin
phase-change halide perovskite BIC metasurface, which allows for the alteration of emis-
sion patterns between polarization vortices with opposing topological charges at distinct
wavelengths [40,101].

3. BIC in Various Photonic Structures
3.1. Gratings

Optical gratings are periodic structures that can manipulate the direction and wave-
lengths of incident light waves in specific ways. With their ability to disperse incident light,
optical gratings provide a flexible platform for engineering BIC [102,103].

With carefully designed groove spacing [45,104,105], geometry [19,106] and dielec-
tric constant [107,108], one can easily tailor the resonance conditions of BIC to achieve
customized control over specific wavelengths or frequency ranges, which bears immense
potential in applications such as various environmental sensors [45,60,109], narrowband
filters [35,110], and microlasers [111,112] (Figure 3a). Stemming from the destructive inter-
ference between two modes, the perovskite microlaser in Figure 3a sustains an interference-
based BIC at a normal incident angle with a quality factor approaching 1010 and an observed
lasing action in 548.5 nm when the pump density reaches 49 µJ/cm2 [104]. Beyond its
considerable quality factor, the union of BIC with periodic grating also leads to the high
confinement of electromagnetic fields within a specific localized area. This enhanced field
confinement leads to stronger light–matter interactions [113] exhibiting a typical Fano
resonant line shape [45] and also dramatically enhances optical harmonic generation with
a boost of several orders of magnitude [34,114].

Beyond simple gratings, there have emerged compound structures broadening the
boundaries of applications. Take asymmetry dual-gratings as an example: this kind of
grating consists of two parallel gratings with different adjacent gaps separated by a fixed
distance, adding new design dimensions to be exploited for controlling quality factor and
operating wavelength [115–118]. The composite integration of waveguides and gratings is
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another common approach to harness the unique characters of both platforms. The incident
light can couple with guide mode in waveguide [119–121], owning to the tangential wave
vector provided by discrete periodic gratings [122–124], namely, the Guide Mode Resonance
(GMR) phenomenon. By synergizing the GMR condition with the BIC concept, the Goos-
Hänchen shift [125,126] and spin Hall effect [127] can be greatly enhanced due to an
ultra-high-quality factor provided by BIC modes. Gratings are also compatible with two-
dimensional (2D) materials [128–130] such as graphene, perovskite, and transition metal
dichalcogenides (TMDs) [131–136]. Some novel devices based on these materials have
been prototyped by harvesting their tunability [137,138], nonlinearity [34], exceptional gain
coefficients, and high quantum yields [112].

3.2. Photonic Crystals

Photonic crystals (PhCs), also known as photonic bandgap materials, have been a cap-
tivating area of research in photonics for decades [139,140]. These nanostructured materials
possess unique optical properties that arise from their ability to control the propagation of
electromagnetic waves through periodic modulation of the refractive index [141]. While
under the extensive exploration of BIC, this exotic optical concept breaks the traditional
wisdom that provides an alternative way to confine light and achieve high-quality reso-
nance in PhCs in addition to the photonic bandgap design method [16]. By capitalizing on
the unique properties of both BIC and PhCs, a new generation of compact, efficient, and
versatile photonic devices has been prototyped ranging from low threshold lasers [21] to
second harmonic generation [25], and other intensively active research field [142].

Composed of a series of periodic dielectrics, 1D PhCs are relatively convenient for
designing BIC due to their simple structure ready for exploring conditions for supporting
BIC in 1D PhC systems [143–145]. Applying BIC in 1D PhCs has enabled enhanced light–
matter interactions [28], but other application-oriented research remains relatively scarce
and limited by their simplistic structure. For 2D PhC slab systems, BIC can be achieved by
judiciously tailoring the lattice geometry parameter [146] and slab thickness [147], exhibit-
ing more design flexibility compared with 1D periodic structure to functionalize a broader
range of applications without significantly increasing design complexity. For instance,
by harvesting the merits of strong optical field localization, BIC within heterostructure
cavity PhC slabs offers an avenue for highly efficient nonlinear frequency conversion [34],
which proves to be more pragmatic than directly designing a photonic bandgap at the
second-harmonic frequency. The side-radiation suppression property of BIC [20] also
enabled some high-performance lasers with lower thresholds to work at room tempera-
ture [21,22,24]. Laser beam quality can be further improved by leveraging the topological
nature of BIC. As vortex centers exist in far-field polarization fields [79], BIC continuously
shifts but does not disappear when changing geometrical parameters. Such robustness
allows for merging a cluster of BIC singularities into a single point in momentum space,
leading to an enhanced quality factor and better lasing directionality [66,148,149], namely,
the merging BIC techniques. Figure 3b provides a comprehensive depiction of the BIC
merging process. By adjusting the thickness of a photonic crystal slab exhibiting C4v
symmetry, BIC points within momentum space progressively gravitate toward the center
with a considerably enhanced quality factor, ultimately culminating in a singular BIC
point [148]. Furthermore, coherent complete polarization conversion (CCPC)-empowered
feasible polarization control can be achieved by exploiting the strong polarization transition
near vortex centers [150,151]. Following a similar approach in designing dielectric PhC
BIC, the platform also allows for a more flexible choice of materials, such as van der Waals
materials [132,152–154] and nearly zero index materials [113,155,156], which may bring
intriguing new opportunities.

3.3. Waveguides

Photonic waveguides, with their capacity to control light at microscopic levels, act
as the primary channels in a circuit. They guarantee the precise direction of photons to
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the appropriate components at the necessary moments [101,157,158]. Incorporating the
principles of BIC into photonic waveguide designs has yielded numerous benefits. Notably,
utilizing BIC broadens the material choices available. Traditionally, light confinement in
waveguides has been largely achieved with total internal reflection. This method often
mandates the use of low-refractive index substrates, limiting the choice of materials for
waveguide fabrication [159–161]. The inherent characteristic of BIC to sustain localized
without decay within a radiative spectrum indicates the potential to use higher-refractive
index substrates without leakage, thus preventing unwanted transmission loss [18,162–164].
By utilizing BIC, an organic polymer waveguide on a diamond substrate was demonstrated
with an ultra-low propagation loss (Figure 3c). Using structural parameter optimization,
BIC was realized at specific waveguide widths, exhibiting near-zero coupling strength.
This indicates that the bound mode was entirely decoupled from the continuum mode
in the waveguide, resulting in the calculated ultra-low propagation loss [18]. Beyond
diamond substrates, BIC also facilitates reduced losses in organic polymer waveguides
positioned on lithium niobate substrates [165,166], which presents a promising avenue
for crafting versatile on-chip integrated photonic devices, including photodetectors [167],
modulators [168], and other essential components [169]. Building on this foundation, an
on-chip four-channel TM mode (de)multiplexer with data transmission at 40 Gps/channel
has been demonstrated for high-dimensional communication [170]. The large nonlinear
coefficients and wide transparency window of LiNbO3 also suggest that it is an ideal
platform for achieving efficient second-harmonic generation [171–173]. Some studies have
been initiated to explore this capability [169,174].

The giant optical overlap with 2D materials provided by BIC also functionalizes a range
of novel hybrid photonics devices. By transferring 2D materials like graphene [167,175],
WS2 [41] to the lithium niobate substrate before patterning the low-refractive-index waveg-
uides [176], photon emitters [177], switchers, photodetectors, etc., that profit from strong
light–matter interactions have been demonstrated in recent years [167]. Other exem-
plary BIC-enabled applications in waveguide include but are not limited to coherent
Fano lasers [178], high sensitivity temperature sensors [179], efficient optical hyperpara-
metric oscillation [180], and diffraction-engineering silicon waveguide grating antennas
(SWGAs) [181].

3.4. Metasurfaces

Consisting of two-dimensional arrays of subwavelength structures, metasurfaces offer
unparalleled capabilities to manipulate light properties [101,122,153,182–184], including its
amplitude, phase, and polarization [185]. These distinctive traits have been harnessed for
diverse applications such as imaging [186], optical computing [187], and optical anticoun-
terfeit [188]. The fusion of BIC’s high Q characteristic with the adaptability of metasurface
regulation further amplifies their potential [51,189]. Figure 3d illustrates a BIC within an
all-dielectric metasurface. By adjusting the placement of the hollow cylinder inside the
unit cell, a specific position can be identified where the mode’s quality factor significantly
increases. This surge aligns with an anomaly in the reflection spectrum, signifying the
manifestation of a BIC. Incorporating BIC with metasurfaces paves the way for fabricat-
ing optical devices with enhanced light-matter interactions, miniaturization, broadband
operation, tunability, and reconfigurability. This convergence enhances efficiency across
numerous domains, including sensing, imaging, and nonlinear optics.

Sensing. By harnessing the high-quality factor property of BIC, metasurface-based
sensors [190] can attain unparalleled sensitivity and accuracy. The breakthrough in gold
split ring metasurfaces [191] with BIC realized by Srivastava et al. has paved the way for its
application in sensing. To further enhance sensitivity, Chen et al. [192] utilized the toroidal
dipole bound states in the continuum (TD-BIC) and achieved an impressive amplitude
sensitivity of 0.32/RIU. Similarly, Cen et al. [193] demonstrated excellent performance
in a refractive index sensor with a sensitivity of 465.74 GHz/RIU and a figure of merit
of 32,984. In addition to a single sensing function, more flexible modulation and func-



Materials 2023, 16, 7112 8 of 20

tions can be explored. A dynamically configurable quasi-bound state in the continuum
(QBIC) [194] was proposed using metamaterial arrays with planar symmetric resonators
modified with any (active) dielectric, realizing rapid switching of a QBIC resonance with
200% transmission intensity modulation as well as BIC-based refractive index sensing. A
variety of high-performance THz sensors based on BIC have been developed by giving
a low energy, superior penetrability, and capacity to discern the chemical composition of
numerous biological macromolecules inherent in Terahertz waves. These sensors have
found applications in a wide range of areas such as thick sensing [191,192], environmental
monitoring [193,194], bio-chemical detection [195–198], optofluidic biosensors [199–201],
and terahertz devices [202].

Imaging. Dynamic imaging and image processing have made rapid advancements
with the integration of the BIC and metasurface, along with the utilization of the control
of different materials. Yesilkoy et al. [65] demonstrated hyperspectral imaging with di-
electric metasurfaces using a metal oxide semiconductor (CMOS) for the spectrometer
in 2019. For reconfigurability, Ge2Sb2Te5 (GST) film [203] and graphene [189,204] were
used to control dynamic imaging by tuning the resonance or voltage. Meanwhile, image
differentiation is a fundamental processing approach for recognizing object edges, and it
is frequently the initial step in picture analysis. Therefore, a reconfigurable metasurface
was demonstrated [205], embedded in polydimethylsiloxane (PDMS) to situ switch bright-
field imaging and 2D differentiation without the need for a Fourier transform. Recently,
Wang et al. [206] proposed a multi-channel THz system composed of an Al-graphene
programmable metasurface. They used a field-programmable gate array (FPGA) to change
the graphene state, which realized the dynamic display of characters in many channels and
provided a platform for THz multi-band image encryption and transmission.

Nonlinear optics. The strong field confinement and enhanced light–matter interactions
provided by metasurfaces open up avenues for investigating nonlinear effects at ultra-low
light intensities when coupled with BIC. Metasurfaces are capable of hosting a perfect BIC
mode in extremely symmetric geometries. However, it is undetectable. When disrupting
geometric symmetry, the ideal BIC would be converted into a quasi-BIC mode, which can
be detected. In recent years, the plasmonic metasurface has attained remarkable efficiency,
yet it suffers from an inherent dissipative loss. Meanwhile, dielectric and semiconductor
materials, which provide lower inherent absorption losses, larger damage thresholds, and
stronger nonlinear coefficients, have recently come to be utilized as an alternative.

Nonlinear nanostructured surfaces offer new ways to control and manipulate nanoscale
frequency conversion processes in nonlinear optics. The third-harmonic generation (THG) [207],
composed of symmetry-broken silicon meta-atoms, was first realized in 2019. In the same
year, Xu et al. [208] demonstrated the functional application of dynamical nonlinear image
tuning using THG. In addition, methods to improve the second harmonic generation with
the slotted silicon nanocube array [209] and the transparent thin-film lithium niobate (LN)
metasurface [210] have also been verified. Recently, higher order and harmonics up to
the 11th order [211] were confirmed using a resonant dielectric metasurface, which takes
nonlinear frequency conversion to a new level.

Semiconductor materials are a crucial part of nonlinear effects. In the visible range,
continuous wave (CW) SHG [212] was achieved by combining the attractive material prop-
erties of gallium phosphide with higher efficiency but also two orders of pump intensities
lower. The entangled photons were generated [213] via spontaneous parametric down
conversion by high-Q BIC resonances in gallium arsenide (GaAs) quantum optical meta-
surface, which paves the way for building room-temperature nanoscale sources of complex
tunable entangled states for quantum networks.

Beyond dielectric metasurface systems, the integration of 2D materials [214] in hybrid
systems presents numerous novel opportunities. For instance, incorporating graphene
into these hybrid metasurface systems facilitates straightforward modulation of the Fano
resonance peak via controlling the bias voltage [215–217]. This electrically regulated
tunability paves the way for dynamic metasurface-driven displays [189,218]. Moreover,
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as a notable 2D material renowned for its intrinsic nonlinearity and potent luminescence,
WS2 can either be layered atop a metasurface or crafted into Mie resonator nanodisks for
enhanced second harmonic (SH) intensity [219] and highly directed light emission [220].
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Figure 3. Exploration of BIC in diverse nanostructures. (a) BIC-based grating perovskite microlaser.
Upper: Representation of the grating structure alongside a transmission spectrum for two incident
angles. Lower column: Correlation between mode wavelength and Q-factor based on incident
angles for multiple modes. Adapted with permission from Ref. [112]. (b) Photonic crystal slab
BIC—analyzing changes in k-space with varied slab thickness. Adapted with permission from
Ref. [148]. (c) BIC-assisted light propagation in waveguides. Upper: Representation of the waveguide
structure and graphs showcasing the relationship between coupled strength, propagation distance,
and waveguide width. Lower: Depiction of the waveguide’s cross-sectional mode profile. Adapted
with permission from Ref. [18]. (d) Metasurface BIC highlighting field distribution within the unit
cell. Lower: Analysis of the quality factor versus offset distance for a suspended (black) case, a glass
substrate (red) case, and reflectance fluctuations in proximity to BIC in a suspended case. Adapted
with permission from Ref. [37].

4. Summary and Perspective

We provided a concise overview of recent progress in BICs, categorizing them by
their unique photonic structures. By comparing all the applications in various photonic
structures, it is evident that the concept of BIC has facilitated notable breakthroughs in areas
like light confinement, resonator design, optical sensing, nonlinear generation, and other
intensively studying fields. As an emerging field that is rapidly developing, BIC promises
to invigorate the following trends in photonics, potentially indicating the direction of the
latest research endeavors.

4.1. Chiral BIC

As a fundamental geometrical property, chirality refers to objects or systems where
they are distinguishable from their mirror image. In the specific domain of photonics,



Materials 2023, 16, 7112 10 of 20

chirality has garnered substantial interest for its capability of modulating the geometrical
phase for arbitrary wavefront shaping [221,222], efficiently manipulating the polarization
state of light emission [223–225] and advancing light spin manipulation [172,226]. The
high-quality factor, strong field enhancement, and far-field directionality properties of BIC
align well with the requirements of the aforementioned applications. Therefore, chiral BIC
has become one of the recent hotspots in BIC research.

Dielectric and plasmonic metasurfaces, with their unique advantages in light manip-
ulation, have emerged as ideal platforms for harnessing chirality [227–229]. By breaking
in-plane C2 symmetry, the well-known Γ symmetry-protected BIC belongs to a square lattice
array split into two circular polarization quasi-BIC points that exhibit chirality [48,230,231].
Due to their deviation from Γ points corresponding to normal incident directions, this
kind of chiral BIC generally suffers from limited emission performance and a fundamental
trade-off between the Q-factor and circular dichroism [228]. To address this problem, ad-
ditional parameters should be introduced either to control the position of the quasi-BIC
or to decouple the correlation effect between the quality factor and circular dichroism. By
further breaking the out-plane symmetry, the circular quasi-BIC point can be shifted to
the Γ point and thus becomes an intrinsic chiral BIC corresponding to normal incidence,
offering enhanced performances in chiral emission and lasing [31,38] (Figure 4(a1,a2)). An
alternative approach can be considered as exploiting a structure consisting of a 2D twisted
vertical split-ring resonator array and a 1D grating. This design can independently gener-
ate chirality and maintain a high-quality factor without producing a negative offsetting
impact [227].
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Figure 4. (a1) Top-view and side-view SEM for symmetry-broken metasurface. (a2) Angle-dependent
transmission for LCP (off-Γ, external chirality) and RCP (Γ, intrinsic chirality). (a1,a2) Adapted with
permission from Ref. [31]. (b1) Schematic of van der Waals material-based self-hybridization BIC.
(b2) Spectrum shift by changing scaling factor. (b3) Transmission versus wavelength at different
defect sizes. BIC is observed when p1 = p2. (b1–b3) Adapted with permission from Ref. [27].

4.2. BIC in Hybrid Structures with 2D Materials

With the advancement in BIC research, the focus has expanded from purely dielectric
BIC to include BIC in hybrid systems. This expansion firstly facilitates the intricate interplay
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between metallic and dielectric materials [232], giving rise to unprecedented optical characteris-
tics. The fusion of plasmons with BIC mainly aims to leverage the high-quality factor property
of BIC to address the inherent ohmic losses associated with metal-based systems [233]. By
combining metals like gold with dielectrics like SiO2 [234], plasmonic BIC can be achieved in
such a hybrid system with more compressed modal volume [235] and stronger light–matter
interactions [236,237], which has been exploited for biomolecular sensing [236,238].

Another particularly promising avenue is the integration of BIC with 2D materials.
The novel functionalities offered by 2D materials were discussed in the prior sections;
here, we focus more on enhanced coupling between excitons and optical modes in 2D
material hybrid systems. Characterized by large oscillator strengths in their excitons, mono-
layer TMDs present promising platforms for investigating strong light–matter interactions.
By transferring monolayer TMDs onto dielectric metasurfaces [239] or photonic crystal
slabs [240], Rabi-splitting can be significantly enhanced due to the intense coupling be-
tween the excitons in 2D materials and the optical quasi-BIC in dielectrics. This coupling
can be further optimized by adjusting the position of the monolayer and the thickness of
the dielectrics, as highlighted in Ref. [241]. Analogous approaches have also been imple-
mented in all-perovskite metasurfaces [242] and bulky WS2 [27] to offer direct control of
light–matter interactions (Figure 4(b1–b3)). The strong coupling gives rise to polaritons in
such hybrid systems as a result of the hybridization of excitons with optical BIC, which
has been leveraged to enhance nonlinearity [26] and achieve high-directionality light emis-
sion [243,244]. Beyond the development of novel photonic devices, the extended lifetimes
of polaritons accumulated in quasi-BIC have also advanced research in the observation of
collective behavior and inherent properties of Bose–Einstein condensates [32,245].

In conclusion, the incorporation of BIC into nanostructures has enhanced the per-
formance of integrated optoelectronic devices. By transferring 2D materials onto nanos-
tructures as adjacent layers, the synergy between BIC and 2D materials facilitates strong
light–matter interactions, effectively harnessing the optoelectronic attributes of 2D materi-
als for dynamic optical modulation and high-performance active device fabrication. Recent
research on patterning 2D materials directly into metasurfaces presents a promising avenue
for further exploring exotic polaritons in 2D materials and can also be extended to other
van der Waals materials, such as black phosphorus and hexagonal boron nitride [27].

Despite vibrant advancements in BIC research, several practical challenges still war-
rant further investigation, including the fabrication robustness of BIC metasurface. Al-
though symmetry-protected BIC in metasurfaces has garnered widespread attention from
researchers due to its design simplicity, this type of BIC demands high fabrication precision
for achieving a high-quality factor, which is challenging when a defect is introduced at
the subwavelength scale. When accounting for fabrication errors, particularly the ran-
dom geometric variations, metasurfaces of different shapes suffer from varying degrees of
degradation [246]. Therefore, for symmetry-protected BIC in metasurfaces with smaller
unit structures, an in-depth discussion on error analysis or comprehensive experimental
validation is essential to evaluate practical device performance. We believe that as the
photonic community delves deeper into the intriguing properties of BIC, its vast potential
will unfold, heralding a shift in the limits of what is possible within integrated photonics.
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