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Abstract: Freeze–thaw (F-T) is one of the principal perils afflicting concrete pavements. A remedial
strategy used during construction encompasses the integration of hybrid fibers into the concrete
matrix. An extant research gap persists in elucidating the damage mechanism inherent in hybrid steel
fiber (SF)- and basalt fiber (BF)-reinforced concrete subjected to F-T conditions. This paper empirically
investigated the durability performance of hybrid fiber-reinforced concrete (HFRC) subjected to F-T
cycles. The impact of SF/BF hybridization on mass loss, abrasion resistance, compressive strength,
flexural strength, damaged layer thickness, and the relative dynamic modulus of elasticity (RDME)
was examined. The damage mechanism was explored using micro-hardness and SEM analysis. The
results indicate that incorporating hybrid SF/BF effectively enhances the F-T resistance of concrete
and prolongs the service life of concrete pavement. The mechanisms underlying these trends can
be traced back to robust bonding at the fiber/matrix interface. Randomly dispersed SFs and BFs
contribute to forming a three-dimensional spatial structure within the concrete matrix, suppressing
the expansion of internal cracks caused by accumulated hydrostatic pressure during the F-T cycle.
This research outcome establishes a theoretical foundation for the application of HFRC to concrete
pavements in cold regions.

Keywords: freeze–thaw; concrete pavements; hybrid fibers; steel fiber; basalt fiber; RDME

1. Introduction

In the frigid region, diurnal temperature variations engender deleterious effects on
rigid materials such as concrete. These deleterious consequences are particularly manifest
in the context of concrete road pavements, where they manifest as premature cracking,
diminished wear resistance, and a concomitant reduction in load-bearing capacity [1–3].
Hence, these road pavements exhibit truncated operational lifespans and commensurately
elevated maintenance expenditures. Freeze–thaw (F-T) cycles stand as a principal factor that
diminishes the longevity of concrete pavements, precipitated by temperature variations [4].
As water transitions into ice, it undergoes a volumetric expansion of up to 9% of its total
volume, giving rise to micro-cracks [5]. During the thawing process, water infiltrates the
pavement via micro-cracks. Furthermore, during the freezing phase, water that permeates
the unyielding pavement solidifies, resulting in a diminution in concrete strength due to the
concomitant emergence of macro-cracks [6]. Therefore, it becomes imperative to ascertain
means to mitigate the propensity for concrete cracking to enhance the endurance of road
pavement against the challenges of F-T cycles.

The incorporation of fibers into concrete can effectively mitigate, regulate, and retard
the onset, progression, and merging of minute and substantial cracks [7–9], thereby ad-
dressing several drawbacks associated with concrete [10–12] and minimizing impairment
in F-T conditions [13,14]. The contribution of fibers to concrete exhibits variability based

Materials 2023, 16, 7137. https://doi.org/10.3390/ma16227137 https://www.mdpi.com/journal/materials

https://doi.org/10.3390/ma16227137
https://doi.org/10.3390/ma16227137
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0002-7934-3027
https://doi.org/10.3390/ma16227137
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma16227137?type=check_update&version=1


Materials 2023, 16, 7137 2 of 19

on their shape, length, density, elastic modulus, and tensile strength. Longer fibers exert a
profound influence on the inception, advancement, and amalgamation of major cracks [15],
whereas shorter fibers distinctly determine micro-scale cracks [16,17]. Accordingly, the
hybridization of two distinct fiber types likely optimizes their respective merits [18]. Con-
sequently, in recent years, there has been a burgeoning interest in the application of hybrid
fiber-reinforced concrete (HFRC) within road pavement.

Among fiber hybridizations, the combination of steel fiber (SF) and basalt fiber (BF)
stands as an innovative prospect with vast applicability [19]. Guler et al. [20] conducted an
inquiry into the properties of concrete pavement with the incorporation of hybrid fibers
within the concrete matrix. The concrete specimens featuring SFs and BFs exhibited superior
flexural strength and impermeability properties in comparison with ordinary concrete. The
outcomes revealed that the propagation of cracks within the concrete pavement was notably
restrained with the integration of hybrid fibers. Zhang et al. [21] investigated the dynamic
properties of strain-hardening cementitious composites (SHCCs) incorporating BF and
SF. It was observed that the SHCC incorporated with hybrid fibers evinced a pronounced
superiority concerning its initial crack, post-cracking response, and heightened potential
for energy absorption when compared with conventional plain concrete. Khan et al. [22]
demonstrated that the hybridization of SFs and BFs serves to augment the mechanical
properties of HFRC. Particularly, the optimal volumetric blend of 0.32% SF and 0.68% BF
resulted in a maximal enhancement in compressive and flexural strength in the concrete.
This substantiates the efficacy of co-blending steel fibers and basalt fibers in fortifying the
mechanical performance of concrete, capitalizing on the commendable elastic modulus
of SFs and the noteworthy tensile strength of BFs [23]. Furthermore, these fibers have
been proven advantageous in bolstering concrete durability [24,25] and reducing costs [26].
Meanwhile, it has been observed that the durability deterioration of concrete during F-T
cycles is a multifaceted and multiscale process, characterized by the substantial accrual of
crack propagation [27,28]. Hence, it is eminently judicious to use a combination of SFs and
BFs to leverage their synergistic effect across different structural factors and stress phases
of concrete and improve the durability against the F-T of concrete.

In light of the antecedent literature survey, there exists a dearth of investigations
dedicated to the comprehensive evaluation of the durability of hybrid SF/BF-reinforced
concrete subsequent to exposure to F-T cycles, especially when juxtaposed with conven-
tional concrete for utilization in rigid pavement applications. Furthermore, the explication
of the damage mechanism and the laws governing damage evolution have not been suffi-
ciently elucidated, leading to an insufficient comprehension of the durability and predictive
lifespan of HFRC within F-T regions.

This study aims to develop a composite fiber-reinforced concrete made of hybrid SF/BF.
The intention is to deploy this composite in road engineering projects in frigid climates,
endowing it with superior resistance to F-T cycles compared with conventional concrete
road surfaces. Specifically, the F-T deterioration patterns in the HFRC were analyzed
comprehensively, encompassing both macroscopic and microscopic dimensions, while
also engaging in an in-depth exploration of the damage mechanisms inherent to HFRC
during the F-T process. Finally, based on the test results, a Grey–Markov model is used
to establish a law governing the evolution of damage in HFRC, ultimately facilitating the
characterization of its damage degree and prediction of the service life of HFRC materials
within the context of F-T cycle environments. The findings of this study hold promise in
offering valuable insights into the selection of concrete pavement materials in cold regions,
concurrently enriching the variety of ingredients in HFRC.

2. Experimental Procedure
2.1. Raw Materials

In this study, CEM 42.5 Portland cement, possessing a 28-day compressive strength
of 49.8 MPa, was used alongside Grade I fly ash, characterized by an activity index sur-
passing 95%. The corresponding chemical compositions are shown in Table 1. For the
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concrete matrix, coarse aggregates with a needle-like flake composition and crushing in-
dices of 7% and 9.3%, respectively, were chosen, exhibiting a granular size ranging from
5 to 20 mm. The fine aggregates featured a minimal mud content of less than 1.5% and a
fineness modulus of 2.58. Two distinct types of fiber, namely, steel fiber (SF) and basalt
fiber (BF), were selected for incorporation into the concrete mixture. The appearances of
SFs and BFs are presented in Figure 1, while their technical attributes are delineated in
Table 2. The influence of fiber on the workability of concrete mixing was enhanced with
the application of a polycarboxylic acid-based superplasticizer.

Table 1. Chemical composition of cementing materials (/%).

Chemical
Composition SiO2 Al2O3 CaO Fe2O3 MgO MnO K2O IL TiO2

Cement 26.7 11.5 48.9 4.9 3.0 0.4 1.6 1.8 1.2
Fly ash 46.4 29.9 9.4 6.9 1.9 0.2 1.5 2.4 1.4
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Table 2. Physical and mechanical properties of the fibers used in this experiment.

Types Length (mm) Diameter (µm) Density
(g/cm3)

Elastic Modulus
(GPa)

Tensile Modulus
(GPa)

SF 30 50 7.8 200 1.2
BF 12 20 2.7 100 4.5

2.2. Mix Proportion and Experimental Design

This experiment ascertained the mixture proportions using the JTG D40-2011 stan-
dard [29], as presented in Table 3. The experimental variables encompassed diverse fiber
types: Group A served as the control group without fiber, Group B comprised the concrete
mixture with SFs, Group C comprised the concrete mixture with BFs, and Group D incorpo-
rated hybrid SF/BF into the concrete mixture. The comprehensive details of the blending
and casting procedures for the specimens were meticulously documented in a previous
study [30]. The pertinent test projects and specimen dimension requirements are shown
in Table 4.
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Table 3. Mix proportions of concrete specimens.

Samples A B C D

Cement/(kg·m−3) 400 400 400 400
Fly ash/(kg·m−3) 100 100 100 100

Coarse aggregate/(kg·m−3) 1165 1165 1165 1165
Fine aggregate/(kg·m−3) 635 635 635 635

Water /(kg·m−3) 200 200 200 200
Water reducer/(kg·m−3) 4.5 4.5 4.5 4.5

SF/% (by volume fraction) / 2.0 / 2.0
BF/%(by volume fraction) / / 0.1 0.1

Table 4. Dimension of concrete specimens.

Test Project Specimen Dimension/mm

Mass loss 100 × 100 × 100
Abrasion resistance 150 × 150 × 150

Compressive strength test 100 × 100 × 100
Flexural strength test 400 × 100 × 100

Damaged layer thickness 400 × 100 × 100
Relative dynamic modulus of elasticity 400 × 100 × 100

The internal time–temperature curve of concrete during F-T cycles is depicted in
Figure 2. The simulated F-T damage was administered to concrete specimens that had been
cured for 28 days. The specimens were first subjected to a 6-h freezing period at −40 ◦C,
followed by a 2.5-h thawing period at 25 ◦C, constituting a single cycle. The corresponding
tests were conducted at intervals of 25 cycles, totaling 200 cycles.
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2.3. Test Procedures
2.3.1. Mass Loss Tests

The mass loss of the specimen was determined using a precision electronic balance
with a precision of 0.1 g. Measurements were conducted at regular intervals of 25 F-T cycles.
The mass loss rate was utilized to characterize the specimen’s mass loss; the calculation
formula is as follows:

∆Wn =

(
1− Wn

W0

)
× 100% (1)

where ∆Wn is the mass loss rate of the specimen that underwent F-T cycles, Wn is the mass
of the specimen after F-T cycles (g), and W0 is the initial mass of the specimen (g).

2.3.2. Abrasion Resistance Tests

According to JTG 3420-2020 [31], the prepared specimen was subjected to an oven-
drying regimen at 60 ◦C for 12 h before the abrasion resistance test. This preconditioning
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ensured the specimen’s optimal dry state, facilitating the subsequent testing procedure
conducted under a substantial 200 N abrasion load. The assessment of the specimen’s
abrasion resistance was ascertained with the utilization of the unit area abrasion loss,
and the calculation formula is presented as follows:

Gn =
M0 −Mn

A
(2)

where Gn is the abrasion loss of the specimen that underwent F-T cycles, M0 is the mass of
the specimen before abrasion (g), Mn is the mass of the specimen after abrasion (g), and A
is the specimen abrasion area (m2).

2.3.3. Compressive Strength Tests

The compressive strength of the concrete specimens was determined using a hydraulic
testing machine. A load application rate of 0.5 MPa/s was steadily and continuously
applied until the specimens were destroyed. The mechanical assessment index was acquired
with the utilization of the compressive strength loss ratio, as per Equation (3), to facilitate
subsequent calculations.

Rc =
Rc0 − Rcn

Rc0
× 100% (3)

where Rc is the compressive strength loss ratio of the specimen that underwent F-T cycles,
Rc0 is the initial compressive strength of the specimen (MPa), and Rcn is the compressive
strength of the specimen after F-T cycles (MPa).

2.3.4. Flexural Strength Tests

The flexural performance of concrete was scrutinized through a four-point bending
test, as illustrated in Figure 3. The support spacing was set at 300 mm, with a pure bending
section interval of 100 mm. During testing, displacement loading was applied at a rate of
0.002 m/s until the specimen’s failure. The primary mechanical performance indicators
of pavement concrete were derived using the flexural strength loss ratio, as delineated in
Equation (4).

R f =
R f 0 − R f n

R f 0
× 100% (4)

where Rf is the flexural strength loss ratio of the specimen that underwent F-T cycles, Rf0 is
the initial flexural strength of the specimen (MPa), and Rfn is the flexural strength of the
specimen after F-T cycles (MPa).
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2.3.5. Thickness of the Damaged Layer and Relative Dynamic Modulus of Elasticity Tests

Following the completion of each F-T cycle, an ultrasonic testing device (Figure 4a)
was used to assess the relatively dry regions on the concrete surface, from which the
thickness of the damaged layer was ascertained. The layout of measurement points is
illustrated in Figure 4b. The ultrasonic wave velocity can effectively portray the defects that
emerge during the degradation process of the specimens. Previous investigations [32] have
demonstrated the correlation between the relative dynamic modulus of elasticity (RDME)
and ultrasonic velocity, as depicted by Equation (5).

Pn =

(
Vn

V0

)2
× 100% (5)

where Pn is the RDME value of the specimen subject to n times cyclic F-T, Vn is the UPV
value after n times cyclic F-T (m/s), and V0 is the UPV value without any F-T cycle (m/s).
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2.3.6. Micro-Hardness Tests

Based on a micro-hardness tester (Figure 5a), the measurement of micro-hardness
spanning from the fiber’s edge to the bulk paste matrix was performed. Test specimens,
measuring 100 mm × 40 mm × 20 mm (as shown in Figure 5b), were served as the
subjects for these micro-hardness tests. The indentation patterns observed under an optical
microscope are exemplified in Figure 5c. The test points were divided into two distinct
parts. Within each part, a spacing of 20 µm was established between adjacent test points to
eliminate overlapping. This implies that the effective step size between test points was set
at 10 µm. A schematic representation of the test locations can be seen in Figure 5d. Building
upon previous research [30], a force of 10 gf (0.098 N) was applied, with a dwell time of
10 s, for the micro-hardness tests.
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2.3.7. SEM Tests

A scanning electron microscope (SEM) was used to conduct a microscopic analysis of
the concrete specimens. Tiny particle samples from the crushed specimens, both before and
after F-T cycles, were extracted. A gold sprayer was used to apply a fine gold coating to
the sample surfaces to enhance image quality. Subsequently, these samples were placed
onto a specimen holder, ensuring electrical connectivity with the holder with the use of
conductive tape. Once the sample surfaces dried, the specimens were introduced into the
SEM for examination.

3. Results and Discussion
3.1. Macroscopic Results
3.1.1. Surface Deterioration and Mass Loss

The apparent morphological transformations of the concrete specimens under varying
F-T cycles are depicted in Figure 6. It can be observed that exposure to F-T cycles destroyed
the surface layers of specimens and the damage on the specimens’ surfaces became more
visible with exposure to increasing F-T cycles. After 200 F-T cycles, apparently loose parti-
cles were observed on the surface of Group A, accompanied by a pronounced impairment in
the edges and corners. Conversely, Groups B, C, and D exhibited noticeably milder surface
erosion compared with Group A. Following 200 F-T cycles, Group B showed only a small
number of minor pores on the surface, while the edge loss in Group C was comparable to
that of Group B. The incorporation of hybrid SF/BF enhanced the concrete’s resistance to
F-T cycles. After 200 F-T cycles, Group D displayed a favorable surface appearance, devoid
of severe corner deterioration.

In relation to the extent of surface damage to the concrete, the mass loss rate serves
as a quantitative analytical method. The mass loss rate outcomes for each group are
presented in Figure 7. As shown in Figure 7, the mass loss rate of each group exhibits an
upward trend after 200 F-T cycles, except for the slight decrease at the initial 25 cycles,
in which the mass of each group increases by 0.08~0.46%. This phenomenon arises from
the synergistic influence of frost-induced expansion pressure and hydrostatic pressure
within the specimens [33], resulting in a significant amount of water encapsulated within
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the pores. After 25 F-T cycles, the rate of mass loss for each specimen exhibits a gradual
increase. This phenomenon ensues as the ice crystals commence their expansion, thereby
precipitating the generation of external forces, which subsequently serve to amplify the
pre-existing microcracks within the concrete matrix [34]. The mass loss rate of Group A
upon completion of 200 F-T cycles is measured at 4.18%, whereas the other three groups
demonstrate values spanning from 0.78% to 1.07%. Notably, Group D exhibits the lowest
mass loss rate (0.78%). This outcome is primarily attributed to the crack-bridging capacity
of the fibers and their distribution within the concrete matrix. On one hand, owing to
the superior elastic modulus and sheared wavy shape, SFs have a superior bond to the
surrounding matrix, thereby exhibiting enhanced crack-restrain capabilities. On the other
hand, the substantial quantity of BFs dispersed randomly in the concrete matrix forms a
three-dimensional confinement structure, engendering the unity of concrete. Thus, the
combination of SFs and BFs distinctly contributes to preventing specimen shedding under
F-T cycles.
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Figure 7. The mass loss rate of the specimens during F-T cycles.

3.1.2. Abrasion Resistance

The abrasion loss of each group of concrete specimens measured after each F-T cycle
is presented in Figure 8. As displayed in Figure 8, the initial abrasion loss values among
the various groups exhibited minimal differences, ranging from 1.24 kg/m2 to 1.45 kg/m2.
As the F-T cycles progressed, Group A witnessed a sharp increase in abrasion loss, whereas
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the abrasion loss rate for the three fiber-reinforced groups notably remained lower than
that of the control group. Finally, after 200 F-T cycles, Group A exhibited an abrasion loss
of 4.13 kg/m2 under a 200 N load. In contrast, the wear values for Groups B, C, and D
ranged from 2.07 kg/m2 to 2.75 kg/m2, significantly lower than Group A. Notably, Group
D displayed the most substantial divergence in abrasion loss when compared to the control
group, with a difference of 2.06 kg/m2. This observation underscores that, when abrasion
resistance serves as a reference criterion, HFRC exhibits at least twice the F-T resistance of
conventional concrete.
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Furthermore, as discerned from Figure 8, Group B, which solely incorporated SFs,
exhibited slightly higher abrasion loss values throughout the entire F-T cycle period com-
pared with Groups C and D. This phenomenon can be attributed to the fact that SFs do
not effectively inhibit the formation of internal microcracks and their transformation into
macroscopic cracks [35]. Consequently, with the assistance of BFs, concrete with fewer
internal structural cracks better preserves its integrity and minimizes wear and tear caused
by friction. Hence, Group D, which incorporated hybrid SF/BF, demonstrated outstanding
abrasion resistance throughout the F-T cycles.

3.1.3. Compressive Strength Loss

The compressive strength of specimens as a function of F-T cycles is displayed in
Figure 9a. In the initial phase, the compressive strength of Group A at 28 days reaches
44.8 MPa, meeting the requirements for road traffic [29]. In comparison, due to the ability
of fibers to withstand additional loads when the matrix fails, the compressive strength of
specimens in Groups B, C, and D, which are admixed with fibers, surpasses that of Group A,
ranging between 45.2 MPa and 53.8 MPa. As the F-T cycles progress, all specimens exhibit a
trend of initial increase followed by a subsequent decrease. Notably, Group D demonstrates
the highest compressive strength (55.6 MPa) after 50 F-T cycles, surpassing Group A by
22.74%. After 175 F-T cycles, Group A exhibits the lowest compressive strength (33.5 MPa),
indicating severe F-T damage to ordinary concrete in this experiment. Following 200 F-T
cycles, the compressive strength of Groups B and D, which contain SF, is 44.6 MPa and
48.7 MPa, respectively, which is a high value for pavement concrete.
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Further analyzing the compressive strength durability of HFRC, the correlation be-
tween the rate of compressive strength loss and the number of F-T cycles can be discerned
(Figure 9b). As depicted in Figure 9b, following 200 F-T cycles, concrete specimens from
each group exhibited a marginal increase in compressive strength compared with the initial
measurements, but overall, a loss in strength was evident. The variations in compressive
strength for each specimen can be categorized into three distinct stages: (a) compressive
strength increase stage, (b) compressive strength reduction stage, and (c) severe compres-
sive strength deterioration stage.

During stage (a), when the number of F-T cycles was fewer than 50, the compressive
strength of each group concrete increased by approximately 1.12% to 3.76%. This elucidates
that, during the early stages of F-T cycles, cement particles in the concrete were still
capable of initiating hydration reactions, thereby leading to an elevation in the compactness
of the cementitious matrix and an augmentation in compressive strength. In stage (b),
under the expansion pressure upon F-T exposure, internal defects within each group of
specimens gradually enlarged, leading to a decrease in the compactness of concrete, and
consequently, reducing compressive strength. In stage (c), the rate of compressive strength
loss for all groups was significantly higher than in the previous two stages. Group A
exhibited an earlier failure compared with the other three groups with fiber incorporated,
reaching the specified failure threshold after 175 F-T cycles. Additionally, after 200 cycles,
the compressive strength loss rates for the fiber-incorporated Groups B, C, and D ranged
from 9.48% to 16.59%. Among them, Group D exhibited the lowest compressive strength
loss rate.

3.1.4. Flexural Strength Loss

Apart from compressive strength, the flexural strength of concrete is typically des-
ignated as a crucial mechanical parameter for pavement design. The curve depicting
the flexural strength of concrete in relation to the number of F-T cycles obtained from
a four-point bending test is illustrated in Figure 10a. In the initial phase, the flexural
strength of Group A at 28 days reaches 4.25 MPa, meeting the minimum design stan-
dard (4 MPa) specified in the standard of concrete pavement maintenance technology in
China [29]. The incorporation of fibers conspicuously enhances the flexural strength of
concrete. The 28-day flexural strength of specimens in Groups B, C, and D ranges from
5.21 MPa to 6.40 MPa, surpassing the standard flexural strength value for cement concrete
pavement under heavy loads (5 MPa). As F-T cycles progress, the flexural strength of all
specimens gradually declines. In the case of Group A, the flexural strength at 175 F-T cycles
is 3.01 MPa, failing to meet the requirements for highway traffic. The extent of flexural
strength damage in specimens from Groups B, C, and D is markedly lower than that of
ordinary concrete. Notably, the flexural strength of Group D specimens after 200 F-T cycles
is 5.16 MPa, retaining an excellent load-bearing capacity.
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The flexural strength loss rates of specimens from Group A to Group D are depicted in
Figure 10b. As delineated in Figure 10b, the flexural strength loss rates of specimens in each
group increased with the augmentation of F-T cycles, among which Group A exhibited
the most pronounced deterioration. The degradation of flexural strength can be roughly
categorized into two stages: (a) relatively modest flexural strength loss and (b) increases in
the loss rate of flexural strength

In stage (a), the increase in flexural strength loss rate is gradual. Group A’s Rf was
increased by 6.11% after 50 F-T cycles, while the magnitude of flexural strength loss for spec-
imens from Group B to Group D ranged between 2.03% and 4.61%. In stage (b), the flexural
strength loss rate for Group A specimens experienced a rapid escalation, surpassing the fail-
ure threshold of 25% at 175 F-T cycles (29.17%). In contrast, although the flexural strength
loss rates from Group B to Group D exhibited an increase compared with that of stage (a),
the extent of damage remained lower than that of Group A. After 200 F-T cycles, the Rf
values for Groups B to D ranged between 19.38% and 24.18%. Notably, Group D displayed
the lowest flexural strength loss rate, indicating that the interwoven SF/BF within the
concrete forms a “chaotic supportive system,” effectively impeding crack propagation
induced by F-T damage and enhancing the concrete’s toughness [24].

3.1.5. Damaged Layer Thickness

Figure 11 illustrates the evolution of concrete damage layer thickness under the
influence of F-T cycles. From the results, it is evident that F-T cycles induced varying rates
of damage to the test piece. At the end of the F-T testing in Group A, the damage layer
reached a substantial length of 21.59 mm, whereas the maximum thickness observed in
specimens with fiber incorporation was only 12.74 mm (Group B). Under an equal number
of cycles, Group B exhibited a greater thickness of the damaged layer compared with
Groups C and D. After 200 F-T cycles, the damaged layer thickness for Groups C and
D measured 10.75 mm and 8.93 mm, respectively. Furthermore, in conjunction with the
findings from Section 3.1.1, it is discernible that if the damaged layer thickness exceeds
20 mm, it signifies concrete damage that can be visually observed with the naked eye.
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Based on the aforementioned observations, it becomes evident that repeated F-T cycles
expedite the degradation of the internal structure of concrete. Therefore, the incorporation
of hybrid SF/BF into concrete serves to enhance its internal structural integrity, making it a
promising solution for widespread use in cold-region concrete pavement applications.

3.1.6. Relative Dynamic Modulus of Elasticity

Figure 12 shows the change in the RDME of specimens as F-T cycles increase. It can be
found that the RDME decreased significantly for all specimens after F-T cycles. Notably,
the RDME of Group A exhibited a rapid decline, culminating in the attainment of the
durability failure threshold after enduring 175 F-T cycles. In contrast, the RDME values for
the three groups of specimens containing fibers remained above 60% after 200 F-T cycles,
within the range of 61.77% to 75.65%. Specifically, before reaching 100 F-T cycles, the decline
in RDME of Group C was almost the same as that of Group B. At 200 F-T cycles, the RDME
of Group C was 61.77%, which was significantly lower in comparison with Group B and
Group D. This indicates that in the later stages of F-T cycles, BFs exhibit a limited inhibitory
effect on the macro-crack propagation caused by F-T damage. Moreover, compared with
the other groups, the RDME of Group D consistently yielded the highest value, reaching
75.65% after 200 F-T cycles. This observation underscores the enhanced reinforcement
of the fiber/matrix interface in concretes where SFs and BFs are hybridized, ultimately
leading to better preservation of the concrete matrix integrity following F-T cycles.
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3.2. Microscopic Results
3.2.1. Micro-Hardness Test Results

Figure 13a shows the results of the micro-hardness test within 90 µm of the fiber edge
for specimens with various hybrid fibers after 200 F-T cycles. The horizontal axis shows
the distance from the fiber edge, whereas the vertical axis shows the micro-hardness values.
Zhang et al. [36] reported that fractures induced by F-T are typically readily detected within
the vulnerable interface, situated approximately 10~50 µm from the fiber interface. In this
study, the division of the interfacial transition zone (ITZ) adheres to this principle.
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From Figure 13a, it can be seen that, excluding Group D, the micro-hardness of the ITZ
adjacent to the fiber edge in the samples exhibits inferiority to that of bulk paste located
farther away from the fiber edge. This discrepancy arises due to the influence of F-T cycles,
which render the micro-structure of the ITZ more porous and heterogeneous compared
with the bulk paste, consequently leading to diminished bonding between fibers and the
matrix within the ITZ [37]. Notably, the ITZ in Group A proves to be the feeblest, registering
a mere 56.03 HV at a distance of 50 µm. However, with the progressive inclusion of SFs,
the micro-hardness of the ITZ experiences an elevation. At 50 µm, the micro-hardness of
Group B was increased by 79.34% compared with that of the control group at the same
distance. This observation elucidates the beneficial role played by SFs in enhancing the
properties of ITZ. Moreover, a denser ITZ between fibers and the matrix becomes apparent
in Group D, which improves the F-T resistance of concrete [38].

Figure 13b shows three types of micro-hardness distributions around rigid inclusions
in the cement matrix [39]. This categorization elucidates the relative strengths and weak-
nesses of the matrix near the inclusion as well as those of the matrix situated further away,
thereby characterizing the toughness of the inclusion–matrix interface bond. The micro-
hardness profiles of Group A exhibited Type III, indicating an absence of fiber–matrix
bonding and the ITZ displaying weaker attributes. Conversely, the micro-hardness profiles
of Group B and Group C exemplified Type II, suggesting a partial bond at the fiber–matrix
interface. This phenomenon emerged due to the abundance of interstices and interlinked
porosity proximate to the fibers, rendering the establishment of a robust bond at the in-
terface arduous. Notably, the micro-hardness profiles of Group D demonstrated Type I,
denoting an excellent bonding between the fibers and encompassing matrix. Consequently,
the matrix surrounding the fibers showcased superior properties. The incorporation of
SF/BF hybrid fibers resulted in a diminished disparity between the matrix neighboring
fibers, and it is situated farther away.

Therefore, the micro-hardness value measured in this study for HFRC significantly
surpasses the other specimens, thereby implying the superior bonding achieved with
the incorporation of hybrid fibers and the consequential enhancement in F-T durability,
as evidenced by mass loss, compressive strength, and RDME.
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3.2.2. SEM Observations

In this study, the micro-structure images of Group A and Group D specimens, after 0
and 200 F-T cycles, were assessed with SEM analysis. The interior structure images obtained
using the SEM analysis of Group A and Group D with hybrid SF/BF-reinforced specimens
are shown in Figure 14. As illustrated in Figure 14, antecedent to the inception of the F-T
cycle experiment, the microstructure of Group A remained stable and undamaged. The fiber
surfaces in Group D were ensconced with copious hydration products, thereby endowing
the fibers with excellent bonding properties to the cementitious matrix. This is essential to
withstand hydrostatic pressure during F-T cycles [40,41]. After 200 F-T cycles, Group A
exhibited substantial cracks and voids, indicating severe internal damage caused by F-T
cycles. Conversely, in Group D, fiber pull-out phenomena were observed, accompanied
by minor cracks in the matrix. This indicates that HFRC primarily relies on the fracture
and pull-out energies of the fibers to dissipate energy [42,43]. As fibers are pulled out from
the cement matrix, the energy provided for crack propagation is consumed by frictional
stresses, thereby further enhancing the toughness of the HFRC.

Based on the aforementioned analysis, the essence of the damage and deterioration of
concrete pavement under freeze–thaw action lies in the evolutionary process of microcrack
initiation, propagation, penetration, and ultimately fracture. The incorporation of hybrid
SF/BF can enhance the flexural and fracture toughness of concrete, mitigating the rate of
crack propagation.
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4. Grey–Markov Model of F-T Damage
4.1. Grey Theory

Drawing upon the theoretical framework presented by Jabeen et al. [44], this sec-
tion outlines the establishment process of the GM(1,1)-Markov model. This process in-
volves cumulatively generating a sequence model for the RDME loss phenomenon in
concrete. Subsequently, this sequence model is subjected to simulation, ultimately yielding
predictive values.
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Assuming X(0)(t) = {X(0)(1), X(0)(2), . . ., X(0)(n)} represents the irregularly distributed
raw data sequence, the application of an Accumulated Generation Operation (AGO) yields
X(1)(t) as follows:

X(1)(t) =
{
∑1

i=1 X(0)(i), ∑2
i=1 X(0)(i), . . . , ∑n

i=1 X(0)(i)
}

(6)

The GM(1,1) model can be expressed by the first-order differential equation as shown
in Equation (7).

X(0)(t) + aZ(1)(t) = b (7)

where a represents the growth coefficient, b denotes the grey input coefficient, and Z(1)(t)
pertains to the background value concerning X(1)(t).

Z(1)(t) can be calculated using the following equation:

Z(1)(t) =
1
2

(
X(1)(t) + X(1)(t + 1)

)
(8)

Substituting Equation (8) into Equation (7) and using the Laplace inverse transform
yields the general solution:

X̂(1)(t) =
(

X(0)(1)− u
a

)
e−a(t−1) +

u
a

(9)

Ultimately, by using Equation (9) for cumulative reduction and restoration, the GM(1,1)
prediction values can be obtained.

X̂(0)(t) = X̂(1)(t)− X̂(1)(t− 1) (10)

4.2. Markov Chain Correction of Grey Model Errors

Due to the influence of various stochastic factors on the durability degradation trend in
concrete pavements in F-T environments, experimental data exhibit significant randomness.
This randomness, in turn, affects the predictive accuracy of GM(1,1), leading to less than
ideal results. Therefore, to enhance predictive precision, a Markov chain with GM(1,1)
was amalgamated.

For the original data sequence, fitting values can be obtained using GM(1,1). Since
the residual original values ε may have negative values, after applying the absolute value
transformation, the residual ε(0)(t) was obtained.

ε(0)(t) = |ε| =
∣∣∣X(0)(t)− X̂(0)(t)

∣∣∣ (11)

Furthermore, applying the steps delineated in Equations (6)–(9) to ε(0)(t) yields the
residual prediction model and residual prediction values.

Regarding systematic information within the residual original values ε, we can estab-
lish a Markov transition matrix to define their states: when the residual original value ε is
positive, it corresponds to state 1, and when it is negative, it corresponds to state 2. Based
on the polarity of the states, we can determine the state transition probabilities.

Pij =
Mij

Mi
, i = 1, 2; j = 1, 2 (12)

The state transition probabilities lead to the derivation of the state probability
transition matrix.

P =

[
P11 P12
P21 P22

]
(13)
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The remaining computational steps, following the guidelines outlined in Ref. [45],
ultimately yield the GM(1,1)-Markov model and its predictive values.

Ŷ(1)(t) = X̂(1)(t) + 1{P(+)≥P(−)} ε̂
(1)(t)− 1{P(+)<P(−)} ε̂

(1)(t) (14)

Ŷ(0)(t) = Ŷ(1)(t)− Ŷ(1)(t− 1) (15)

The computational flow of the Grey–Markov model described above is summarized
in Figure 15.

4.3. Analysis of Prediction Results

According to the results in Section 3.1.6, the long-term life prediction of the specimen
as a function of F-T cycles can be ascertained using the Grey–Markov model, as exemplified
in Table 5. It is noteworthy that the correlation coefficients (R2) lie within the range of
0.9791 to 0.9942, thereby attesting to a commendable concurrence between the projected
values and experimental outcomes. Hence, it can be inferred that the utilization of the
Grey–Markov model contributes to the anticipation and assessment of the detrimental
ramifications inflicted upon HFRC pavement in F-T environments. The corresponding
predictive curve is depicted in Figure 16.
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Table 5. The prediction of service life for FRC specimens.

Samples a b R2 Expected Service Life (Time)

A 0.077 109.810 0.9791 175
B 0.048 105.972 0.9932 280
C 0.068 110.108 0.9889 205
D 0.039 105.395 0.9942 350
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In Figure 16, the inverse relationship between the predicted RDME values of specimens
and the progressive F-T cycles can be seen. Furthermore, the degradation exhibited an
incremental tendency as F-T cycles increased. The RDME damage curve of Group A
indicates more severe F-T damage in comparison with the specimens containing fibers,
ultimately leading to durability failure after the 175 cycles, aligning with the experimental
findings. The F-T damage levels for Groups B, C, and D exhibit a pronounced escalation
over the subsequent 50 cycles. As delineated in Table 5, the service life of fiber-reinforced
specimens correlates with the number of F-T cycles, amounting to 280 (Group B), 205
(Group C), and 350 (Group D), respectively. Notably, the service life of Group D significantly
surpasses that of the remaining specimens. This observation underscores the substantial
potential for the application of HFRC in cold regions.

5. Conclusions

This study examined the influence of hybrid SF/BF on the durability performance of
concrete pavement under varying F-T cycles. The significant achievements of this paper
can be summarized as follows:

(1) F-T cycling exerts detrimental effects on the durability characteristics of concrete.
Compressive strength, flexural strength, abrasion resistance, and RDME typically
exhibit a declining trend with increasing F-T cycles, while the mass loss and damage
layer thickness increase with the augmentation of F-T cycles. A copious assem-
bly of randomly dispersed hybrid SFs/BFs within the concrete matrix engenders a
three-dimensional constraining framework, thereby efficaciously enhancing the F-T
durability of the concrete.

(2) The SEM analysis reveals that the fibers dissipate the energy required for crack
propagation by means of friction with the cementitious matrix, as well as the pull-out
energy and fracture energy of the fibers, thereby serving to toughen and impede crack
propagation, consequently enhancing F-T resistance. The microhardness test results
indicate that the ITZ strength is lowest in the control group, whereas in the HFRC,
the impact of F-T cycles on the ITZ is relatively minimal due to the robust bonding
between fibers and the surrounding matrix.

(3) A Grey–Markov model, built upon the results obtained from the RDME test, is
formulated to predict the service life of each group of specimens. The hybrid method
affects the concrete’s service life. Under F-T cycles, the predicted life of each group in
the sequence is Group D > Group B > Group C > Group A.

This study conducted initial endeavors in the application of hybrid steel fibers and
basalt fibers in concrete pavement. Prior to on-site implementation, further concrete mix
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experiments, primarily encompassing the design optimization of fiber volume fractions,
should be undertaken. Considering aspects such as mechanical performance, crack width
control, economic viability, and environmental conditions, the ideal blend involves steel
fiber volume fractions below 2% and basalt fiber fractions below 0.2%. Additionally, the po-
tential mechanisms by which the hybrid fibers control cracks warrant further investigation.
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