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Abstract: In this paper, an environmentally friendly polyacrylonitrile-based (PAN-based) composite
membrane with a Janus structure for wastewater treatment was successfully fabricated. To achieve
the optimum adsorption of PAN-based Janus composite membrane, the asymmetric wettability was
regulated through electrospinning, resulting in TiO2 modifying PAN as the hydrophilic substrate
layer, and PCL gaining a different thickness as the hydrophobic layer. The prepared Janus composite
membrane (PAN/TiO2-PCL20) showed excellent oil/water separation performance for diverse
surfactant-stabilized oil-in-water emulsions. For n-hexane-in-water emulsion, the permeate flux
and separation efficiency reached 1344 L m−2 h−1 and 99.52%, respectively. Even after 20 cycles of
separation, it still had outstanding reusability and the separation efficiency remained above 99.15%.
Meanwhile, the PAN/TiO2-PCL20 also exhibited an excellent photocatalytic activity, and the removal
rate for RhB reached 93.2%. In addition, the research revealed that PAN/TiO2-PCL20 possessed
good mechanical property and unidirectional water transfer capability. All results indicated that
PAN/TiO2-PCL20 with photocatalysis and oil/water separation performance could be used for
practical complex wastewater purification.

Keywords: Janus composite membrane; PCL; oil/water separation; photocatalysis

1. Introduction

In recent years, water pollution problems from frequent oil spills and discharge
of industrial oily wastewater have posed a potential threat to the ecological environ-
ment and human health [1,2]. The wastewater containing organic oils and dyes from
the process of industrial production needs to be settled urgently due to its toxicity,
non-biodegradability, carcinogenicity and mutagenicity [3–6]. Therefore, it is neces-
sary to develop efficient and environmentally-friendly technology to remove organic
contaminants from the water environment.

Traditional methods for treating oil-contaminated wastewater, such as biological
treatment, membrane separation, flocculation, air flotation, gravity separation and adsorp-
tion etc., have been reported [7–15]. Among them, the membrane separation method at-
tracts tremendous attention in oil/water separation because of its high separation efficiency,
wide application range and easy operation [16–18]. Han et al. fabricated a titanium dioxide-
acrylonitrile-butadiene-styrene composite membrane (TiO2-ABS) via 3D printing. This
TiO2-ABS composite membrane demonstrated exceedingly high flux (1.8 × 105 L m−2 h−1)
and oil rejection rate (99.5%) [19].

The conventional membrane separation method for water purification is not effi-
cient enough. Recently, some researchers retained the filtration properties and fabricated
membranes used in an integrated filtration-adsorption process [20,21]. Photocatalytic
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degradation is considered to be an effective and green approach for traditional organic dye
adsorption and removal [22,23]. Zhao et al. prepared a n-p type Bi2WO6/AgInS2 S-scheme
heterojunction for organic pollutants degradation. The Bi2WO6/AgInS2 exhibited much
higher photocatalytic activity, achieving degradation efficiency of 97% for RhB under visible
light for 60 min [24]. Recently, the utilizing of both photocatalysis and membrane adsorp-
tion technologies have become a research hotpot for attempts to remove organic dyes in
wastewater [25,26]. Baig et al. fabricated superhydrophobic/superoleophilic photocatalytic
membranes (CeO2 nanoparticles coated membrane) that exhibited simultaneously high
removal efficiency of dyes (99.96%) and oils (99.95%) [27].

The name “Janus membrane” comes from Janus, the two-faced god in ancient Ro-
man mythology [28]. Janus membrane is a general term for membranes with opposite
properties, such as composition, morphology, wettability, surface charge, and so on. Layer-
by-layer electrospinning, surface coating, unilateral deposition and chemical modification
are often used to prepare Janus membranes [29–32]. In recent years, Janus membranes
with a unique hierarchical structure of asymmetric hydrophilicity/hydrophobicity have
attracted more and more attention [33,34]. Meanwhile, Janus membranes are widely used
as an ideal material for water treatment [35,36]. Chen et al. fabricated a Janus wood (JW)
through a unidirectional vacuum impregnation method that had a unidirectional transport
of water, and presented high flux (3700 L m−2 h−1) and separation efficiency (99.6%) [37].
Sun et al. fabricated a Janus membrane via hydrophilic ZnO nanowires modified hydropho-
bic polyvinylidene fluoride (PVDF) nanofiber. The membrane showed excellent oil/water
separation fluxes (1210 L m−2 h−1) for heavy oil-water mixtures; 7653 L m−2 h−1 for light
oil-water mixtures; and good photocatalytic degradation performance (95%) [38].

Herin, PAN and PCL were used as a matrix to design a multifunctional oil-water
separator with a Janus membrane structure. In order to improve its oil-water separation
efficiency and endow it with multifunctionality for water remediation, TiO2 was added to
modify the hydrophilic PAN layer, which was expected to improve oil-water separation
performance by modifying asymmetric wettability, and further endowing the multifunction
(such as photocatalytic degradation and unidirectional water transfer capability) of the
Janus membranes. The morphology, chemical structure, and wettability of all the as-
prepared PAN/TiO2-PCLs were characterized by SEM, LSCM, FT-IR and contact angle
measurement. The oil/water separation performance of the PAN/TiO2-PCLs were operated
by a homemade experiment device. The photocatalytic degradation performance of the
PAN/TiO2-PCL20 was investigated under simulated solar irradiation. The mechanical
properties and unidirectional water transfer capability were also tested.

2. Materials and Methods
2.1. Materials

Polyacrylonitrile (PAN, Mw = 150,000), Polycaprolactone (PCL, Mw = 50,000), TiO2
nanoparticles (anatase-type nano powder, particle size: 5~10 nm), dichloromethane, color-
ing agent: Rhodamine B (RhB), Sudan III and methylene blue were provided by Aladdin
Industrial Corporation, China. Sodium dodecyl sulfate (SDS, ACS reagent) was purchased
from Saan Chemical Technology (Shanghai) Co., Ltd., China. Chloroform (CF), n-hexane,
glycerin and N,N-dimethylformamide (DMF) were obtained from Beijing Chemical Works,
Beijing, China. Diesel oil was supplied from National Petroleum Co., Ltd., China. Olive oil
was purchased from China Oil & Foodstuffs Corporation (COFCO) (Beijing, China). Benzyl
benzoate was obtained from Xilong Chemical Technology Co., Ltd., Guangzhou, China.
1,1,2,2-Tetrabromoethane was purchased from Jiangshun Chemical Technology Co., Ltd.,
Guangzhou, China. All chemical reagents and drugs used in this study were analytical
reagents without further purification.
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2.2. Fabrication of PAN-Based Janus Membrane
Fabrication of PAN/TiO2-PCL Janus Membrane

1 g PAN and 0.3 g TiO2 were dissolved in 10 mL DMF by magnetic stirring for 12 h
at room temperature, and then PAN/TiO2 precursor solution was obtained. At the same
time, 2 g PCL was added into 10 mL CF/DMF (4:1, v/v) mixed solvent to obtain 20 wt%
PCL precursor solution. Both precursor solutions were placed into 5 mL syringes. The
PAN/TiO2 substrate layer was fabricated by electrospinning at 16 kV applied voltage and
1 mL h−1 feeding speed for 2 h. Then the PCL fiber membranes with different thickness
were electrospun on PAN/TiO2 substrate layer with an applied voltage of 12 kV and a
flow rate of 2 mL h−1 for different electrospinning times (10 min, 20 min and 30 min,
respectively). The prepared Janus membranes were named PAN/TiO2-PCLx, where x rep-
resented the electrospinning time of PCL. The manufacturing process of PAN/TiO2-PCLx
was schematically displayed in Scheme 1. The PAN-PCLx Janus membranes were prepared
by the same procedure and more details were referred to the Supplementary Materials.
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Scheme 1. The fabrication process of (a) electrospinning PAN/TiO2 substrate; (b) electrospinning
PCL layer on PAN/TiO2 substrate.

2.3. Characterizations

The morphologies of all prepared nanofiber membranes were observed by a cold-field
emission-scanning electron microscope (SEM, JSM-6700F, JEOL, Tokyo, Japan) at 8 kV
acceleration voltage under the vacuum condition. The nanofiber diameters were assisted
by Image J software (http://cnij.imjoy.io/, accessed on 17 April 2023). Viscometer (NDJ-1,
Shanghai Precision Instruments Corporation, Shanghai, China) was used to measure the
viscosity of the solution, and conductivity of the solution was measured by using a con-
ductivity meter (DDS-11A, Shanghai Precision Instruments Corporation, Shanghai, China).
The specific surface area and porosity of all prepared membranes were measured according
to the Brunauer-Emmett-Teller analyzer (BET, Autosorb-iQ, Quantachrome Instruments,
Boynton Beach, FL, USA). The surface morphology and roughness of membranes were
detected through a Confocal Laser Scanning Microscope (LSCM, OLS3000, Olympus Corpo-
ration, Tokyo, Japan). The chemical compositions and functional groups of all samples were
analyzed through a Fourier-transform-infrared spectrometer (FT-IR, FTIR-4100, JASCO,
Tokyo, Japan). The mechanical strength was tested on an electronic universal testing ma-
chine (XQ-1C, Shanghai New Fiber Instrument Co., Ltd., Shanghai, China). The underwater
oil contact angles (UOCAs) were tested by using a droplet shape analyzer (DSA100, Cruise,
Berlin, Germany). The droplet size distribution of oil-water emulsion, both before and
after filtration, was measured through dynamic light scattering (DLS, Nano ZS90, Malvern
Instruments Ltd., Malvern, UK) and optical microscopy (TE2000-U, Nikon, Tokyo, Japan).

http://cnij.imjoy.io/
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The photocatalytic performance of the membranes was studied by using an ultraviolet
spectrophotometer (UV-6100s, MAPADA, Shanghai, China).

2.4. Oil/Water Separation Experiments
2.4.1. Separation of Immiscible Oil-Water Mixtures

The separation experiments of immiscible oil-water mixtures were performed under
gravity. The immiscible oil-water mixtures were prepared by mixing water (methylene
blue dyed) and oil (1:1, v/v). The separation effective area was 12.96 cm2. During sep-
aration, water was collected after penetrating the membrane, while oil was rejected on
the membrane. After separation, the device was left to stand for 10 min to ensure that all
water droplets permeated through. The separation efficiency (%) was determined by the
Equation (1):

E f f iciency(%) = (V/Vi)× 100 (1)

where Vi (L) and V (L) represented the volume of water before and after oil/water sep-
aration, respectively. In addition, the water permeate flux (L m−2 h−1) was calculated
according to the following Equation (2):

Flux =
V

S × ∆t
(2)

where V (L) was the volume of water permeated through the membrane, S (m2) was the
effective filtration area of membrane, and ∆t (h) was the total filtration time.

2.4.2. Separation of Oil-in-Water Emulsions

For the preparation of the oil-in-water emulsions, SDS was chosen as the emulsifier.
A total of 5 mL oil and 500 mL water were taken into a beaker, and then added 0.1 g
Span 80 at 1200 rpm for 24 h by stirring. Ultimately, the surfactant-stabilized emulsion was
obtained. N-hexane, diesel oil, olive oil, benzyl benzoate, 1,1,2,2-tetrabromoethane and
glycerol were used as oils. The separation efficiencies and permeate fluxes were calculated
by Equations (1) and (2), respectively.

The reusability of the PAN/TiO2-PCL20 was evaluated by separation of the n-hexane-in-
water emulsion for 20 cyclic experiments. After each separation, the PAN/TiO2-PCL20 was
washed with ethanol and dried at 40 ◦C for 3 h in an oven to remove the residual solvent.

2.5. Adsorption and Photocatalytic Experiments

To evaluate the adsorption process, PAN/TiO2-PCL20 was immersed in 50 mL RhB
aqueous solution (12 mg L−1) and magnetically stirred under dark conditions for 60 min.
3.5 mL solution was extracted from the RhB solution at 15 min intervals to evaluate the
adsorption capacity. The adsorption capacities were calculated by Equation (3).

q =
Ci − Ct

m
× V (3)

where Ci (mg L−1) and Ct (mg L−1) were the initial concentration and the equilibrium
concentration of RhB at time t. V (L) represented the volume of dye solution and m (mg)
was the adsorbent dosage.

The photocatalytic activity of PAN/TiO2-PCL20 for RhB was measured through the
following experiments. The PAN/TiO2-PCL20 was performed for RhB degradation under
simulated solar irradiation for 80 min. A total of 3.5 mL liquid was extracted at 10 min
intervals to evaluate removal rate. The removal rates (R%) of RhB were calculated by
Equation (4).

R(%) =
C0 − Ct

C0
× 100 (4)
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where C0 (mg L−1) and Ct (mg L−1) represented the initial and equilibrium concentration
of the RhB organic dye, respectively.

3. Results and Discussion
3.1. FT-IR Analysis

The functional group characteristics of the PAN, PAN/TiO2, PAN/TiO2-PCL20 were
investigated by FT-IR (Figure 1). The characteristic peaks of PAN were as follows: 1452 cm−1

and 2939 cm−1 (-CH2 symmetric and asymmetric stretching vibration), 2242 cm−1 (-C≡N
stretching vibration) and 1631 cm−1 (-C=N stretching vibration) [39]. Compared with the
FT-IR spectra of PAN, the broad band in the range of 3000–3500 cm−1 in PAN/TiO2 spectra
corresponded to the stretching vibration of -OH, which was attributed to the introduction
of TiO2 [40]. At the same time, the adsorption band at 450–900 cm−1 was attributed to the
Ti-O bonds of TiO2 [41]. For PAN/TiO2-PCL20, the new peak that appeared at 1730 cm−1

belonged to the C=O stretching vibration, and the peak at 1157 cm−1 contributed to the
C-O stretching vibration of PCL [42].
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Figure 1. FTIR spectra of PAN, PAN/TiO2 and PAN/TiO2-PCL20. (Two dashed boxes represented
the range of characteristic peaks).

3.2. Surface Morphology Analysis

As depicted in Figure 2, the surface morphologies of the PAN/TiO2-PCL20 were char-
acterized by SEM images. The surface of PCL layer was relatively rough and the average
fiber diameter was 553.7 ± 4.3 nm (Figure 2a,e). The PAN substrate layer had a smooth
surface with an average fiber diameter of 158.4 ± 2.4 nm (Figure 2b,f). After the incorpora-
tion of TiO2 into PAN fibers, a large number of beaded structures appeared in PAN/TiO2
fibers and the PAN/TiO2 fiber diameter decreased to 153.8 ± 1.7 nm (Figure 2c,g). This
was attributed to an increase in the viscosity and conductivity of the PAN/TiO2 precursor
solution (Table 1).
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Figure 2. SEM of (a) PCL top layer, (b) PAN and (c,d) PAN/TiO2 substrate layer; Diameter distribution
of (e) PCL top layer, (f) PAN and (g) PAN/TiO2 substrate layer.

Table 1. The physical parameters of electrospinning solutions.

Sample Viscosity (mPa s) Conductivity (µS cm−1)

PCL 360.2 0.351
PAN 85.5 34.2

PAN/TiO2 125.4 67.8

3.3. BET Analysis

The Nitrogen (N2) adsorption-desorption isotherms for PAN, PAN/TiO2, PAN/TiO2-
PCLx are shown in Figure S1, while the BET results are analyzed in Figure 3. The specific
surface area and pore volume of pure PAN were 45.198 m2 g−1 and 0.220 cc g−1, respec-
tively. Compared with pure PAN, the specific surface area and pore volume of PAN/TiO2
increased to 113.901 m2 g−1 and 0.251 cc g−1. This indicated that PAN/TiO2 had a smaller
pore size and larger specific surface area, which further enhanced the hydrophilicity of
PAN substrate [43]. After the incorporation of the PCL layer, the specific surface area and
pore volume of PAN/TiO2-PCLx increased significantly. The PAN/TiO2-PCL20 had the
largest specific surface area (147.377 m2 g−1) and pore volume (0.326 cc g−1). Compared
with PAN, the PAN/TiO2-PCL20 Janus membrane appeared to have a large number of
pore diameters smaller than 50 nm—this was confirmed by BET analysis, which showed
the advantages for the separation of oil-water emulsions and the adsorption of RhB [44,45].

Materials 2024, 17, x FOR PEER REVIEW 6 of 16 
 

 

 

Figure 2. SEM of (a) PCL top layer, (b) PAN and (c,d) PAN/TiO2 substrate layer; Diameter distribu-

tion of (e) PCL top layer, (f) PAN and (g) PAN/TiO2 substrate layer. 

Table 1. The physical parameters of electrospinning solutions. 

Sample Viscosity (mPa s) Conductivity (µS cm−1) 

PCL 360.2 0.351 

PAN 85.5 34.2 

PAN/TiO2 125.4 67.8 

3.3. BET Analysis 

The Nitrogen (N2) adsorption-desorption isotherms for PAN, PAN/TiO2, PAN/TiO2-

PCLx are shown in Figure S1, while the BET results are analyzed in Figure 3. The specific 

surface area and pore volume of pure PAN were 45.198 m2 g−1 and 0.220 cc g−1, respec-

tively. Compared with pure PAN, the specific surface area and pore volume of PAN/TiO2 

increased to 113.901 m2 g−1 and 0.251 cc g−1. This indicated that PAN/TiO2 had a smaller 

pore size and larger specific surface area, which further enhanced the hydrophilicity of 

PAN substrate [43]. After the incorporation of the PCL layer, the specific surface area and 

pore volume of PAN/TiO2-PCLx increased significantly. The PAN/TiO2-PCL20 had the 

largest specific surface area (147.377 m2 g−1) and pore volume (0.326 cc g−1). Compared 

with PAN, the PAN/TiO2-PCL20 Janus membrane appeared to have a large number of 

pore diameters smaller than 50 nm—this was confirmed by BET analysis, which showed 

the advantages for the separation of oil-water emulsions and the adsorption of RhB 

[44,45].  

 

Figure 3. BET analysis of the PAN, PAN/TiO2 and PAN/TiO2-PCLx. 

  

Figure 3. BET analysis of the PAN, PAN/TiO2 and PAN/TiO2-PCLx.



Materials 2024, 17, 417 7 of 16

3.4. LSCM Analysis

The average surface roughness (Ra) of the PCL layer, and the PAN and PAN/TiO2
substrate layers is analyzed in Figure 4. The Ra of the PCL layer and PAN substrate layer
was 1.547 ± 0.023 µm and 1.113 ± 0.047 µm, respectively (Figure 4a,b). Compared with the
PAN substrate layer, the Ra of PAN/TiO2 substrate layer increased to 1.716 ± 0.073 µm
(Figure 4c). It could be observed that the surface roughness of the PAN/TiO2 substrate
layer improved significantly. Owing to the impact of PAN on the hydrophilic layer, the
larger roughness for PAN/TiO2 could lead to a further improvement in hydrophilicity [46],
which could further increase the asymmetric wettability of the Janus membrane when
combined with BET analysis.
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3.5. Surface Wettability

The surface wettability of Janus composite membranes was studied by measuring the
underwater oil contact angle (UOCA). Figure S2 showed the dynamic wetting behaviors of
water droplets on the PAN, PAN/TiO2 and PAN/TiO2-PCLx, and all prepared membranes
exhibited hydrophilic layer in the air. As shown in Figure 5a–c, the oil droplets were all dis-
persed on the PAN, PAN/TiO2 and PAN/TiO2-PCL20 surface in a spherical shape, which
indicated the three samples possessed underwater oleophobic properties. As displayed
in Figure 5d, the UOCA of PAN was 144.6 ± 1.5◦. The UOCAs of PAN-PCLx decreased
from 129 ± 1.1◦ to 91 ± 1.2◦ as the PCL electrospinning time increased. After adding TiO2
to the PAN substrate layer, the UOCA of PAN/TiO2 increased to 158 ± 1.5◦. The UOCAs
of PAN/TiO2-PCLx decreased from 143 ± 1.3◦ to 105 ± 1.6◦ as the PCL electrospinning
time increased. All the UOCAs of PAN/TiO2-PCLx were significantly higher than corre-
sponding PAN-PCLx, which illustrated the hydrophilic layer modified by TiO2 enhanced
the underwater oleophobic properties of the PAN/TiO2-PCLx Janus membrane.
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Figure 5. Oil droplets underwater onto (a) PAN, (b) PAN/TiO2, (c) PAN/TiO2-PCL20; (d) UOCAs
onto PAN, PAN-PCLs and PAN/TiO2-PCLs with a different electrospinning time of PCL (10 min,
20 min, 30 min).

3.6. Oil/Water Separation

Figure 6a showed the separation procedure for the immiscible n-hexane-water mixture.
During the separation process, water (methyl blue dyed) permeated the membrane and
rapidly flowed into the collector below, while n-hexane was retained above the membrane
surface. Figure 6b shows the separation procedure for surfactant-stabilized n-hexane-in-
water emulsion by PAN/TiO2-PCL20. The emulsion showed the color of milky white
before purification and became clear and transparent after filtration.
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of n-hexane-in-water emulsion.

Figure 7a,b shows the separation performance of n-hexane-water mixture and
n-hexane-in-water emulsion by different membranes. The permeate fluxes and sepa-
ration efficiencies of PAN/TiO2 for mixture and emulsion were all higher than PAN.
For PAN/TiO2-PCLx, the permeate fluxes and separation efficiencies for mixture and
emulsion all increased rapidly and then decreased with the increase of PCL layer
content. In summary, the PAN/TiO2-PCL20 possessed the highest permeate fluxes
(5340 ± 60 L m−2 h−1 for n-hexane-water mixture, 1344 ± 35 L m−2 h−1 for n-hexane-in-
water emulsion) and separation efficiencies (99.95% for n-hexane-water mixture, 99.52%
for n-hexane-in-water emulsion).
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Figure 7. (a) Permeate fluxes and (b) separation efficiencies of different membranes for immiscible n-
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of PAN/TiO2-PCL20 for different types of oil-in-water emulsions; (d) Permeate fluxes and separation
efficiencies of PAN/TiO2-PCL20 for n-hexane-in-water emulsion in 20 cycles.

Thus, PAN/TiO2-PCL20 was selected to carry out the following separation experi-
ments for different types of oil-in-water emulsions. N-hexane, diesel oil, olive oil, benzyl
benzoate, 1,1,2,2-tetrabromoethane and glycerol were chosen to prepare the oil-in-water
emulsions, and the separation efficiencies for these oil-in-water emulsions by PAN/TiO2-
PCL20 were all higher than 92.5%. Especially in the case of n-hexane-in-water emulsion,
the permeate flux and efficiency reached 1344 ± 35 L m−2 h−1 and 99.52%, respectively
(Figure 7c). The different separation performance for different oil-in-water emulsions might
be ascribed to the viscosity and density of the oils [47]. More importantly, the durability test
demonstrated that there was no significant decrease in permeate flux, and the separation
efficiency of hexane-in-water emulsion for PAN/TiO2-PCL20 still remained above 99.15%,
even after 20 cycles of separation (Figure 7d). The as-prepared PAN/TiO2-PCL20 had
superior reusability of oil-in-water emulsions than other reported separation materials (see
Table 2).

Table 2. Reusability of the other reported oil-in-water emulsion separation materials.

Material Flux (L m−2 h−1) Efficiency (%) Reference

PAN/TiO2-PCL20 1285 99.15 This work
Waste PET plastics 1197 95 [48]

PVDF/TiO2 1398 99 [49]
PVP-VTES 17.45 91.47 [50]

PDMS@SiO2@UiO66-OSiR 970 98.64 [51]
F-PPS@TiO2 950 98.4 [52]

Figure 8 shows the optical microscope images and DLS analysis of PAN/TiO2-PCL20m
both before and after separation for n-hexane-in-water emulsion. The optical microscope
images revealed that, prior to separation, the oil droplets were evenly spread in the emul-
sion with an average particle size of 4.03 ± 0.05 µm. After filtration, there were no apparent
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oil droplets in the filtrate, and few droplets were examined with an average particle size of
138.8 ± 5 nm.
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3.7. Oil/Water Separation Mechanism

The mechanism of oil/water separation was summarized in accordance with the
preceding discussion. Compared to PAN and PAN-PCLx membranes, the PAN/TiO2-
PCL20 exhibited excellent oil/water separation performance, which could be ascribed to
its asymmetric wettability and hierarchical structure. This asymmetric wettability could be
explained by the Young-Laplace Equation (5) [53]:

δP =
2γcosθ

R
(5)

where δP was the capillary pressure, γ was the water surface tension, θ was the water
contact angle and R was the pore radius.

When the PCL layer faced up to and operated in oil/water separation experiments,
the hydrophobic layer provided negative capillary pressure (Fn-c) and the hydrophilic layer
provided positive capillary pressure (Fp-c). When δP within the composite membrane was
positive, water could penetrate successfully [54]. When water droplets were in contact
with the surface of the hydrophobic PCL layer, it would be subjected to two opposing
forces (the water gravity G and Fn-c). As the quantity of the water droplet increased,
the value of G increased accordingly. When G > Fn-c, the water droplets could penetrate
through the hydrophobic PCL layer to the PAN-based substrate layer, and the water
then penetrated through the PAN/TiO2-PCL20 by Fp-c. PAN/TiO2 substrate had better
hydrophilicity than PAN substrate due to its larger specific surface area and roughness,
which could enhance asymmetric wettability for the Janus membrane and generate the
larger Fp-c. Meanwhile, compared with the PAN substrate, the hydration layer formed in
the PAN/TiO2 substrate improved the oleophobicity of PAN/TiO2-PCL20 and resisted
oil penetration (Figure 9a)—all of these developments contributed to efficient emulsion
separation performance.

3.8. Removal of RhB Organic Dye

RhB was chosen as the representative stain for evaluating the removal performance of
the PAN/TiO2-PCL20. As displayed in Figure 10a, PAN/TiO2-PCL20 exhibited adsorption
capacity with 5.02 mg g−1 for RhB within 60 min of adsorption equilibria under a dark
condition (see Figure 10a). The removal rate of RhB by PAN/TiO2-PCL20 achieved 59%t
adsorption equilibria. When the removal experiment for RhB by PAN/TiO2-PCL20 was
exposed to the simulated solar irradiation, the removal rate of PAN/TiO2-PCL20 for RhB
could reach 93.2% (Figure 10b). The reason for this could be because, under simulated
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solar irradiation, TiO2 generated hydroxyl radicals and superoxide radicals to degrade RhB
dye molecules into carbon dioxide and water on the PAN/TiO2-PCL20 [55,56]. This could
provide evidence that PAN/TiO2-PCL20 exhibited photocatalytic performance for RhB
under the simulated solar irradiation. The inset of the Figure 10b shows the color change of
the RhB solution at different time intervals, and it should be noticed that the color of the
RhB solution became transparent after adsorption and photocatalytic degradation.
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to water and resisted water).
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3.9. Unidirectional Water Transfer

The asymmetric wettability of membranes might result in unidirectional water transfer
capability [53]. The unidirectional water transfer capability of PAN/TiO2-PCL20 was
further studied. When the hydrophilic PAN/TiO2 layer faced up, water merely spread
on the surface of PAN/TiO2-PCL20 (Figure 11a). When the hydrophobic PCL layer faced
up, water could spontaneously pass through PAN/TiO2-PCL20 (Figure 11b). PAN/TiO2-
PCL20 exhibited unidirectional water transfer capability. The possible mechanism of
unidirectional water transfer could also be explained, as illustrated in Figure 9: when
the hydrophilic PAN/TiO2 layer faced up, water droplets continuously diffused to the
surface of the membrane and formed a thin water layer. G value per unit area of water
was less than the upward force to the water droplets provided by the hydrophobic PCL



Materials 2024, 17, 417 12 of 16

layer, meaning water would be blocked on the surface of PAN/TiO2-PCL20 (Figure 9b).
When the hydrophobic PCL layer faced up, G value per unit area of water was higher than
the repulsive force provided by the hydrophobic side counterpart. When G > Fn-c, water
droplets passed through the PAN/TiO2-PCL20 by gravity and the capillary force of the
substrate (Figure 9a). The result showed that the asymmetric wettability of PAN/TiO2-
PCL20 exhibited unidirectional water transfer capability within a certain water pressure
range [57,58].
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Figure 11. Unidirectional water transfer process of PAN/TiO2-PCL20: (a) PAN/TiO2 side facing
water and (b) PCL side facing water.

3.10. Mechanical Properties

The mechanical performance of the separator was also necessary in the practical
application for oil/water separation. Figure 12 shows the stress-strain curves of PAN,
PAN/TiO2 and PAN/TiO2-PCLx. The tensile strength and train of PAN was 6.69 MPa
and 28.67%, respectively. Compared with pure PAN, the tensile strength and strain of
PAN/TiO2 substrate layer were reduced to 5.68 MPa and 25.33%, respectively, which might
be attributed to the existence of bead structures and porosities in the PAN/TiO2. Compared
to PAN/TiO2, the PAN/TiO2-PCLx possessed superior mechanical properties. With the
increase of PCL content, PAN/TiO2-PCLx exhibited a decrease in tensile strength and an
increase in strain. The PAN/TiO2-PCL30 had the most outstanding mechanical property
and the maximum strain reached 53.67%. The result indicated that PAN/TiO2-PCLx all
had good mechanical performance for oil/water separation (Figure S3).
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4. Conclusions

In summary, an environmentally friendly PAN-based Janus composite membrane with
asymmetric wettability and hierarchical structure was successfully fabricated. The addition
of TiO2 could further enhance the hydrophilicity of the hydrophilic PAN substrate by
increasing the specific surface area and roughness, which further improved the asymmetric
wettability of the Janus membrane. The prepared PAN/TiO2-PCL20 exhibited excellent
oil/water separation performance for diverse surfactant-stabilized oil-in-water emulsions.
Even after 20 cycles, the separation efficiency for n-hexane-in-water emulsion remained
above 99.15%, which exhibited the excellent reusability for an environmentally friendly sep-
arator. Meanwhile, the PAN/TiO2-PCL20 also had superior adsorption (5.02 mg g−1) and
removal performance (93.2%) for RhB. In addition, the PAN/TiO2-PCL20 had outstanding
unidirectional water transfer capability and mechanical property. However, the corrosion
resistance of PCL layer was expected to be further improved. To address this problem, the
corrosion-resistant inorganic and organic component may be used to functionalize PCL
modification by subsequent studies.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ma17020417/s1, Figure S1: Nitrogen (N2) adsorption-desorption
isotherms of (a) PAN, PAN/TiO2, (b) PAN/TiO2-PCL10, (c) PAN/TiO2-PCL20 and (d) PAN/TiO2-
PCL30. Figure S2: Dynamic optical images of the wettability of a water droplet on (a) PAN,
(b) PAN/TiO2, (c) PAN/TiO2-PCL10, (d) PAN/TiO2-PCL20 and (e) PAN/TiO2-PCL30. Figure S3:
Stress-strain curve of PCL. References [59,60] are cited in the supplementary materials.
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