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Abstract: This paper evaluates the non-uniformity degree of platinum and chromium Schottky
contacts on silicon carbide. The forward characteristics of experimental samples were acquired in a
wide, 60–500 K, temperature range. Microstructural and conventional electrical characterizations were
performed, revealing the presence of inhomogeneities on the contact surface. The main parameters
were extracted using inhomogeneity models of varying complexity levels. Their relevance is discussed
with respect to the models’ applicable, limited, temperature ranges. Finally, complete forward curve
fitting was achieved using p-diode modeling, evincing that each type of contact behaves as four
parallel-connected ideal diodes. Since these parallel diodes have varying influences on the overall
device current with temperature and bias, operable domains can be identified where the samples
behave suitably.

Keywords: Schottky contact; silicon carbide; p-diode model; non-uniformity

1. Introduction

Reliable operation in harsh environments and over a wide range of temperatures
is a fundamental requirement in many industrial applications [1,2], including cement
manufacturing [3], drilling [4], geothermal systems [5], aerospace [6], etc. The working
conditions in these applications often include strong vibrations, corrosion, radiation, and
elevated heat levels, as well as a significant number of thermal cycles for the involved
devices [3].

For such hostile environments, silicon carbide (SiC)-based sensors have emerged as a
promising solution [3], especially for applications involving gas concentration measure-
ment [7,8] or temperature sensing [3,9–12]. Due to the wide bandgap (3.24 eV for 4H-SiC)
and low intrinsic carrier concentration, SiC devices can operate at temperatures far above
the limits for conventional semiconductors [3]. Furthermore, the mechanical robustness,
radiation hardness, chemical inertness, and high thermal conductivity of SiC allow for the
operation of these devices under harsh conditions [13].

The simplest semiconductor device that can be fabricated is the Schottky barrier
diode (SBD), as the process involves a metal deposition followed by annealing in order to
obtain a rectifying contact [14]. Consequently, an SBD is also the most cost-effective and
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technologically mature device fabricated using SiC [3]. Reported applications range from
high-voltage, high-power circuits, such as traction inverters [15], to sensors destined for
harsh environmental conditions [3,7].

Over time, different metals have been used for the Schottky contact on SiC substrates,
including nickel [3], titanium [16], platinum [17,18] and, less frequently, chromium [19,20].
While Pt is suitable for applications in a wide temperature range, Cr is also an attractive
proposition as a Schottky metal because it forms both silicides and carbides with SiC (very
stable compounds), resulting in good contact adhesion and mechanical properties [19].

Irrespective of the utilized metal, and even after annealing, contact inhomogeneity still
appears, with an observable effect on the Schottky barrier height (SBH) [14,21,22]. Conse-
quently, evaluating the performance of an SBD is still challenging, despite there being more
than fifty years of investigations [23]. Therefore, in order to fully understand the behavior
of these inhomogeneous contacts, comprehensive characterization needs to be carried out
over large temperature spans. The resulting characteristics must be parameterized using
specialized models, which need to accurately explain the electrical behavior across the
entire range. Modeling accuracy is especially critical for sensing applications, where the
SBD model must allow for the precise determination of the sensed quantity (temperature,
gas concentration, etc.) based on the measured electrical quantity (voltage or current); thus,
the model needs to account for the effects of contact inhomogeneity.

In this paper, the fabrication and electrical characterization of Pt/4H-SiC and Cr/4H-
SiC Schottky barrier diodes are presented. The characterization was carried out over a
broad temperature domain (60–500 K). The resulting forward curves were comprehen-
sively parameterized using state-of-the-art methods, confirming the presence of contact
inhomogeneity.

Afterwards, complete curve fitting was carried out using our recently proposed p-diode
technique [14,24], which modeled the inhomogeneous SBD as a minimal number of parallel
diodes. The resulting excellent fitting accuracy demonstrates that the p-diode model can
fully explain the forward behavior of the sample over the entire temperature and bias
intervals.

2. Materials and Methods

In this work, two metals with major differences in their work function (WF) values
were used to fabricate Schottky barrier diodes on nitrogen-doped 4H-SiC wafers with an
8 µm epitaxial layer. The SiC substrate was heavily doped, and the epitaxial layer had a
doping concentration of around 1016 cm−3. After the standard RCA chemical cleaning was
performed, two different types of SiO2 layers were deposited by the low-pressure chemical
vapor deposition (LPCVD) method in order to obtain a ramp profile as a termination for
the Schottky contact. This technological process is described in detail in refs. [3,25]. The
Schottky contact had a circular configuration with a diameter of 400 µm [25], as defined by
standard photolithography techniques (lift-off for Pt and wet etching for Cr contacts) in the
deposited field oxide (LPCVD). Due to the very high annealing temperature constraint, the
ohmic contact was firstly defined. Thus, 100 nm of Ni was deposited by sputtering on the
wafer backside, which was followed by rapid thermal annealing at 1050 ◦C for 3 min in
an Ar atmosphere. An X-ray diffraction analysis evinced a nickel silicide compound with
multiple diffraction peaks, which were assigned unambiguously to the Ni2Si phase [25]. For
the Schottky contact, the two metals (Pt with WF ∼= 5.7 eV and Cr with WF ∼= 4.5 eV) with a
thickness of 100 nm were deposited into the circular windows using an e-beam evaporation
system. Annealing in the same conditions (600 ◦C for 3 min in an Ar atmosphere) was
performed for the diodes from both batches, which were henceforth named Pt/4H-SiC
and Cr/4H-SiC. The pad contacts and backside metallization of the final structures were
achieved by evaporation of a metallic stack consisting of Ti (60 nm)/Ni (160 nm)/Au
(320 nm). The final samples were diced and encapsulated in TO39 packages using Ag
nano-paste for cathode bonding and Au wire-contacting for the anode connection.
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The X-ray diffraction (XRD) patterns were acquired in order to evaluate the Schottky
contact quality. The measurements used a 9 kW Rigaku SmartLab diffractometer (Rigaku
corp., Osaka, Japan)equipped with a monochromatic CuKα1 source that provided a wave-
length (λ = 0.15406 nm). During the measurements, the incidence angle of the source (ω)
was fixed to 0.5◦, while the detector angle (2θ) scanned from 20◦ to 95◦. Also, the incident
slit was 0.1 mm, while the receiving slits were set to 20 mm.

X-ray photoelectron spectroscopy (XPS) measurements were performed using a poly-
chromatic Al X-ray source at 13 kV with a power of 200 W. Vacuum was maintained at
~3 × 10−9 mbar. The energy analyzer was a 160 mm hemispherical type with a 1D detector
(ASPECT, Sigma Surface Science) (Sigma Surface Science GmbH, Taunusstein, Germany).
The diameter of the analysis spot was 1.3 mm. Prior to the XPS measurements, the samples
were infrared-heated to ~100 ◦C for 5 min and etched by Ar sputtering at 0.5 keV for 10 min.
The XPS spectra were analyzed by the CasaXPS software Version 2.3. 22PR1.0 using Shirley
background determination and processed to remove the satellite peaks due to the Kβ Al
characteristic line. The binding energies were referenced to the C-C component in the C 1s
signal at 284.8 eV associated with the adventitious carbon layer.

I-V characteristics of the packaged samples were measured at different temperatures
between 60–500 K with a step of 20 K using a Keithley 4200 semiconductor (Keithley Corp,
Cleveland, OH, USA) characterization system coupled with a Janis closed-cycle refrigerator
system [14].

3. Results
3.1. Microstructural Investigations—X-ray Diffraction and X-ray Photoelectron
Spectroscopy Analysis

The interfacial reaction of Pt and Cr with SiC was studied by XRD (Figure 1a,b) and
XPS (Figure 1c,d).

Figure 1a evinces the presence of diffraction peaks at 2θ = 39.72◦, 46.46◦, 67.80◦, 81.39◦,
and 85.59◦. According to card no. 04-0802 of the ICDD (International Centre for Diffraction
Data) database, these diffraction peaks can be attributed unambiguously to cubic Pt with
a = 0.392 nm that belongs to the Fm3m space group. In addition, each Pt diffraction peak
was accompanied at a lower 2θ = 39.17◦, 45.56◦, 66.34◦, 79.66◦, and 83.67◦ by a peak with a
smaller intensity. These additional diffraction peaks could be assigned to strained Pt (∆;
Figure 1a) as a result of the relatively high temperature used for the sample preparation
(~600 ◦C). According to the well-known Bragg law, lower 2θ values are associated to higher
inter-planar distances. For instance, the inter-planar distances for different reflections
increased as follows: from 0.226 nm to 0.230 nm (111), 0.195 nm to 0.199 nm (200), 0.138 nm
to 0.141 nm (220), 0.118 nm to 0.120 nm (311), and 0.113 nm to 0.115 nm (222). Accordingly,
the temperature induced the occurrence of a tensile lattice strain (ε) with different values
along the atomic planes. Based on the calculated inter-planar distances, the lattice strain
was: ~+1.7% (111), +2.1% (200), +2.2% (220), and +1.7% (311) and (222). The analysis also
shows that no oxides or silicides were formed during the sample preparation.

In the case of Cr/4H-SiC, the XRD data show the presence of typical reflections of
cubic Cr with a = 0.288 nm at 2θ = 44.39◦, 64.58◦, and 81.73◦, respectively, as shown in
Figure 1b. Unidentified diffraction peaks located at 2θ = 36.46◦, 41.68◦, 50.08◦, 63.55◦, and
79.40◦ could be assigned as (110), (113), (024), (214), and (306) reflections of Cr2O3 (ICDD,
card no. 01-1294).

Further investigations related to the structure of the resulting compounds were per-
formed by XPS for the Pt 4f and Cr 2p states. Figure 1c shows the high-resolution regions
of Pt 4f in the range of the binding energies (BEs): 82 eV–68 eV. The BEs of these regions
were calibrated using the binding energy of the adventitious carbon located at 284.8 eV.
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Figure 1. Grazing incidence XRD patterns for (a) Pt/4H-SiC and (b) Cr/4H-SiC. XPS spectra for (c) Pt 
4f and (d) Cr 2p states with the corresponding fitting curves. 

Figure 1a evinces the presence of diffraction peaks at 2θ = 39.72°, 46.46°, 67.80°, 
81.39°, and 85.59°. According to card no. 04-0802 of the ICDD (International Centre for 
Diffraction Data) database, these diffraction peaks can be attributed unambiguously to 
cubic Pt with a = 0.392 nm that belongs to the Fm3m space group. In addition, each Pt 
diffraction peak was accompanied at a lower 2θ = 39.17°, 45.56°, 66.34°, 79.66°, and 83.67° 
by a peak with a smaller intensity. These additional diffraction peaks could be assigned 
to strained Pt (Δ; Figure 1a) as a result of the relatively high temperature used for the 
sample preparation (~600 °C). According to the well-known Bragg law, lower 2θ values 
are associated to higher inter-planar distances. For instance, the inter-planar distances for 
different reflections increased as follows: from 0.226 nm to 0.230 nm (111), 0.195 nm to 
0.199 nm (200), 0.138 nm to 0.141 nm (220), 0.118 nm to 0.120 nm (311), and 0.113 nm to 
0.115 nm (222). Accordingly, the temperature induced the occurrence of a tensile lattice 
strain (ε) with different values along the atomic planes. Based on the calculated in-
ter-planar distances, the lattice strain was: ~+1.7% (111), +2.1% (200), +2.2% (220), and 
+1.7% (311) and (222). The analysis also shows that no oxides or silicides were formed 
during the sample preparation. 

In the case of Cr/4H-SiC, the XRD data show the presence of typical reflections of 
cubic Cr with a = 0.288 nm at 2θ = 44.39°, 64.58°, and 81.73°, respectively, as shown in 
Figure 1b. Unidentified diffraction peaks located at 2θ = 36.46°, 41.68°, 50.08°, 63.55°, and 
79.40° could be assigned as (110), (113), (024), (214), and (306) reflections of Cr2O3 (ICDD, 
card no. 01-1294). 

Further investigations related to the structure of the resulting compounds were 
performed by XPS for the Pt 4f and Cr 2p states. Figure 1c shows the high-resolution re-
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4f and (d) Cr 2p states with the corresponding fitting curves.

In the fitting process, a mixed Lorentzian–Gaussian function was used to identify
the compounds from the investigated sample. The presence of Pt was confirmed by the
analysis of the Pt 4f high resolution spectra exhibiting two components, one at 71.1 eV,
attributed to 4f5/2 (orange), and one at 74.3 eV, associated with 4f7/2 (olive) peaks of Pt0.
The small asymmetry, observed in the Pt 4f peaks, was due to a small contribution of a
peak at 69.3 eV in the 4f5/2 peak and a peak at 73.1 eV in the 4f7/2 peak associated with
Pt2+ (blue line), which indicates that the Pt was superficially oxidized. Thus, the XPS
data indicate that the Pt remained mostly in metallic form and that it did not form PtSi
compounds. The results are in agreement with other studies conducted on Pt [26]. Larrieu
et al. [27] investigated the evolution of Pt 4f with the annealing temperature, showing that
the reaction of Pt to Pt2Si or PtSi is characterized by peaks at BEs~72.5 eV, which were
absent in our case. Furthermore, XPS analysis was performed to reveal the valence state of
the Cr on the SiC. Based on the fitting of the experimental data, it is revealed that the Cr3+

species can be further divided into oxides, which showed a discrete multiplet structure,
and hydroxides, which showed only a broad peak shape at BE = 576.7 eV. Also, Biesinger
et al. [28] conducted in-depth XPS studies on Cr, showing a discrete multiplet structure,
whereas the hydroxide gave only a broad peak shape.

Overall, the XRD analysis showed the formation of Pt as well as of a strained Pt
layer. In addition, the XPS analysis indicated a superficial oxide at the surface. No other
compounds were detected. On the other hand, in the case of Cr, the XRD and XPS analyses
revealed a more complex structure resulting from the thermal treatment, which included Cr
hydroxide and oxide compounds. Thus, a higher degree of inhomogeneity in the sample
composition was expected.
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3.2. Electrical Characterization
3.2.1. Temperature-Dependent Electrical Characteristics

Figure 2 shows the typical forward bias I-V characteristics of the fabricated samples in
the temperature range of 60–500 K with a step of 40 K.
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Figure 2. Experimental forward bias I-V characteristics of the SBDs at various temperatures: (a) 
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much higher increase in the saturation current with temperature. 

Figure 2. Experimental forward bias I-V characteristics of the SBDs at various temperatures: (a) Pt/4H-
SiC sample; (b) Cr/4H-SiC sample.

Exponential behavior, covering at least six orders of magnitude, was identified for
each experimental sample. For the Pt/4H-SiC sample, this dependence was evinced even at
500 K, while, for Cr/4H-SiC, the lower WF (and, consequently, lower SBH) led to a much
higher increase in the saturation current with temperature.

3.2.2. Standard SBD Characterization

The I-V-T characteristics of an ideal SBD are governed by the thermionic emission (TE)
law [29]:

IF ∼= ISexp
(

VF − IFRS
nVth

)
, (1)

where RS is the series resistance, n is the ideality factor, Vth = kT/q is the thermal voltage,
and IS is the saturation current,

IS ∼= An AST2exp
(
−ΦBn,T

Vth

)
, (2)

where AS is the designed contact area, An is the Richardson constant for electrons (146 A/K2

cm2 for n-type 4H-SiC), and ΦBn,T is the conventional Schottky barrier height.
The standard technique for extracting the main electrical parameters of an SBD entails

the representation of ln (IF) as a function of VF, followed by linear fitting. The ideality
factor and SBH are determined from the slope and intercept of this fit. For series resistance
(RS) determinations, a linear fit of the I-V plot in the high voltage domain is carried out.
These electrical parameters, for the two fabricated samples, were extracted from the data in
Figure 2. Their variation with temperature was plotted and is shown in Figure 3. According
to the TE theory, an ideal Schottky contact yields a temperature-stable, constant SBH and
ideality factor.
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Additionally, for SBDs with reasonably uniform contacts, the ideality factor should
exhibit values close to unity. In our case, this situation corresponded to both the Pt/4H-
SiC and Cr/4H-SiC samples only in the 260–500 K temperature interval. This range was
also associated with a near-constant value for the Schottky barrier height. Conversely, a
significant temperature dependence for these parameters was observed in the 60–240 K
range. The behavior, coupled with the XRD findings, confirm that the devices’ contacts
were inhomogeneous.

3.2.3. State-of-the-Art Contact-Inhomogeneity Analysis

Multiple techniques were carried out in order to comprehensively evince the degree
of contact inhomogeneity for the investigated diodes. Firstly, we evaluated the deviation
from the ideal behavior, which is illustrated by the nkT vs. kT plot depicted in Figure 4.
For this representation, the 340–500 K temperature range was considered, corresponding to
an interval where the ideality factor was nearly constant.

Slight deviations from the ideal case (n = 1; green line in Figure 4) were observed. This
anomaly is normally attributed to Schottky barrier non-uniformity [30]. In such cases, the
ideality factor temperature dependence can be expressed as [31]:

n = 1 +
T0

T
, (3)

where T0 ̸= 0 is referred to as a T0 anomaly [21]. A high value for T0 corresponds to a
higher degree of inhomogeneity. Values of 14.6 K for the Pt/4H-SiC sample and 50.1 K
for the Cr/4H-SiC one were obtained from (3) after linear fitting was conducted on the
curves illustrated in Figure 4. The relatively high value corresponding to the Cr/4H-SiC
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diode occurred mostly because of the data point at 500 K, indicating that this temperature
level was beyond the normal capabilities for this type of contact. Excluding it from the
analysis yielded T0 = 20.8 K for Cr/4H-SiC, which was much more in agreement with its
Pt counterpart. While performing this rudimentary T0 anomaly technique can serve as a
quick way to confirm that contact inhomogeneities do influence electrical characteristics
significantly, it does not offer any physically relevant parameters.
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A more thorough characterization can be performed using models that consider the
well-known parallel conduction theory [21]. According to this, an experimental Schottky
contact has numerous low-area regions (“patches”) with independent barrier heights. If
a Gaussian distribution of these patches is considered at the interface [32] with a mean
Schottky carrier height (Φ0

Bn) and standard deviation (σ), the conventional SBH temperature
dependence (Figure 3b) can be expressed according to the following equation [32]:

ΦBn,T = Φ0
Bn −

qσ2

2kT
. (4)

Representing ΦBn,T as a function of q/2kT (Figure 5), we can determine both Φ0
Bn and

σ from the resulting intercept and slope.
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Two linear regions can be identified on the graph in Figure 5, demonstrating that at
least two Gaussian distributions were found on the contact’s surface [33]. The extracted
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mean SBH and its standard deviation for the two temperature ranges are shown in Table 1
for both samples. The mean SBH for the Pt/4H-SiC sample was higher than that of the
Cr/4H-SiC sample over both temperature intervals due to the difference in the metal WF
values for the Schottky metals.

Table 1. Extracted values for the mean SBH and standard deviation for different temperature intervals.

Extracted Parameters

Temperature Range, T (K)
Pt/4H-SiC Sample Cr/4H-SiC Sample

Φ0
Bn(V) σ (V) Φ0

Bn(V) σ (V)

100–240 1.774 0.134 1.206 0.111

300–500 1.544 0.088 1.163 0.089

Note that a third region can theoretically be identified for the 60–100 K range. At such
low temperature levels, however, conventionally extracted SBH values are significantly
affected by errors stemming from the bias interval window of analysis and, possibly, carrier
freeze-out [34,35]. Since the Gaussian distribution model does not consider such effects, no
significance can be derived from applying the technique to the 60–100 K measurements.

The discrepancies between the values determined using this technique and their
counterparts from the conventional method (see Figure 3b) make this analysis unable to
explain the overall behavior of our fabricated samples. As we can see in Table 1, the mean
SBH presented higher values over both temperature intervals than what the conventional
SBH trend would suggest (see Figure 3b). Practically, this means that the determined Φ0

Bn
was not the dominant one.

Since the behavior of the SBD samples was closer to the ideal (n < 1.07) over 300–500 K,
this higher temperature interval will be referenced further in our analysis of the contact
inhomogeneity.

Additional information about the impact of the contact inhomogeneity is given by the
Richardson plot [31], from which both an effective SBH

(
ΦBn−e f f

)
and active area (AS-eff)

can be determined. The Richardson plots for our samples are governed by the expression:

ln
(

IF

T2

)
= ln(AS A∗)−

q(Φ Bn−e f f −
VF

nmed

)
kT

, (5)

where nmed represents the mean ideality factor value over a certain temperature interval.
Using the standard deviation values determined before (see Table 1), we can construct

a modified Richardson plot,

ln
(

IF

T2

)
−

(
q2σ2

2k2T2

)
= ln(AS A∗)−

q(Φ Bn−e f f −
VF

nmed

)
kT

, (6)

where σ is the standard deviation determined using the conventional SBH vs. q/2kT plot
from Figure 5 with the values in Table 1 for both temperature intervals: low (100–240 K)
and high (300–500 K). Since nmed is truly representative for measurements only in the
high-temperature region, we constructed Richardson plots by taking several bias voltages
from the characteristics only in this domain, which was further restricted to 340–500 K. This
approach was taken in order to ensure that all the selected curves exhibited exponential
behavior for each VF. The voltage interval of 0.5–0.75 V was identified for Pt/4H-SiC and
0.2–0.4 V for Cr/4H-SiC. The effective SBH was determined from these intervals, and the
optimum voltage for constructing both the Richardson and modified Richardson plots was
selected such that fitting errors were minimized. Thus, a bias voltage of 0.6 V was chosen
for the Pt/4H-SiC sample and 0.25 V for Cr/4H-SiC. The plots are given in Figure 6.
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The effective active area (AS−eff) of the samples was determined as being one order of
magnitude smaller than the designed one (~12.56 × 10−4 cm2). This is another probative
indicator of the occurrence of inhomogeneity on the contact surface. Moreover, the Cr/4H-
SiC sample exhibited an AS−eff two times lower than Pt/4H-SiC, indicating a higher degree
of inhomogeneity. Accordingly, the current flow through the device is favored by the small,
low-barrier patches located on the contact surface. The effective SBH value, determined
using the standard Richardson plot, is also given in Figure 6. It better corresponded to
the electrical behavior of the fabricated samples, as it was in suitable agreement with the
variation in the trend of the conventional SBH values plotted in Figure 3b. Conversely, the
SBH value obtained from the modified Richardson plot naturally mimicked the one deter-
mined using the Werner and Güttler plot (see Figure 5). It is, theoretically, the extrapolation
at infinite temperature of the governing barrier height. Hence, in practice, this Gaussian
distribution method does not produce relevant parameters for highly inhomogeneous
devices. The temperature threshold after which these extracted barrier heights would
become indicative of actual device current flow far exceeds operational levels.

Finally, for a complete elucidation of the fabricated samples’ electrical behavior over
the entire investigated domain, a more comprehensive approach was undertaken. It was
based on our developed p-diode model [24], which also uses the parallel conduction theory
as the underlying principle. According to it, a real Schottky contact behaves like a grouping
of multiple parallel-connected near-ideal diodes (n capped at 1.03), each with its specific
barrier height and non-uniformity parameter (peff, giving a quantitative depiction of the
occupied area proportion). Distinctively from the Gaussian approach, each parallel diode is
also associated with a series resistance that can limit its current contribution to the overall IF
as the bias increases. The forward curves of both the Pt/4H-SiC and Cr/4H-SiC samples were
characterized with the p-diode technique over the entire 60–500 K range. The model-fitted
curves are depicted in Figure 7.

An excellent agreement between the fitted curves and experimental measurements can
be observed, even at low temperatures, where contact inhomogeneity determines strong
deviations from the exponential IF–VF dependence. Modeling at such near-cryogenic levels
is possible distinctly because of the p-diode’s consideration of patch resistive effects (ignored
in the Gaussian distribution model). Four parallel diodes (Dp1–Dp4, Figure 8) were
necessary to fully replicate the electrical behavior for both samples in the encompassing
temperature span, corresponding to different barrier zones. The obtained parameters are
given in Table 2. These regions were associated with the different compounds on the contact
surface evinced by the XRD and XPS analyses.
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Table 2. Extracted p-diode model parameters.

Sample Parallel Diodes ΦBn [V] n peff RS [Ω]

Pt/4H-SiC

Pt-Dp1 1.51

1.03

0.51 44–60
Pt-Dp2 1.35 3.04 150–48
Pt-Dp3 1.3 4.39 150–800
Pt-Dp4 1.21 9.26 200 k–40 k

Cr/4H-SiC

Cr-Dp1 1.1 0.37 14.2–21.9
Cr-Dp2 0.93 3.73 50–430
Cr-Dp3 0.8 10.98 300–550
Cr-Dp4 0.73 13.39 ~15 k

For the Pt/4H-SiC sample, Pt-Dp1, covering most of the overall contact surface, exhib-
ited the highest barrier height and, at low temperatures, was only influential at a high bias.
As the temperature increased, this parallel diode began to contribute significant current
over the entire VF range. Conversely, Pt-Dp4 was only prominent in the low-temperature,
low-bias regions, with its impact becoming negligible at higher T and VF levels. Paral-
lel diodes Pt-Dp2 and Pt-Dp3 had comparable influence on the forward characteristics
throughout the entire bias and temperature intervals. Their lumped contributions were
especially relevant in the 300–500 K domain, as also confirmed by the ΦBn values similar to
that obtained from the Richardson plot (see Figure 6).

For the Cr/4H-SiC sample, Cr-Dp2 was the main current contributor, which was once
again verified by the results obtained from the Richardson plots. Cr-Dp3 and Cr-Dp4 were
responsible for the current flow in the lower ranges of bias and temperature, while Cr-Dp1
mostly influenced IF at the top end of the temperatures at high VF.

The p-diode analysis completely explains the forward electrical behavior of the investi-
gated samples throughout the entire temperature domain. Both exhibited a considerable
degree of contact inhomogeneity, with multiple current paths becoming preferential as the
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bias and thermal conditions evolved. Even so, suitable IF levels can be found, where the
samples essentially behaved like ideal Schottky diodes, enabling their use in temperature
and gas sensing applications. For such uses, the Pt samples are more desirable due to
their overall larger barrier height in order to obtain both a higher sensitivity and a wider
operable temperature range [36].

An important conclusion of the comprehensive inhomogeneity analysis is that all
of the employed techniques, apart from the p-diode method, either analyzed the Schottky
contact area as a whole or required restricted temperature intervals in order to produce
trustworthy results. While being useful tools for preliminary contact quality diagnosis, they
must be accompanied by p-diode modeling in order to accurately and completely assess the
forward electrical behavior of such wide-temperature-range SiC diodes.

4. Conclusions

This paper analyzed the contact inhomogeneity of Pt/SiC and Cr/SiC. The fabri-
cated samples were subjected to XRD and XPS analyses, revealing possible inhomogeneity
sources. For the Pt/4H-SiC sample, slight traces of oxides and a strained layer were identi-
fied. In the case of Cr/4H-SiC, more pronounced inhomogeneity was evinced, stemming
from hydroxide and oxide compounds. The conventional electrical characterization demon-
strated important variations in the barrier height and ideality factor with temperature,
which confirmed the formation of a non-uniform contact. Subsequent inhomogeneity
modeling employed techniques of gradually increasing complexity, which confirmed that
the Cr/4H-SiC diode was more affected by this spurious influence.

The forward characteristics of both samples were completely modeled with our p-diode
technique over the entire investigated domain. Each of the samples behaved essentially
as four parallel-connected ideal diodes, with variable influence on the current conduction,
depending on the temperature and bias levels. The Pt/4H-SiC diode’s current was mainly
given by a contact region with a barrier of 1.3–1.35 V. For the Cr/4H-SiC sample, a main
barrier of 0.93 V governed the current conduction. Both of these results were corroborated
by the ones obtained from the Richardson plots and conventional SBH extraction in the
plateaus corresponding to the high-temperature domain.

Employing the p-diode modeling was crucial in order to identify the suitable operable
bias and temperature conditions for these samples.
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