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Abstract: The primary focus of the current paper centers on the microstructures and mechanical
properties exhibited by a Ti-30Nb-12Zr-5Ta-2Sn-1.25Fe (wt. %) (TNZTSF) alloy that has been produced
through an intricate synthesis process comprising cold-crucible induction in levitation, carried out
in an atmosphere controlled by argon, and cold-rolling deformation (CR), applying systematic
adjustments in the total deformation degree (total applied thickness reduction), spanning from 10%
to 60%. The microstructural characteristics of the processed specimens were investigated by SEM and
XRD techniques, and the mechanical properties by tensile and microhardness testing. The collected
data indicate that the TNZTSF alloy’s microstructure, in the as-received condition, consists of a
β-Ti phase, which shows polyhedral equiaxed grains with an average grain size close to 82.5 µm.
During the cold-deformation processing, the microstructure accommodates the increased applied
deformation degree by increasing crystal defects such as sub-grain boundaries, dislocation cells,
dislocation lines, and other crystal defects, powerfully affecting the morphological characteristics.
The as-received TNZTSF alloy showed both high strength (i.e., ultimate tensile strength close to
σUTS = 705.6 MPa) and high ductility (i.e., elongation to fracture close to εf = 11.1%) properties, and
the computed β-Ti phase had the lattice parameter a = 3.304(7) Å and the average lattice microstrain
ε = 0.101(3)%, which are drastically influenced by the applied cold deformation, increasing the
strength properties and decreasing the ductility properties due to the increased crystal defects
density. Applying a deformation degree close to 60% leads to an ultimate tensile strength close
to σUTS = 1192.1 MPa, an elongation to fracture close to εf = 7.9%, and an elastic modulus close to
54.9 GPa, while the computed β-Ti phase lattice parameter becomes a = 3.302(1) Å.

Keywords: mechanical properties; microstructure; β-Ti phase; cold deformation; SEM analysis; XRD
analysis; titanium alloy

1. Introduction

Ever since it was first used on a large industrial scale in the 1950s, Titanium has seen
widespread use in an extensive array of domains, from the automotive and airspace to
chemical, nuclear and biomedical applications. Titanium, by itself, has an impressive set of
properties, from a high melting point of 1725 ◦C and ease of casting and forging, to a high
corrosion resistance, to having a low density when compared to iron. While providing a
higher tensile strength, it is often enough ill-suited, in and of itself, for many applications.
As such, it is usually allied with other elements, in order to obtain a new material with
better properties, one that is more adequate for the task at hand [1–4].
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One area of particular interest for titanium alloys has been the biomedical field,
specifically within the domain of orthopaedic implants [5–7]. In order to be considered
for implant applications, a material must possess a high biocompatibility, so as to avoid
being rejected by the body, and to not have toxic or carcinogenic properties. Moreover,
implant materials are expected to have good mechanical compatibility with the human
body: they must resist friction and wear, as well as multiaxial fatigue loading, and have
a high tensile strength, good ductility, and a Young’s modulus that is close to that of the
human bone, so as to avoid the stress shielding effect. Furthermore, the human body
presents a very corrosive medium, which the orthopaedic implant must handle. Titanium
alloys, especially those containing the β-Ti phase, are uniquely suited to meeting these
requirements [8–12]. Nb, Ta, and Zr are considered the safest, most non-toxic alloying
elements for biomedical applications, and also provide a final material that has the required
mechanical and corrosion resistance properties and good tissue compatibility [13].

A further way to improve this already good class of materials is through either ther-
momechanical or mechanical processing, as it was shown that there is a direct correlation
between the alloy’s microstructure and its mechanical properties, with grain size having a
particularly large impact on said characteristics. Many studies have shown that these two
processing processes (mechanical and thermomechanical) have the potential to improve
the mechanical properties of Ti-based alloys, thus making them suitable to be used as
implantable materials [1,14,15].

As for Ti-based alloys, deformation by cold-rolling is the most widely used mechanical
process, which plays an important role in tailoring its mechanical characteristics. Through
deformation by cold-rolling, significant changes can be achieved in the alloy’s microstruc-
ture, such as in its grain refinements, thus lessening residual stress or increasing dislocation
density; all of this leads to improving its mechanical strength and hardness.

Although over time a lot of work has focused on finding the right mechanical process-
ing route to acquire the best mechanical properties for Ti-based alloy, none of them have
found a perfect balance; as such, designing a fitting mechanical processing route is very
important for obtaining a final material with better properties than that of as-cast alloy.

Consequently, this work examines the effects of deformation by cold-rolling on a
Ti-30Nb-12Zr-5Ta-2Sn-1.25Fe (wt. %) (TNZTSF) alloy. The as-received TNZTSF alloy
was subjected to varying deformation degrees, ranging from ε = 10% to ε = 60% in 10%
increments, and then analyzed microstructurally and mechanically, so as to determine
which deformation degree yields the best results.

2. Materials and Methods
2.1. The Alloy’s Synthesis

Our studied alloy Ti-30Nb-12Zr-5Ta-2Sn-1.25Fe (wt. %), referred to as TNZTSF, was
synthesized using a cold crucible FIVE CELES-MP25 levitation induction furnace, in a
controlled argon atmosphere, in order to avoid the formation of oxides. To ensure a high
level of chemical homogeneity, the alloy underwent three cycles of remelting. The alloy was
synthesized using just high-purity elemental components such as titanium (min. 99.6%),
niobium (min. 99.9%), zirconium (min. 99.5%), tantalum (min. 99.9%), tin (min. 99.96%),
and iron (min. 99.98%).

2.2. Mechanical Processing Route

Displayed in Figure 1 is the utilized mechanical processing route, beginning with
the as-received TNZTSF alloy, which was then deformed by cold rolling with various
deformation degrees, ranging from ε ≈ 10% to ε ≈ 60%, in 10% increments. The cold
rolling steps were carried out with the aid of a MARIO di MAIO LQR120AS rolling mill.
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Figure 1. Processing scheme applied to Ti-30Nb-12Zr-5Ta-2Sn-1.25Fe (TNZTSF) (wt. %) alloy.

These mechanical processing steps were carried out with the objective of inducing
modifications in the TNZTSF alloy’s microstructure and assessing the impacts of different
deformation degrees on it, in order to gauge the best possible mechanical processing route
for obtaining an optimal microstructure, with a small grain size, and a good fusion of
mechanical properties (high strength and ductility, combined with a low elastic modulus)
that would make a final material ideally suited for biomedical implant applications.

2.3. Microstructural and Mechanical Analysis of the Alloy

The as-received (AR) alloy, together with the alloys that were cold-deformed by
rolling (CR), were subjected to both microstructural and mechanical analyses to gauge the
impact of the chosen mechanical processing routes on the TNZTSF alloy’s microstructure.
Specimens were sectioned from each state with the aid of a precision METKON Micracut
202 cutting machine. This machine was equipped with an NX-MET XDLM ∅150 mm
diamond cutting disk. After the cutting procedure, the samples were hot-mounted using an
NX-MET XPHC carbon conductive phenolic resin, facilitated by the advanced BUEHLER
SimpliMet2 hot-mounting press.

Both sample preparation techniques (grinding and polishing) were carried out using
a METKON Digiprep ACCURA machine. For the first sample preparation technique,
namely, grinding, we utilized the NX-MET XPAC ∅250 mm SiC abrasive papers in different
5-stage routines, ranging from 180 to 1200 grit, while for the second sample preparation
technique, polishing, we utilized NX-MET M200 ∅250 mm soft flocked polishing cloths,
as well as 6 and 1 µm consecutive applications of NX-MET XP15 polycrystalline diamond
suspensions. The final polishing process entailed the use of a NX-MET M100 ∅250 mm
buffet polyurethane cloth and NX-MET XA05 0.05 µm colloidal silica fused with 20% H2O2.
In order to be able to perform SEM-EBSD investigations, an extra super-polishing procedure
was implemented using a BUEHLER VibroMet2 vibro-polishing machine, utilizing the
NX-MET M210 ∅300 mm soft flocked polishing cloth and NX-MET XA05 0.05 µm colloidal
silica fused with 20% H2O2.

To guarantee that the as-received TNZTSF alloy’s composition matched the desired
one, an EDS analysis was performed, utilizing a TESCAN VEGA II—XMU XMU scanning
electron microscope (SEM) equipped with a BRUKER Quantax xFlash 6/30 EDS detector.
The identification of the phases was carried out utilizing X-ray diffraction, employing a
RIGAKU MiniFlex600 benchtop diffractometer, which can observe patterns between 30◦

and 90◦ in 2θ, and utilizes Cu-Kα radiation, giving limits of detection od roughly 0.1 to
1 wt. % for each phase.

The microstructural analysis was performed using the EBSD technique, utilizing a
TESCAN VEGA II—XMU scanning electron microscope (SEM) provided with a BRUKER
eFlash1000 EBSD detector. EBSD measurements were carried out while employing the
following parameters: 512 × 512 pixel image size, 320 × 240 pixel EBSD resolution, 10 ms
acquisition time/pixel, 1 × 1 binning size, and less than 2% zero solutions. Following the
EBSD analysis, it could be observed that in all cases, both as-received and cold-rolled, the
alloy exhibited a monophasic β-Ti body-centered cubic (BCC) composition, with a lattice
parameter of a = 3.304 Å.

Mechanical characterization for both structural states (AR and CR) was carried out
using tensile and microhardness testing. The tensile testing was carried out with DEBEN
MicroTest-2000N (Deben UK Ltd., Suffolk, UK) testing equipment with a strain rate of
1 × 10−4 s−1, on “dog bone” tensile test samples with a calibrated area of 2 × 0.8 × 7 mm
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(with 2 mm, 0.8 mm, and 7 mm being the width, thickness, and gauge length of said
area, respectively). The resulting strain–stress curve was utilized in order to obtain some
mechanical characteristics, such as yield strength (σ0.2), ultimate tensile strength (σUTS),
fracture strain (εf) and elasticity modulus (E). The alloy samples were also subjected to
microhardness testing, using a SCHIMADZU HMV-2 (Shimadzu, Kawasaki City, Japan)
microhardness tester, with the following test parameters: testing force of 100 gf, dwell time
of 30 s.

3. Results and Discussion
3.1. As-Received (AR) State of the TNZTSF Alloy

The microstructural analysis of the as-received (AR) TNZTSF alloy carried out in this
work was conducted using the SEM-EDS technique. A usual SEM-BSE image of the AR
TNZTSF alloy is presented in Figure 2a, where it can be seen that the microstructure is made
of polyhedral grains, each one presenting an almost uniform distribution of the alloying
elements that have high atomic numbers (Z). In Figure 2b is displayed the distribution
of the primary alloying elements (titanium, niobium, zirconium, tantalum, tin, and iron)
procured with the EDS elemental map, confirming the observation regarding the almost
uniform distribution of the alloying elements within the grains. Figure 2c shows the
obtained TNZTSF alloy’s EDS spectra, in which one can observe that only the Ti, Nb, Zr, Ta,
Sn, and Fe lines are present, with no unwanted alloying elements being present within the
TNZTSF alloy’s composition.
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The crystalline structure of titanium varies in relation to pressure and temperature,
with three solid phases being possible: Ti-α—a hexagonal close-packed structure, this being
the low-temperature phase that is stable below 882 ◦C; Ti-β—a body-centered cubic struc-
ture, this being the high temperature phase that is stable between 882 ◦C and 1670 ◦C; and
Ti-ω—the hexagonal high-pressure phase [16]. The temperature at which titanium makes
the transition between the alpha and beta phases is called the beta-transus temperature,
and it has a value of 882 ◦C for pure titanium [17].

This temperature is strongly influenced by the titanium’s purity, with alloying elements
being considered as either alpha-stabilizers (Ga, Y, Al, Sn, O) if they increase it, or beta-
stabilizers (Mn, Co, Fe, Cu, Ni, Ti, Ta, V) if they decrease it. There are also elements that
have little to no effect on the beta-transus temperature, dubbed neutral elements (Sn, Hf,
Zr). The beta stability of alloys can be demonstrated by employing the molybdenum
equivalency ([Mo]eq., wt. %), which uses molybdenum, a beta-stabilizing element, as an
arbitrary baseline, and normalizes all other elements to an equivalent molybdenum value
(which is positive for beta-stabilizers and negative for alpha-stabilizers) [18,19]:

[Mo]eq. = 1·Mo + 0.28·Nb + 0.22·Ta + 0.67·V + 1.6·Cr + 2.90·Fe − [Al]eq. (1)

[Al]eq. = 1·Al + 0.17·Zr + 0.33·Sn + 10·(O + N) (2)
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Depending on the value of the molybdenum equivalency, alloys can be considered:
α and near-α ([Mo]eq. < 2), α + β ([Mo]eq. = 2–5), near-β ([Mo]eq. = 5–10), β-metastable
([Mo]eq. = 10–30) and stable β ([Mo]eq. > 30). Considering the TNZTSF alloy’s chemical
composition, as presented in Table 1, the calculated value of [Mo]eq. is [Mo]eq. = 10.22, and
this categorizes the TNZTSF alloy as β-metastable ([10 < [Mo]eq. < 30).

Table 1. Quantitative chemical composition of the as-received (AR) TNZTSF alloy.

Element At. No. Mass (wt. %) Mass (at. %) Abs. Error (%) Rel. Error (%)

Titanium (Ti) 22 50.27 67.07 1.33 2.71
Niobium (Nb) 41 29.72 20.43 0.77 2.74
Zirconium (Zr) 40 11.87 8.31 0.27 2.85
Tantalum (Ta) 73 4.96 1.75 0.12 3.07
Tin (Sn) 50 1.98 1.07 0.06 3.72
Iron (Fe) 26 1.20 1.37 0.06 3.84

Sum 100.00 100.00 -

In Table 1 is displayed the chemical composition of the TNZTSF alloy studied in this
work. Since the SEM-EDS technique has some boundaries, the occurrence of a few elements
with low atomic numbers (like C or O) was not quantified.

Aiming to identify the microstructural constituents of the AR TNZTSF alloy by using
the XRD technique, a microstructural characterization was undertaken. Figure 3a displays
the acquired XRD spectra of the AR TNZTSF alloy, where it can be seen that the microstruc-
ture of our studied alloy consists of only a single phase, namely, Ti-β. The Ti-β phase is
indicated by (110), (200), (211), and (220) diffraction lines. The Ti-β phase was indexed in
the body-centered cubic (BCC) system, related to the 229/I m-3 m space group. Rietveld
analysis showed that the lattice parameter of the Ti-β phase was close to aβ = 3.304(7) Å,
while the internal average microstrain was close to 0.101(3)%.
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Figure 3. XRD spectra (a) and stress–strain curve (b) of the TNZTSF alloy in the as-received (AR) state.

Looking at the differences between the value of our Ti-β phase lattice parameter
(aβ = 3.304(7) Å) and an ordinary Ti-β phase lattice parameter of around aβ = 3.282 Å
(COD 9,012,924 file), we can come to the conclusion that this increase in lattice parameter
may be due to the dissolved alloying elements within the parent Ti-β phase, owing to the
elevated atomic radius of the solvable alloying elements (niobium, zirconium, tantalum,
tin, and iron).

Figure 3b shows the obtained engineering strain–stress curves of the AR TNZTSF
alloy, based on which some mechanical properties like ultimate tensile strength (σUTS),
yield strength (σ0.2), fracture strain (εf) and elasticity modulus (E) were calculated. From
Table 2, where the mechanical properties of the AR TNZTSF alloy are presented, we can
infer that the AR TNZTSF alloys show high strength (σUTS ∼= 705 MPa), moderate ductility
(εf

∼= 11%), and a low elasticity modulus (E ∼= 55 GPa), indicating the suitability of the
TNZTSF for use in osseous implantology applications.
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Table 2. Mechanical properties of the AR TNZTSF alloy.

Structural State Ultimate Strength,
σUTS (MPa)

Yield Strength,
σ0.2 (MPa)

Fracture Strain,
εf (%)

Elasticity Modulus,
E (GPa)

Microhardness,
HV0.1

AR TNZTSF alloy 705.6 658.3 11.1 55.6 226 ± 2

The microstructural analysis of the AR TNZTSF alloy employing the SEM-SE and SEM-
EBSD techniques aimed to morphologically characterize the microstructural constituents.
A typical SEM-SE microstructural image is presented in Figure 4a, from which it can be
remarked that the AR TNZTSF alloy’s microstructure is composed of polyhedral β-Ti
phase grains. The grain boundary analysis (Figure 4b) and the grain-size distribution
(Figure 4c) reveal that the AR TNZTSF alloy microstructure is composed of a wide grain-
size dispersion of 15 µm to 135 µm. As observed, the largest proportion of grains shows a
grain size distribution from 45 µm to 105 µm, with a mean grain size close to 82.5 µm.
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Figure 4. Typical SEM-SE microstructure image (a), grain boundary (b) and grain size distribution (c)
of AR TNZTSF alloy.

3.2. Cold-Deformed by Rolling (CR) State of the TNZTSF Alloy

In this work, our TZNTSF alloy was deformed by cold rolling (CR), using deformation
degrees ranging from 10% to 60%, with 10% increases. Displayed in Figure 5 are the SEM
images of our cold-rolled specimens, as seen from the transversal direction with respect to
the rolling direction. As can be seen, after applying intense cold deformation, the initial
(AR state) polyhedral equiaxed grains become elongated along the RD processing direction,
showing visible deformation bands and deformation twins. Also, it can be remarked that
the TNZTSF alloy subject to deformation by cold rolling (CR) did not present discontinuities
in volume, even in the case of the most intense applied deformation (60%), proving that
the alloy’s microstructure remained homogenous/undamaged. Additionally, it can be
noted that, by raising the deformation degree, there is a corresponding increase in the
elongation of the initial polyhedral Ti-β grains, with the most obvious deformation-induced
microstructural features being seen in Figure 5f, which shows the alloy in its post-60%
deformation state. Comparable observations have also been obtained for various types of
Ti-alloys [20–29].

Figure 6 shows the XRD spectra of our TNZTSF alloy specimens subjected to defor-
mation by cold rolling (CR), utilizing different deformation degrees. Without exception,
only the (110), (200), (211), and (220) β-Ti phase diffraction peaks can be seen. As such, no
stress-induced martensite phase was formed, meaning that the alloy’s hardness will incur
no significant changes as a function of temperature, a useful factor to take into account
when considering further thermal processing for the alloy.
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Table 3 shows the evolution of the crystallographic parameters of the CR TNZTSF
alloy. It is evident that there is only a small variation in the computed lattice parameter,
from 3.302(8) Å for a total applied deformation of 10% to 3.312(1) Å for a total applied
deformation of 60%, showing that the mechanical processing has no significant impact on
the alloy unit cell.

Table 3. Crystallographic evolution of the CR TNZTSF alloy.

Structural State
Cold Rolling

ε = 10% ε = 20% ε = 30% ε = 40% ε = 50% ε = 60%

Lattice parameter, a (Å) 3.302(8) 3.298(3) 3.303(1) 3.306(2) 3.303(9) 3.302(1)
β-Ti(110), 2θ (◦) 38.56 38.62 38.49 38.54 38.55 38.50
β-Ti(200), 2θ (◦) 55.67 55.78 55.64 55.61 55.71 55.61
β-Ti(211), 2θ (◦) 69.68 69.76 69.92 69.63 69.63 69.56

Halder-Wagner Model

Lattice strain, ε (%) 0.19(2) 0.21(4) 0.25(4) 0.27(3) 0.31(3) 0.32(2)
Crystallite size, S (Å) 542 447 216 193 181 172

Hall Model

Lattice strain, ε (%) 0.15(4) 0.28(1) 0.35(2) 0.41(3) 0.46(2) 0.47(4)
Crystallite size, S (Å) 945 542 442 343 268 187

The increase in total applied deformation degree does, however, impact both the
crystallite size and the lattice strain, as observed in both Halder–Wagner and Hall models.
The lattice strain increases while the crystallite size decreases with an increase in the total
applied deformation degree. As observed, the lattice strain increases from 0.19(2)% (Halder–
Wagner model)/0.15(4)% (Hall model), for a total applied deformation of 10%, to 0.32(2)%
(Halder–Wagner model)/0.47(4)% (Hall model) for a total applied deformation of 60%,
while the crystallite size decreases from 542 Å (Halder–Wagner model)/945 Å (Hall model),
for a total applied deformation of 10%, to 172 Å (Halder–Wagner model)/187 Å (Hall
model), for a total applied deformation of 60%.

Table 4 presents the computed mechanical properties of the TNZTSF alloy specimens
after being deformed by cold rolling. It is clear that, with the increase in the total deforma-
tion degree, there is a corresponding increase in strength characteristics (ultimate strength,
yield strength), with the ultimate strength rising from 1030.7 MPa to 1192.1 MPA, and
yield strength rising from 882.6 MPa to 1076.3 MPa (at ε = 10% and ε = 60%, respectively).
The rest of the properties (fracture strain, elasticity modulus, microhardness) incur no
significant changes with the variation in the total deformation degree. As such, it can be
considered that the specimens cold-rolled with a total deformation degree of ε = 60% yield
the best mechanical properties.

Table 4. Mechanical properties of the CR TNZTSF alloy.

Structural State Ultimate Strength,
σUTS (MPa)

Yield Strength,
σ0.2 (MPa)

Fracture Strain,
εf (%)

Elasticity Modulus,
E (GPa)

Microhardness,
HV0.1

CR: ε = 10% 1030.7 882.6 8.23 57.1 241
CR: ε = 20% 1122.5 1005.5 7.87 56.1 242
CR: ε = 30% 1127.7 1013.7 7.92 56.5 245
CR: ε = 40% 1138.8 1019.5 8.27 55.1 248
CR: ε = 50% 1150.8 1036.6 7.98 56.1 253
CR: ε = 60% 1192.1 1076.3 7.87 54.9 249

Analyzing the elasticity modulus, one can observe that a small decrease is observed
when one increases the total applied deformation degree, from 57.1 GPa for a total applied
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deformation of 10% to 54.9 GPa for a total applied deformation of 60%. An opposite
behavior is noted in the case of microhardness, which increases from 241 HV0.1 for a total
applied deformation of 10% to 249 HV0.1 for a total applied deformation of 60%.

To explain the behavior of mechanical properties with the variation in the total de-
formation degree, as shown in Table 4, two competing mechanisms can be proffered. The
occurrence of UFC/NC grains can be considered as a primary mechanism given that the
crystalline grain size is an important factor influencing the mechanical properties, as indi-
cated by the Hall–Petch correlation [28,29]; increased strength properties are the result of a
reduction in crystalline grain size. In our work, the smallest crystalline grain size for the
β-Ti phase is achieved in the case of the specimens cold-rolled with a total deformation
degree of ε = 60%, confirmed by the broad β-Ti peaks achieved for the cold-rolled (CR)
state (Figure 6) in contrast to the as-received (AR) state (Figure 3).

The occurrence of a raised dislocation density can be considered as a secondary mech-
anism, given that these improve the alloy’s strength and at the same time its mechanical
properties [30–32]. In our work, the highest dislocation density is achieved in the case of the
specimens cold-rolled with a total deformation degree of ε = 60%. Both two mechanisms
are significantly impacted by the chosen mechanical processing route, the cold-rolled states
involving the occurrence of small crystalline grain sizes for the parent β-Ti phase, and
higher dislocation density.

Taking into account the demand for implantable biomaterials characterized by a
low elasticity modulus (E) [33–42], the need for an internal microstructure capable of
providing this has emerged—a homogenous β-Ti phase microstructure possessing small
grain size/crystallite size and high mechanical properties being essential [32,43]. The
microstructures/mechanical properties obtained after cold-rolling processing can be fur-
ther improved by applying different thermal treatments to induce the alloy’s internal
microstructure/mechanical properties towards a decreased elasticity modulus (Young’s
modulus)/increased strength [44–53].

Thus, more research should center on identifying the best mechanical processing route
that could lead to a further reduction in the elasticity modulus, bringing the values even
closer to those found in human bone. Still, the results obtained in this work emphasize that
the TNZTSF alloy is a proper candidate for use as a material to be employed in medical
implantable applications.

4. Conclusions

This work studied the effects of deformation by cold rolling (CR) on the microstructural
and mechanical characteristics of a Ti-30Nb-12Zr-5Ta-2Sn-1.25Fe (wt. %) alloy. The primary
findings are outlined as follows:

- The Ti-30Nb-12Zr-5Ta-2Sn-1.25Fe (wt. %) alloy, referred to as TNZTSF, was effectively
produced through melting in a cold crucible levitation induction furnace;

- The TNZTSF alloy in its as-received (AR) state underwent deformation by cold rolling
(CR) using different deformation degrees, ranging from ε = 10% to ε = 60% in 10%
increments;

- The microstructure of the TNZTSF alloy, in its as-received (AR) state, consists of a
singular, uniform β-Ti phase characterized by equiaxed polyhedral grains with an
average size of 82.5 µm, exhibiting a narrow grain size distribution;

- The microstructure of the cold-rolled (CR) TNZTSF alloys also consists of a singular
β-Ti phase for all the deformation degrees. The CR TNZTSF alloys displayed a
progressive deformation texture, with the most elongated beta Ti grains being caused
by the 60% deformation degree. Deformation bands and deformation twins were
observed, while no discontinuities in volume were found;

- The crystallographic parameters for both as-received (AR) and cold-rolled (CR) states
were quantified based on the XRD spectra analysis. Due to the small variation in the
lattice parameter of the CR TNZTSF alloys (3.302(8) Å for a 10% deformation degree
to 3.302(1) Å for a 60% deformation degree), it was found that on the alloy unit cells,
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the mechanical processing had no significant impact. On the other hand, it was shown
through Halder–Wagner and Hall models that increasing the deformation degree will
impact both the crystallite size and the lattice strain;

- The mechanical properties of the CR TNZTSF alloys compared to the AR TNZTSF al-
loys have shown major improvements regarding the strength characteristics (ultimate
strength (σUTS), yield strength (σ0.2));

- The total deformation degree was found to have a visible influence on some mechanical
characteristics. By increasing the deformation degree from ε = 10% to ε = 60%, ultimate
strength and yield strength will increase, with the ultimate strength rising from
1030.7 MPa to 1192.1 MPa and yield strength from 882.6 MPa to 1076.3 MPa. The
variation in the total deformation degree yielded no major influences on the fracture
strain (εf) and the microhardness (HV 0.1) values;

- The total deformation degree also has a certain influence on the elasticity modulus
(E), a small decrease being recorded with the increase in the deformation degree,
from 57.1 GPa for a total applied deformation of 10% to 54.9 GPa for a total applied
deformation of 60%;

- The increase in deformation degree from ε = 10% to ε = 60% yields increasingly favor-
able mechanical properties, with ε = 60% having the best results (high strength/low
elastic modulus).
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