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Abstract: Herein, we report on the antimicrobial photodynamic effect of polymeric nanoparticles
containing the endogenous photosensitizer protoporphyrin IX. Compared to equivalent doses of
the free photosensitizer, we demonstrated that the photodynamic antimicrobial efficacy of PLGA
(polylactic-co-glycolic acid) nanoparticles containing protoporphyrin IX (PpIX) against pathogenic
Staphylococcus aureus (S. aureus) is preserved after encapsulation, while photobleaching is reduced.
In addition, compared to equivalent doses of the free porphyrin, we show that a reduction in the
cytotoxicity in mammalian cell cultures is observed when encapsulated. Therefore, the encapsulation
of protoporphyrin IX reduces its photodegradation, while the released photosensitizer maintains its
ability to generate reactive oxygen species upon light irradiation. The polymeric nanoencapsulation
promotes aqueous solubility for the hydrophobic PpIX, improves its photostability and reduces the
cytotoxicity, while providing an extended release of this endogenous photosensitizer.

Keywords: protoporphyrin IX; photodynamic therapy; encapsulation; PLGA; Staphylococcus aureus;
photobleaching

1. Introduction

In antimicrobial photodynamic therapy (aPDT), a photosensitizer triggers local light-
activated photochemical reactions, produced by electron or energy transfer. Those reactions
produce the inactivation of pathogens based on the generation of superoxide anions and
other reactive oxygen species (•OH, O2

−, H2O2) (type I reactions based on electron transfer)
or by the production of singlet molecular oxygen (1O2) (type II reactions based on energy
transfer). The spatio-temporal control of the photochemical reactions involved is one of
the main advantages of this therapy by reducing off-target effects, which has facilitated
the clinical management of different oral and skin conditions associated with microbial
colonization. Pathogenic viruses, fungi, protozoa, and bacteria, alone and as polymicrobial
infections have been successfully eradicated using aPDT [1,2]. After the irradiation of an
endogenous or exogenous photosensitizer and under the presence of oxygen, a cascade
of antimicrobial mechanisms is activated due to the generation of reactive oxygen species
(ROS) including the following: membrane depolarization and increased fluidity and perme-
ability, membrane breakage, and membrane phospholipid rearrangement and peroxidation,
which are associated with the ROS generated by type I reactions (i.e., •OH, O2

−, H2O2) [2].
The main product generated by type II reactions (i.e., 1O2) is responsible for additional
cytotoxic effects including oxidative damage to proteins, lipids, and nucleic acids [3]. The
chances for bacteria to develop resistance mechanisms against aPDT are reduced because
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multiple ROS are simultaneously generated and those species have short lifetimes, usually
in the millisecond range or less [4], and short intracellular diffusion lengths from their point
of generation (in the hundreds of nm range) [5]. Therefore, the probabilities for bacteria
to produce phenotypic modifications against aPDT are low considering the short ROS
timespan and the long distance from their point of generation to the intracellular machinery
responsible for the genetic transcription and translation into antioxidative stress enzymes
or to other counteracting mechanisms. Despite this, it has been reported that bacteria can
upregulate the expression of their antioxidant enzymes against type I produced species; to
the best of our knowledge, an enzyme-mediated defensive system against type II generated
species has not been reported yet [6]. In addition to the spatio-temporal therapeutic control
mentioned above and to the reduced opportunities for bacteria to develop resistance, aPDT
constitutes a noninvasive approach having a broad-spectrum antimicrobial activity. It also
shows reduced long-term side effects, triggers non-specific antimicrobial mechanisms, and
demonstrates synergetic effects with other antimicrobial technologies (i.e., with photother-
mal therapy, antibiotics, chemotherapy, metal nanoparticles, immunotherapy, etc.) [7,8].
However, aPDT shows some drawbacks including the limited penetration depth in the
tissues reached by the VIS or even the NIR light used, the non-selective oxidative damage to
the entire irradiated area, potential skin photosensitivity or photosensitizer photobleaching,
among others [9]. To solve some of those limitations, the encapsulation of photosensitizers
within organic and inorganic nanoparticles (NPs) has been extensively used [10]. Their
encapsulation within nanoparticles allows an improved aqueous solubility and targeted or
sustained delivery towards pathogenic bacteria. Nanoencapsulation has also been used to
prevent photobleaching, to trigger the delivery of photosensitizers using endogenous or
exogenous stimuli, to enhance their permeation through the tissues, to augment bacterial
cell binding, to increase ROS production, and so on [10–13].

Protoporphyrin IX (3,7,12,17-Tetramethyl-8,13-divinyl-2,18-porphinedipropionic acid)
is one of the clinically approved photosensitizers used in the treatment of different skin
conditions (e.g., actinic keratosis, acne, rosacea, etc.), some cancers (bronchial, esophageal,
Bowen’s disease, and other premalignant lesions) and in diagnosis (by the photodynamic
detection of its fluorescence when accumulated in cancer cells during fluorescence-guided
surgery) [14,15]. Protoporphyrin IX is ubiquitous in all human cells, acting as an intermedi-
ate product of heme (i.e., iron protoporphyrin IX); however, due to its high hydrophobicity,
it can cause hepato- and biliary toxicity when externally administered [14]. To reduce
its toxicity, aminolevulinic acid (ALA) is used as a topical exogenous precursor, which is
intracellularly converted into protoporphyrin IX. Also, hydrophilic formulations have been
developed to increase its bioavailability (e.g., methyl aminolevulinate). The encapsulation
of protoporphyrin IX within nanocarriers has also been used to reduce its toxicity [16],
to enhance its bioavailability [17], to improve skin penetration [18], to enhance its ROS-
producing ability in physiological media [19], and to improve its efficacy compared to
equivalent doses of the free photosensitizer [20,21].

In aPDT, the encapsulation of protoporphyrin IX within polymeric carriers based on
poly(ethylene glycol) and poly(β-amino ester) has demonstrated improved biofilm perme-
ation and accumulation, and the ability to eradicate antibiotic-resistant subcutaneous staphy-
lococcal infections in vivo [22]. Moreover, cholesterol-modified poly(ethylene glycol)-based
micelles containing protoporphyrin IX have also shown enhanced hydrophobic interactions
with the outer membrane of Gram-negative bacteria and extended antimicrobial action
against both Gram-positive and Gram-negative bacteria [23]. In other recent examples, a
polymeric carrier (chitosan) has been used to avoid the cytotoxicity and hemolytic activity
of polycations (e.g., polyethylenimine) bound to protoporphyrin IX, used to electrostatically
interact with bacteria [24]. Polymeric nanocarriers based on Pluronic® F-127 containing
protoporphyrin IX and gallium have also demonstrated not only antibiofilm activity but
also the ability to eradicate intracellular pathogens in in vitro models of infection [25].

Polylactic-co-glycolic acid (PLGA)-based nanoparticles are widely used as delivery
vectors of many therapeutics, including photosensitizers, for their ability to biodegrade
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its ester bonds by hydrolysis, rendering endogenous lactic and glycolic acids, which are
rapidly metabolized by the Krebs cycle. Their sustained-release ability, protection capability,
augmented solubility, stability for loaded hydrophobic drugs, and degradation tunability
depending on the lactic acid and glycolic acid contents and molecular weights, are prop-
erties extensively used in many biomedical applications. PLGA nanoparticles have been
used in the encapsulation of protoporphyrin IX (or ALA) to promote its in vivo transder-
mal delivery [26] and to improve the phototoxicity against cancer cells including murine
melanoma cell cultures [27], human prostate cancer cells [28], human skin squamous cell
carcinoma cell lines [29], mouse mammary tumor cell lines [30], etc. However, to the best
of our knowledge, the antimicrobial action of free protoporphyrin IX and protoporphyrin-
IX-loaded PLGA nanoparticles (as solid matrix systems) has not been reported to date.
Herein, we have evaluated their photodynamic antimicrobial efficacy against pathogenic
bacteria (i.e., S. aureus) commonly associated with skin and soft tissue infections, and the
reduction in cytotoxicity when encapsulated vs. the free compound at the same doses in
mammalian cell cultures. Therefore, the nanoencapsulation of protoporphyrin IX within
polymeric matrices increases its bioavailability and consequently its therapeutic efficacy.

2. Materials and Methods
2.1. Materials

PLGA-Amine terminated/PLGA-NH2 (50:50) was purchased from GenoChem World
SL (Valencia, Spain). Dichloromethane (DCM, >99.8%), dimethyl sulfoxide (DMSO, >99%),
Mowiol® 4–88, Tween® 20, phosphate-buffered saline (PBS), dihydrorhodamine 123
(DHR123), protoporphyrin IX (PpIX), indocyanine green (ICG), and potassium chloride
(KCl, 99.0–100.5%) were purchased from Sigma-Aldrich (Darmstadt, Germany). Tryptone
soy agar (TSA) was purchased from Laboratorios Conda-Pronadisa SA (Madrid, Spain).
Tryptone soy broth (TSB) was purchased from VWR Chemicals. S. aureus ATCC 29213
was obtained from Ielab (Alicante, Spain). Human dermal fibroblasts (NHDF-Neo, Lonza,
Basel, Switzerland) were used in order to evaluate the potential cytotoxicity of PpIX and the
synthetized particles. High-glucose Dulbecco’s modified Eagle’s medium (DMEM; DMEM
w/stable glutamine) and antibiotics−antimycotics (60 µg/mL penicillin, 100 µg/mL strep-
tomycin, and 0.25 µg/mL amphotericin B) were supplied by Biowest (Nuaille, France). The
medium was supplemented with 10% (v/v) fetal bovine serum (FBS) from Gibco (Thermo
Fisher Scientific, Waltham, MA, USA). The Blue® Cell Viability Assay, used to evaluate the
dose-dependent cytotoxicity, was purchased from Abnova (Taipei, Taiwan).

2.2. Photosensitizer Selection

The DHR123 fluorescent probe was employed to quantify ROS production after pho-
todynamic activation of the FDA-approved photosensitizers ICG and PpIX. For the ICG
ROS production analysis, DHR123 (1.6 µM) and ICG (40 ppm) in ethanol were prepared.
Three replicates were measured using an LS 55 fluorescence spectrophotometer (Perkin
Elmer, Waltham, MA, USA) before and after 3 min of irradiation with an 808 nm diode
laser (6 × 8 mm2 spot size; Optilas model MDL-III-808-2W, Changchun New Industries
Optoelectronics Technology Co., Ltd., Changchun, China) using a power controller (Model
PD300-3W, Ophir Laser Measurement Group, Logan, UT, USA) at 1 or 0.5 W/cm2. For
the evaluation of PpIX ROS production, DMSO was used to solubilize PpIX mixed with
MilliQ water before irradiating with a 532 nm diode laser at 0.5 W/cm2 (6 × 8 mm2 spot
size; Optilas model MGL-II-532-500 mW, Changchun New Industries Optoelectronics Tech-
nology Co., Ltd., Changchun, China). Control measurements were carried under the same
experimental conditions but without laser irradiation in order to verify that no ROS were
generated in the absence of irradiating light. In order to decouple photothermal from
photodynamic effects, control measurements were also performed to evaluate whether
any temperature increase would contribute to a cellular viability decrease or ROS gen-
eration using the same photosensitizer concentrations. Photosensitizer photobleaching
was studied by collecting the UV–Vis spectra before and after exposing the corresponding
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photosensitizers to their respective laser wavelengths (808 nm for ICG, 532 nm for PpIX)
for 5 min at a 0.5 W/cm2 irradiance.

2.3. Protoporphyrin-IX-Loaded PLGA Nanoparticles Synthesis and Characterization

The single-emulsion-solvent evaporation technique was used to prepare PpIX-loaded
PLGA nanoparticles. Briefly, 2.5 mL of PLGA solution (0.4% w/v) was prepared by dis-
solving the polymer in DCM mixed with 200 µL of PpIX solution in DMSO (0.08% w/v)
to form the organic phase. Then, 10 mL of MOWIOL® 4–88 solution in Milli-Q water (5%
w/v) was added and then sonicated in an ice bath, using an ultrasonic probe of 3.2 mm in
diameter (Digital Sonifier 450, Branson, MI, USA) during three cycles of 25 s each, with an
amplitude of 40% in order to create the o/w emulsion. The samples were maintained under
stirring for 3 h at 600 rpm to allow solvent evaporation and then centrifuged (Heraeus
Megafuge 16R, Thermo Fisher Scientific) at 10,000 rpm for 15 min. The supernatant was
carefully decanted, and subsequently, 10 mL of Milli-Q water was added to each sample.
For the nanoparticle resuspension, the tubes were sonicated (Digital Ultrasonic Cleaner) for
1 min. The suspension underwent two additional rounds of centrifugation, to remove non-
encapsulated PpIX. After completing the third centrifugation, the pellet was resuspended
in 2 mL of Milli-Q water, and the samples were stored in light-protected tubes at 4 ◦C.

Nanoparticle tracking analysis (NTA) was carried out in a Nanosight NS300 (Malvern,
UK) to evaluate the hydrodynamic diameter and NP concentration. The zeta potential of the
nanoparticles, indicative of their surface charge density, was measured with a Brookhaven
90 Plus instrument by adding 1.5 mL of 1 mM KCl at pH 7.4 to 100 µL of the resulting
nanoparticle suspensions. Each sample underwent three measurements.

Nanoparticle concentration was calculated by mass balance. Briefly, three measured
volumes of the resulting nanoparticle suspension were weighted before and after solvent
evaporation (at 37 ◦C until no weight changes were observed), and concentration was
calculated as averaged ratios between the dried mass (in mg) and the volumes evaporated
(in mL).

The morphological analysis of the nanoparticles was conducted using transmission
electron microscopy (TEM) with a FEI Tecnai T20 microscope operating at an acceleration
voltage of 200 kV using a cryogenic workstation. Before observation, a droplet of the
aforementioned suspension was dispensed on a 200-mesh copper grid and desiccation was
allowed under ambient conditions. Nanoparticle dimensions were evaluated through the
utilization of DigitalMicrograph software v3.5 and diameters were measured (N = 100)
using the ImageJ software v1.54 (ImageJ, US. NIH, Bethesda, MD, USA).

The PpIX loading in the nanoparticles was quantified by UV–Vis spectrophotome-
try (Jasco V670, Jasco Applied Science, Eschborn, Germany) at a wavelength of 407 nm
by dissolving 50 µL of the PpIX-loaded NPs in 600 µL of DMSO. To eliminate any po-
tential interference, a baseline of the same amount of the dissolved non-loaded polymer
was subtracted.

The drug loading (DL) and the encapsulation efficiency (EE) were calculated using
Equations (1) and (2), respectively:

DL(%) =
mass of entrapped photosensitizer (mg)

total mass of photosensitizer loaded nanoparticles (mg)
× 100 (1)

EE(%) =
mass of entrapped photosensitizer (mg)

mass of photosensitizer added(mg)
× 100 (2)

To assess drug release kinetics, samples were prepared by combining 40 µL of PpIX-
loaded NPs with 960 µL of PBS containing 2 wt.% Tween® 80 to allow drug release due to
the high hydrophobicity of the PpIX. At specified time points, three samples were collected
and subjected to centrifugation at 12,500 rpm for 15 min. The supernatant was collected and
analyzed using UV–Vis spectrophotometry (Jasco V670, Jasco Applied Science, Eschborn,
Germany) after subtracting the baseline obtained for the non-loaded polymeric NPs.
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2.4. In Vitro Biological Analyses

The antibacterial activity of free PpIX was evaluated against S. aureus ATCC 29213,
used as a model of Gram-positive bacteria. The microorganism was cultured overnight in
TSB at 37 ◦C under continuous shaking (150 rpm) until the stationary growth phase was
reached (109 colony-forming units per mL (CFU/mL)). The inoculum was then added to
tubes containing varying amounts of PpIX (0.5–10 ppm) dissolved in TSB with 2% DMSO.
Positive controls included untreated S. aureus and an assay with just 2% DMSO (without
PpIX) to confirm the lack of antimicrobial activity in the latter organic solution. After 1 h of
incubation at 37 ◦C and 150 rpm shaking, the samples were irradiated using a laser with
an irradiance of 0.5 W/cm2 for 5 min, using a 532 nm wavelength laser diode (6 × 8 mm2

spot size; Optilas model MGL-II-532-500 mW, Changchun New Industries Optoelectronics
Technology Co., Ltd., Changchun, China). In parallel, identical samples were kept in the
dark to assess the potential toxicity of the photosensitizers at the doses used and in the
absence of light. Following irradiation, the standard serial dilution method was employed
to determine viable bacteria for both irradiated and non-irradiated samples. Samples and
controls were cultured on TSA plates and incubated overnight at 37 ◦C. Then, CFUs were
quantified with an automatic colony counter (aCOLyte 3, Synbiosis, Cambridge, UK). All
experiments were conducted at least three times.

In order to evaluate the antimicrobial action of PpIX-loaded NPs, equivalent doses
of the free photosensitizer were used (i.e., in the range 0.5–10 ppm). Positive controls
included samples of untreated bacteria and samples containing the same amount of empty
nanoparticles. All experiments were conducted in triplicate.

For the cytotoxicity study, fibroblasts were cultured in Dulbecco’s Modified Eagle
Medium (DMEM) containing L-glutamine (2 mM) and supplemented with FBS (10% v/v)
and antibiotics–antimycotics (1% v/v penicillin–streptomycin–amphotericin B) at 37 ◦C in
a 5% CO2 atmosphere. Cells were seeded in 96-well plates at a density of 6000 cells/well.
After 24 h, the culture medium was replaced with fresh medium containing the correspond-
ing concentrations of PpIX, PpIX-loaded NPs, or empty NPs. For the evaluation of PpIX, a
stock solution (1500 ppm) in DMSO was prepared and diluted with DMEM to reach the
desired tested concentrations (0.5, 1.0, and 2.0 ppm). For PpIX-loaded NPs and empty NPs,
NP dispersions in water were diluted with DMEM to reach the final tested concentrations
(0.5, 1.0, and 2.0 ppm of PpIX in PpIX-loaded NPs). In both cases, the maximum DMSO
or water concentrations used (without PpIX or NPs) were separately tested to check that
DMSO or solvent did not affect cellular viability (results not shown). After incubation
for 1 and 24 h, the Blue® Cell Viability Assay was performed to correlate viability with
the cell metabolism. Fluorescence was read (λex/λem 530 nm/590 nm) in a Varioskan
LUX microplate reader (Thermo Fisher Scientific, USA). Viability was calculated by data
interpolation assigning 100% viability to control samples (cells without any treatment).

2.5. Statistical Analyses

All data are reported as mean ± SD. Two-way analysis of variance (ANOVA) was used
to statistically analyze the experimental data (GraphPad Prism 8, San Diego, CA, USA).
Statistically significant differences were considered when p ≤ 0.01.

3. Results
3.1. Photosensitizer Selection

The potential of the photosensitizers ICG and PpIX for aPDT was initially evaluated
in terms of ROS production and photobleaching in order to select one of them for the
subsequent experiments. Figure 1a shows the fluorescence emission using the DHR123
probe for both photosensitizers. This non-fluorescent probe is oxidized by different ROS
(such as peroxide and peroxynitrite) and produces its fluorescent form (rhodamine 123) [31].
After irradiating the samples at the corresponding wavelengths using the same fluence
(90 J/cm2), a significantly superior fluorescence was observed for PpIX (2000 times higher,
Figure 1a). A superior fluorescence lifetime and quantum yield of PpIX [32] compared to
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ICG [33] might be responsible for the superior ROS production observed for the former.
The temperature increase after the 3 min of irradiation used (0.5 W/cm2) was monitored as
well as the reduction in the absorbance of the photosensitizers tested (Figure 1b). In order
to evaluate whether the temperature increase after irradiating could damage bacteria in
the subsequent in vitro antimicrobial photodynamic assays, the temperature increase was
measured after 3 min of irradiation (the same conditions used in the bactericidal study).
The temperature increase was lower than 3 ◦C, which did not produce any reduction in the
bacterial cell counts. Therefore, a potential photothermal effect caused by the irradiating
conditions was ruled out. To evaluate the photothermal stability of both photosensitizers,
the decrease in their maximum absorbance (Soret band at 407 nm for PpIX and 793 nm
for ICG) was tested after 5 min of irradiation. A superior decrease in the absorbance
measured was observed for the ICG; thus, photobleaching was more pronounced for ICG
under those conditions (Figure 1c). Taking this result into account, together with the ROS
production measured (Figure 1a), PpIX was chosen over ICG for the following antimicrobial
studies. Light-induced photobleaching has been previously analyzed for ICG and fitted to
a first-order kinetic reaction [34]. Photobleaching is also reported for PpIX but following a
second-order reaction [35] which could explain the reduced absorbance decrease observed
for this photosensitizer at the concentrations tested. Likewise, Noghreiyan et al. [36]
showed in an in vitro comparative photodynamic study, a superior action of PpIX over
ICG at the same concentrations on the elimination of breast cancer cell lines (i.e., MCF-7).
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Figure 1. Selection and characterization of the photosensitizer: (a) Changes in fluorescence intensity
observed following irradiation of the photosensitizer at an intensity of 0.5 W/cm2 for a duration
of 3 min in the presence of the DHR probe. Experiments were performed in triplicate (n = 3;
**** p-value < 0.0001); (b) Temperature increase and reduction in the absorbance at 407 and 793 nm
(for PpIX and ICG, respectively) after irradiation at 0.5 W/cm2 for 3 min (∆T experiments) and
5 min (absorbance decrease during photobleaching experiments); (c) Optical images of accelerated
photobleaching effects on a 40 ppm ICG solution (left) and a 40 ppm PpIX solution (right). The left
well for each photosensitizer was not irradiated, and the right well was irradiated at 0.5 W/cm2 for
five minutes.

3.2. PpIX-Loaded PLGA Nanoparticles Synthesis and Characterization

Once the best photosensitizer was chosen, PLGA nanoparticles loaded with PpIX were
fabricated and characterized in order to protect PpIX from degradation and, thus, lengthen
its lifespan and achieve a sustained release. Hence, the biological effects of PpIX would
potentially last longer, avoiding the microbiological recolonization of infected tissues and
side effects after treatment.
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Figure 2a shows the spherical morphology of the resulting PpIX-loaded NPs with mean
diameters of 33.6 ± 9 nm (Figure 2b), which are larger than the empty NPs (16.9 ± 7.2 nm),
probably attributed to an increased viscosity during photosensitizer entrapment. On the
other hand, PpIX release kinetics (Figure 2c) in PBS containing 2 wt.% Tween® 80 described
an initial burst release of 47 wt.%, which increased to 54 wt.% in 1 h. This is a positive out-
come considering that the photodynamic therapy proposed here is intended to be applied
almost instantaneously after applying the released photosensitizer, allowing it to diffuse
for 1 h through the bacterial population to favor intra- and interbacterial accumulation.
PpIX is protected within the NPs from photobleaching, and upon contact with, for instance,
an infected topical wound, it would be released and be prone to subsequent light activa-
tion. PpIX protection within the NPs was demonstrated by UV–Vis spectrophotometry
(Figure 2d) where the PpIX Soret band at 407 nm was almost unchanged during the time
span analyzed (4 h). The slight observed increase over time could be attributed to the
contribution of both released PpIX and the remaining PpIX within the NPs as a result of
the release.

Figure 2e shows the hydrodynamic size of the nanoparticles in colloidal suspension.
Those measured sizes were larger than those retrieved from the TEM measurements,
which is indicative of their tendency for agglomeration. Zeta potential measurements at a
neutral pH corroborated those findings because both empty and PpIX-loaded NPs showed
electrokinetic potentials of −11.9 ± 0.6 and −12.2 ± 1 mV, respectively, similar to those
previously reported for PLGA-based systems [37,38]. Absolute zeta potentials larger than
|±30 mV| are an indication of stable colloidal suspensions. However, it is important to
point out that the agglomeration was reversible and the NPs were easily suspended after
gentle vortexing. The encapsulation efficiency and PpIX loading were 13.7 ± 1.7 wt.%
and 0.14 ± 0.09 wt.%, respectively. These results, albeit low, are consistent with those
previously found in the literature, with loadings lower than 5% in both PLGA NPs [27,39]
and polymeric micelles [16].

The photoprotection offered by the polymeric NPs to PpIX was also analyzed by
UV–VIS spectrophotometry upon light irradiation. Free PpIX showed a characteristic
absorption peak at 407 nm that was stable in the dark for 4 h (Figure 3a), but the signal
dramatically decreased upon light irradiation at 0.5 W/cm2 (Figure 3b). Successive cycles
of light irradiation were used to accelerate photobleaching. In that regard, the absorbance
of the free PpIX and the PpIX-loaded nanoparticles was initially measured, and then, both
samples were irradiated for 5 min and their absorbance re-measured. Again, this process
was repeated by irradiating at 15, 30, 60, 120, and 240 min, and their absorbance was
measured (Figure 3b,d). When encapsulated within the polymer NPs, the signal remained
constant in the absence (Figure 3c) or presence (Figure 3d) of successive cycles of VIS light
with an irradiance of 0.5 W/cm2; therefore, the protection performed by the polymeric NPs
was demonstrated. It can be seen that the shoulder observed at 407 nm and short periods
of incubation (e.g., burgundy curve, time 0) slightly vanish with longer periods of time
(e.g., purple curve at 240 min); this effect can be attributed to the loss of the signal due to
the photobleached released PpIX; however, the remaining PpIX loaded within the NPs still
shows absorbance, which is an indication of its protective effect. It is important to point
out that the particles produce scattering and the measured extinction signal represents the
contribution of both absorption and scattering. The long-term stability of photosensitizer-
loaded PLGA nanoparticles has been previously demonstrated by other authors, which
highlights the benefits of using PLGA as carrier [28,40].
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Figure 2. Characterization of PpIX-loaded NPs: (a) TEM images of PpIX-loaded NPs. (b) Diameter
distribution histogram of PpIX-loaded NPs. (c) PpIX release kinetics from the particles over a 1 h
period in a PBS solution containing Tween®20 (2%). Significant difference was found between marked
(**) groups (p ≤ 0.05). (d) Ultraviolet–visible spectrum of PpIX-loaded NPs up to 4 h period-of-release
kinetics assay at 37 ◦C (inset: characteristic absorbance peak of PpIX). (e) Measurement of the
diameters and ζ potential (pH = 7) of both empty and loaded NPs. Experiments were performed in
triplicate (n = 3).
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Figure 3. Absorbance spectra of a 10 ppm PpIX solution in DMSO, without (a) and with irradiation
(b) at 0.5 W/cm2 for five minutes, irradiating at 0, 5, 15, 30, 60, 120, and 140 min. Absorbance spectra
of PpIX-loaded NPs without (c) and with irradiation (d) under the same conditions. Experiments
were performed in triplicate (n = 3).

3.3. Biological Studies

The antimicrobial action of free and encapsulated PpIX against S. aureus growth is
shown in Figure 4a, where a dose-dependent antimicrobial photodynamic action is depicted
for the concentration range assayed (0–3 ppm) for both approaches (free PpIX (top panel)
and PpIX-loaded NPs (bottom panel)). In the absence of light, no statistically significant
differences with the untreated controls were observed for both approaches, though the
irradiation involved a significant decrease in bacteria viability. Specifically, the reduction
of two logs in S. aureus growth was attained at the highest concentration of PpIX tested
(both free and PpIX-loaded NPs). In fact, a slightly higher bactericidal effect (0.5 log) was
observed when PpIX-loaded NPs were added to the bacterial cultures (Figure 4a, bottom
panel). Therefore, the antimicrobial action was preserved after nanoencapsulation, which
is a positive outcome for the biomedical application of the fabricated NPs. In fact, after
1 h, less than 50% of the PpIX was released from the NPs; thus, the superior antimicrobial
action of the encapsulated PpIX can be attributed to the protection against degradation in
the presence of bacteria. Therefore, equivalent doses of the released photosensitizer were
able to reduce the bacterial burden with the additional advantages of protecting it from
photobleaching and enhancing its antimicrobial action. The antimicrobial effect of PpIX
has been attributed to its ability to generate singlet oxygen upon light irradiation, driven
by energy transfer reactions after being excited to a long-lived triplet state [41,42].

For a potential topical application, the cytotoxicities of the free and the encapsulated
PpIX were also evaluated (Figure 4b) on fibroblasts. Free PpIX showed a significant
dose- and time-dependent cytotoxicity on the tested cell line. When encapsulated, the
PpIX showed no cytotoxicity (according to the ISO 10993-5 standard, viability higher than
70%) [43], which can be attributed to a reduced uptake by the eukaryotic cells compared
to the free form of the photosensitizer. A reduced size for the free PpIX compared to the
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PpIX-loaded NPs could be responsible for a superior cellular uptake compared to that for
the nanoparticulated carriers.
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Figure 4. (a) Top panel, antibacterial assays against S. aureus using free PpIX, and bottom panel, using
PpIX-loaded NPs. The quantification of released PpIX is determined by using their drug loading
and the release profile from the nanoparticles during the incubation period. (b) Top panel, viability
assessments of free PpIX and PpIX released from PpIX-loaded NPs on fibroblasts after 1 h incubation,
and bottom panel, after 24 h incubation. The values on the upper x-axis refer to the columns
represented in purple, i.e., the concentration of the samples containing PpIX-loaded NPs. Significant
differences were found between marked (*) groups (p ≤ 0.001). Empty NP samples exhibited viability
exceeding 70%. Experiments were performed in triplicate (n = 3). Viability was calculated by data
interpolation assigning 100% viability to control samples (cells without any treatment).

When a wound occurs, the epidermis becomes disrupted, exposing the dermis and
the subcutaneous tissue, and generating a risk of microbial contamination and coloniza-
tion in these underlying tissues. In the dermis, one of the main types of cells present is
fibroblasts [44], which are responsible for repairing damaged tissue [45]. Therefore, it was
interesting to understand how a proposed bactericidal treatment could affect this cell line.
Other authors have also showed cytotoxic effects of PpIX on fibroblasts, showing a reduc-
tion in cell viability of 20–40% at similar concentrations [36,46]. Even higher cytotoxicity on
fibroblasts than on melanoma cells has been also reported, exerting a decrease in viability
of 45% at higher concentrations (500 ppm) [47]. This previous study also showed larger
toxicity for the free photosensitizer than when loaded within polymerosomes, which was
attributed to the protective character of the nanoparticles against the intracellular degra-
dation of the photosensitizer. On the other hand, it has been reported that physiological
concentrations of PpIX are rapidly converted to heme, though higher concentrations may
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produce photosensitivity and cytotoxic effects, which could be responsible for the viability
decrease observed [14]. Several cytotoxic mechanisms have been reported for PpIX includ-
ing depolarization of the membrane potential and apoptosis-inducing factor translocation
from the mitochondria to the cell nucleus with the subsequent DNA damage [48].

In the potential clinical setting of an infected non-healing wound, after light irradiation,
PpIX would generate singlet oxygen in the treatment area, which would be consumed
by pathogenic bacteria, and also by some of the cells present in the wound bed (i.e.,
keratinocytes, fibroblasts, macrophages, etc.). However, the latter would easily regenerate,
but thanks to aPDT, this would take place under physiological conditions in a bacteria-free
environment due to the removal of the prokaryotic cells.

4. Conclusions

Single-emulsion-solvent evaporation allows the successful encapsulation of proto-
porphyrin IX within PLGA nanoparticles. The protective character, extended release, and
increased aqueous solubility of the loaded cargo highlights the benefits of polymer na-
noencapsulation of photobleachable photosensitizers. Protoporphyrin-IX-loaded PLGA
nanoparticles showed the absence of cytotoxicity on fibroblasts at the highest concentrations
tested. They showed high aqueous solubility, photostability, and preserved antimicrobial
action upon light irradiation compared to equivalent doses of the free photosensitizer. An
initial PpIX burst release from the polymeric nanoparticles might be beneficial to allow a
rapid diffusion in the bacterial environment and allow an efficient pathogen photoinactiva-
tion, whereas its sustained release could contribute to preventing further recolonization.
The proposed PpIX-loaded NPs can overcome the current limitations of light-sensitive
hydrophobic photosensitizers also having reduced cytotoxicity against eukaryotic cells,
which support their feasibility to be used in biomedical applications.
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