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Abstract: The experimentally obtained material microstructure can be used to calculate a material’s 
properties and identify microstructure–property relationships. The key procedure to enable this is 
to interpret the observed microstructure accurately. This work reports on a newly developed com-
putational method to serve such a purpose. The method is based on cubic spline interpolation and 
a simple search algorithm. Parameterisation was accomplished via the comparison between its pre-
liminary statistical results and the information in a phase diagram. The method was applied to an-
alyse the quenched microstructure of multicomponent and multiphase metallic-oxide materials. The 
importance of adequate parameterisation is demonstrated. The results provide a good explanation 
for the experimentally measured electric conductance behaviour. Further application of the method 
to the deformation of materials is discussed. The algorithms are directly available for the analysis of 
the three-dimensional microstructure of materials. 

Keywords: microstructure; computational method; deformation; microstructure–property  
relationship 
 

1. Introduction 
Material microstructural characterisation using various microscopes, surface profil-

ers, and wave diffractions results in the production of thousands of images every year. 
Processing these images can reveal the geometric characteristics of materials at the mul-
tiscale, which are closely linked to their properties and processing conditions. Using sys-
tematic varied processing parameters, the corresponding changes in the observed micro-
structure inform of the processing–microstructure relationships. An example can be seen 
in our recent paper about the effect of various electric processing parameters (current den-
sity, frequency, and loading duration) on the phase distribution and grain morphological 
evolution in cast mould flux [1], where quantitative microstructure interpretation plays 
an important role in characterising the processing-microstructure relationship. On the 
other hand, different microstructures give rise to different material properties. Although 
experimental measurement is the ultimate route to determine the microstructure–prop-
erty relationship, numerical calculation of a material’s properties from the observed mi-
crostructure can provide in-depth knowledge about microstructure–property relation-
ships. Examples include the prediction of the fracture behaviours in brittle materials from 
their known configuration of phases and compositions using numerical calculation [2,3]. 
Precise interpretation of the observed microstructural pattern is again the key procedure 
to identify microstructure–property relationships. 

In experimentally obtained microscopic images, such as those obtained from scan-
ning electron microscopes (SEM), the brightness profile reveals morphological infor-
mation of various phase fields. The contrast in those images is influenced by the interac-
tion between the electron beam and the local surface of the sample. Roughness, chemical 
composition, and defect density all contribute to the distribution of contrast. Although 
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sample preparation, such as the appropriate polishing and etching, can generate different 
roughness for different phases and hence improve the contrast, it is often observed that 
the contrast changes smoothly rather than sharply from one phase to another in these 
images. This imposes a challenge to the accurate interpretation of the microstructure, e.g., 
the critical greyscale value to separate two phases. The aim of the current work is to pro-
vide a computational and parameterising method to tackle the problem. 

The microstructural images obtained from numerical simulations, however, are dif-
ferent from those obtained experimentally regarding the problem described earlier. In nu-
merical calculations, such as those in phase-field simulation [4,5], the physical status of 
each pixel in the image is fully traced using a phase-field order parameter (ϕ), and its 
value is always known throughout the computation. For example, 𝜙𝜙 < 0.1 is frequently 
used to represent a liquid, 𝜙𝜙 > 0.9 is frequently used to represent a solid, and 0.1 ≤ 𝜙𝜙 ≤
0.9 is frequently used to represent the interface in the simulation of solidification. In ex-
perimentally obtained microstructural images, however, the physical status of each pixel 
is represented by a greyscale value and its meaning needs further identification. The dif-
ferent etching times and accelerating voltage for electrons and facilities can cause the grey-
scale to alter drastically. Sometimes, comparison of microscopic images at the same loca-
tion using different characterisation methods can help to clarify the physical status. Ex-
amples include the use of both SEM and electron backscatter diffraction (EBSD) images to 
determine whether two pieces of crystals belong to the same grain according to both their 
morphological characteristics and their crystallographic orientations. However, this is not 
always economic or available. This has driven the development of many numerical meth-
ods to solve microstructural problems. For example, machine learning using convolu-
tional neural networks has led to some methods to count the number of grains with clas-
sified geometric shapes. An example of such a method is the widely used Image J software 
[6], which was originally developed for biological and medical research to count the num-
ber of different types of bacteria and cells in microscopic images. The variation autoen-
coder is another powerful tool that can convert complex image information into several 
latent parameters, which can be used to generate artificially similar microstructures to aid 
material design by varying the values of latent parameters [7]. This can also help quantify 
the long-standing argument regarding the similarity of microstructural images obtained 
at different positions in the same sample. 

Although it is true that some phases in materials exhibit unique topological morphol-
ogies due to atom arrangement and processing conditions (such as undercooling-induced 
interface instability leading to dendrite formation [8], crystal structure-related interface 
anisotropy leading to cubic [9] or hexagonal surface formation [10], and displacement 
transformation-induced plate-shaped martensite [11]), many grains lose these character-
istics during subsequent thermomechanical processing, such as deformation [12] and re-
crystallisation [13]. On the other side, new requirements arise for microstructural repre-
sentation and interpretation. For example, in heterogeneous materials [14,15], the gradient 
distribution of grain size, rather than the average grain size, can improve both strength 
and toughness simultaneously. Conversely, the largest defect, rather than the average size 
or volume fraction of cracks, inclusions, and pores, is primarily responsible for their det-
rimental effect on materials [16]. Additionally, the alignment of morphological anisotropic 
grains, without changes to the size and morphology of any individual grain, can com-
pletely alter the materials’ electromagnetic properties [17]. To accurately describe the mi-
crostructure of materials, more sophisticated methods beyond conventional statistical 
analysis are required. Knowledge about the computational phase diagram could be inte-
grated into microstructural calculation to enhance its interpretation. Some microscopic 
images suffer from high-amplitude noise. This makes it difficult to extract accurate infor-
mation about the microstructure. Although there are various mathematical algorithms 
available, such as Bayesian inference [18] and neural networks, they may not always pro-
vide fast and reliable solutions. In this work, we implement a cubic spline interpolation 
and develop a simple search algorithm to fulfil the task. The method helps to denoise 
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images quickly with minimal loss of microstructural information. It is suitable for analys-
ing images obtained from slags, ceramics, and other materials that are too brittle to polish, 
as well as certain metallic phases, such as the ferritic phase in steels, which are difficult to 
etch. The developed mechanism for extracting microstructural information in this work 
aids in predicting the properties of the materials. 

2. Modelling and Algorithm 
The value of a physical quantity (𝑔𝑔, e.g., mass density, chemical composition, mo-

mentum, etc.) at a position (𝑟𝑟𝑖𝑖) in a continuous space can be calculated by its spatial dis-
tribution using the following equation [19,20]: 

𝑔𝑔(𝑟𝑟𝑖𝑖) = �𝑔𝑔(𝑟𝑟)𝑊𝑊(|𝑟𝑟𝑖𝑖 − 𝑟𝑟|,ℎ)𝑑𝑑𝑟𝑟 (1) 

where 𝑊𝑊(|𝑟𝑟𝑖𝑖 − 𝑟𝑟|,ℎ) is called the kernel or weight function, and ℎ is called the smooth-
ing length. In a limit of ℎ = 0, 𝑊𝑊(|𝑟𝑟𝑖𝑖 − 𝑟𝑟|, 0) =  𝛿𝛿(|𝑟𝑟𝑖𝑖 − 𝑟𝑟|), Equation (1) becomes the fol-
lowing trivial format: 

𝑔𝑔(𝑟𝑟𝑖𝑖) = �𝑔𝑔(𝑟𝑟)𝛿𝛿(|𝑟𝑟𝑖𝑖 − 𝑟𝑟|)𝑑𝑑𝑟𝑟 (2) 

where 𝛿𝛿(|𝑟𝑟𝑖𝑖 − 𝑟𝑟|) = 1  for 𝑟𝑟 = 𝑟𝑟𝑖𝑖  and 0  everywhere else. When the space is discretised 
into elements, Equation (1) becomes the following discrete format [19]: 

𝑔𝑔(𝑟𝑟𝑖𝑖) = ∑ 𝑚𝑚𝑗𝑗

𝜌𝜌𝑗𝑗
𝑔𝑔(𝑟𝑟𝑗𝑗)𝑊𝑊(�𝑟𝑟𝑖𝑖 − 𝑟𝑟𝑗𝑗�, ℎ)𝑗𝑗   (3) 

where 𝑚𝑚𝑗𝑗/𝜌𝜌𝑗𝑗 is the volume of the element 𝑗𝑗. In such a mathematical frame, the gradient 
of a property can be obtained by the gradient of the weight function rather than the gra-
dient of the quantity itself [19]. 

𝜕𝜕𝜕𝜕(𝑟𝑟𝑖𝑖)
𝜕𝜕𝑥𝑥𝛼𝛼

= ∑ 𝑚𝑚𝑗𝑗�𝜕𝜕�𝑟𝑟𝑗𝑗�−𝜕𝜕(𝑟𝑟𝑖𝑖)�
𝜌𝜌𝑗𝑗

⋅ 𝜕𝜕𝜕𝜕(�𝑟𝑟𝑖𝑖−𝑟𝑟𝑗𝑗�,   ℎ)
𝜕𝜕𝑥𝑥𝛼𝛼𝑗𝑗   (4) 

where 𝑥𝑥𝛼𝛼 is one of the coordinate axes. There are several formats available for the weight 
function. The most commonly used format is the cubic spline kernel [19,20], which is 
based on Schoenberg’s piece-wise continuous functions [21]. This kernel gives a weight 
function for the contribution of a quantity at the radial direction with a distance �𝑟𝑟𝑖𝑖 − 𝑟𝑟𝑗𝑗� 
as follows: 

𝑊𝑊��𝑟𝑟𝑖𝑖 − 𝑟𝑟𝑗𝑗�, ℎ� =  

⎩
⎪
⎨

⎪
⎧ 𝑐𝑐𝑑𝑑
ℎ𝑑𝑑
��2 − �𝑟𝑟𝑖𝑖−𝑟𝑟𝑗𝑗�

ℎ
�
3
− 4 �1 − �𝑟𝑟𝑖𝑖−𝑟𝑟𝑗𝑗�

ℎ
�
3
�   𝑓𝑓𝑓𝑓𝑟𝑟 0 ≤ �𝑟𝑟𝑖𝑖−𝑟𝑟𝑗𝑗�

ℎ
≤ 1

𝑐𝑐𝑑𝑑
ℎ𝑑𝑑
�2 − �𝑟𝑟𝑖𝑖−𝑟𝑟𝑗𝑗�

ℎ
�
3

                                        𝑓𝑓𝑓𝑓𝑟𝑟 1 ≤ �𝑟𝑟𝑖𝑖−𝑟𝑟𝑗𝑗�
ℎ

≤ 2

0                                                                    𝑓𝑓𝑓𝑓𝑟𝑟 2 < �𝑟𝑟𝑖𝑖−𝑟𝑟𝑗𝑗�
ℎ

        

    (5) 

where 𝑑𝑑  is dimension. The coefficient 𝑐𝑐𝑑𝑑  takes a value of 1 6⁄  , 5𝜋𝜋 14⁄  , and 1 4𝜋𝜋⁄   for 
one-dimensional (1D), two-dimensional (2D) and three-dimensional systems (3D), respec-
tively. Equation (5) introduces a truncation radius that limits the contribution of distant 
elements to the calculation of the values at a given position. This allows the summation in 
Equations (3) and (4) to be calculated efficiently using the values at the position and its 
surrounding neighbours only, thereby reducing computing time. 

A microscopic image, regardless of its dimensions, is formed by a bunch of discrete 
pixels with each pixel being represented by a greyscale value. Different phases have dif-
ferent brightness ranges due to their different chemical constitutions, crystal structures, 
corrosion behaviours during etching, etc. Those pixels greyscale in the same greyscale 
range represent a phase. Different phases have their greyscale values falling in different 
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ranges. This type of classification agrees with metallurgical practise. Once the critical grey-
scale values to separate different phases are defined, one can convert the greyscale distri-
bution to a phase-field order parameter distribution. The interface between different 
grains can be calculated according to the well-established marching square method. The 
total interface area and fraction of each phase can be obtained. Using visualisation soft-
ware such as MatVisual, one can immediately see the phase distribution, grain distribu-
tion, and grain morphological characteristics. To know the number of grains and the size 
of each grain, the following simple grain searching algorithm was developed in the pre-
sent work. The algorithm starts to search a small unit and then scans the image unit-by-
unit to find grains. If a pixel does not belong to any found grains, a new grain is created. 
As scanning progresses, the previously independent grains that are found to be linked are 
merged into the same grain. After scanning, the total number of grains in each phase is 
found, and the number of pixels in each grain represents the volume of the corresponding 
grain. The spatial configuration of each grain’s pixels provides information about grain 
morphology, while the length of the outskirt of each grain corresponds to the interface. 
This procedure provides the required information in the image accurately and efficiently. 

3. Application, Parameterisation, and Validation 
Figure 1a shows an SEM image (obtained from a Zeiss Supra 55VP FEG SEM manu-

factured by Carl Zeiss AG) of an as-cast C-27.82CaO-19.87SiO2-7.64Na2O-7.51Al2O3-6.56F-
5.9MnO-0.96Fe2O3-0.79MgO-0.31TiO2-0.14K2O (wt.%) slag [1], which was obtained from 
the solidification of mould powders. The red lines in the images were added artificially to 
show the computational frame. This is to avoid including the areas with labels and nota-
tions in the SEM images. During sample preparation, the as-received mould powders 
were heated to 1173 K and maintained for 4 h to remove vapours, carbonaceous and other 
volatile constituents before being melted in a graphite crucible using an induction furnace. 
After the induction furnace’s heating was turned off, the molten mould flux was allowed 
to air cool in ambient conditions. The solidified samples were cut along the longitudinal 
section, polished, and examined via optical scanning electron microscopy. The image con-
tained three phases: pores (darkest colour), cuspidine (2SiO2·3CaO·CaF2) primary den-
drites (lightest colour), and a mixture of cuspidine, nepheline (NaAlSi2O4), and other re-
sidual elements (colour in between) [22]. Each pixel’s brightness is represented by a grey-
scale integer ranging from 0 (black) to 255 (white) according to the regulations in com-
puter graphics. A visualisation code package, MetallTools, was developed to pick up grey-
scale value at each phase, which provides greyscale value for the point that was just 
mouse-clicked. A random click in a pore, the residual phase, and primary dendrites, sep-
arately, gave greyscale values of 11, 123, and 202, respectively. These values can be 
changed slightly if different locations are clicked. The code package has the functionality 
to set these values manually. When the critical greyscale value to separate two phases is 
assumed to be in the middle of two adjacent phases, the pores are in a greyscale range 
between 0 and 66, those of the residual phase are between 67 and 161, and those of the 
primary dendrites are between 162 and 255. The interface was calculated using the march-
ing square method and is plotted in Figure 1b. 

Figure 1a shows significant noise in each of the three phases. The interface shown in 
Figure 1b demonstrates the intensity of the noise. For example, the residual phase labelled 
by arrows in Figure 1a is hardly recognisable in Figure 1b due to the greyscale value fluc-
tuation. Although the phases in Figure 1a are recognisable by the naked eye, it is difficult 
for a computer to recognise the pattern and perform statistical calculations of the micro-
structural characteristics without numerical treatment. For this purpose, Equation (3) with 
ℎ = 1 and the kernel format in Equation (5) were implemented to recalculate the greyscale 
values in each pixel in Figure 1a. The result is shown in Figure 1c and the corresponding 
interface is shown in Figure 1d. The grain morphology in Figure 1c is much smoother than 
that in Figure 1c, and all three phases are recognisable in Figure 1d. Figure 1e,f shows the 
results with ℎ = 2. It can be seen that the image is over-smoothed, and the fractions of 
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dendrite and residual phases are clearly changed by the smoothening calculation. More 
different smoothing lengths with ℎ = 3 and 4 were tested. ℎ = 1 gives the best result. 

  

  

  
Figure 1. (a) Original image and (b) its interface; (c) smoothed image using ℎ = 1 and (d) its interface; 
(e) smoothed image using ℎ = 2 and (f) its interface. The arrows in (a) indicate the residual phase. 

Figure 2 shows the volume fraction of the pixels and the greyscale value relationship. 
Figure 2a was obtained from the original image of Figure 1a, and Figure 2b is for those 
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processed images in Figure 1c 1e and the other unpresented ones. Instead of the expected 
three peaks corresponding to the three phases and the area under each peak equalling the 
corresponding phase’s volume fraction, Figure 2a contains not only high-amplitude noise 
but only two peaks instead of three. Figure 2b shows that the noise in the smoothed image 
has been effectively suppressed for all ℎ > 0 calculations. In the calculations with ℎ = 1 
and ℎ = 2, some missing peaks caused by noise reappear, as indicated by the arrows. In 
contrast, excess smoothing lengths with ℎ ≥  3 smears out some peaks again and moves 
the peaks toward the average greyscale value in the image, which should be avoided. 

 
Figure 2. Distribution of pixel greyscale at different smoothing lengths for (a) the original image and 
(b) smoothed images. The arrows indicate the peaks. 

After setting of the smoothing length with ℎ = 1, the next group of parameters to be 
defined is the critical greyscale values. As can be seen in Figure 2b with the curve at ℎ =
1, different critical values will give rise to different amounts of phases. To obtain a more 
precise microstructure description, it is important to set the critical greyscale values cor-
rectly so that the amounts of phases represented in the image is correct. However, the 
peaks in the greyscale distributions shown in Figure 2b are not sharp enough, and the 
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volume fraction of greyscale is not well converged between neighbouring peaks. This 
raises a need to establish reliable critical greyscale values to obtain precise volume frac-
tions of each phase. To address this, Figure 3 displays the calculated relationship between 
(a) the volume fraction of primary dendrites and the critical greyscale values and (b) the 
volume fraction of pores and the corresponding greyscale values in the smoothed image. 
The figure demonstrates a clear monotonic relationship between the critical greyscale val-
ues and the volume fraction of each phase. If the volume fraction of each phase is pro-
vided, the critical greyscale values can be calculated straightforwardly using the algo-
rithms proposed in this study and the numerical results presented in Figure 3. To this end, 
one suggests using the volume fraction of phases provided by computational thermody-
namics [23], phase diagram calculations [24], and experimental techniques like X-ray dif-
fraction. By such means, the computational algorithms developed in this study can di-
rectly achieve a quantitative assessment of material microstructure. 

 

 
Figure 3. The relationship between (a) the volume fraction of primary dendrites and the critical 
greyscale values, and (b) the volume fraction of pores and the corresponding greyscale values ob-
tained from the smoothed SEM image with ℎ = 1. 
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The importance of the accurate implementation of the volume fraction of phases to 
determine the critical greyscale values is demonstrated in Figure 4, where the critical grey-
scale value between pores and the residual phase is set to 67, while that between the re-
sidual phase and primary dendrites is set to (a) 150, (b) 155, (c) 160, and (d) 165. Two grains 
are highlighted: one at the residual phase in pink (around the top-right) and another den-
drite grain in blue (around the bottom-right). Both have significantly different sizes from 
Figure 4a to Figure 4d. This imposes an important impact on the prediction of the me-
chanical and physical properties of materials [25]. For example, the crystal phase has bet-
ter heat conductivity than the other phases [26], where a large-scale crystal skeleton forms 
a percolation path to conduct heat, while the intersected dendrite by the residual phase is 
unable to do so. 

    

    
Figure 4. The change in grain distribution at critical greyscale values between the residual phase 
and primary dendrites at (a) 150, (b) 155, (c) 160, and (d) 165. The critical greyscale value between 
pores and the residual phase is 67. Two grains are highlighted, with one in the residual phase in 
pink and another dendrite grain in blue. 

Figure 4 demonstrates another important fact. When the volume fraction of the den-
drite drops slightly, the chance for the grains in the residual phase to link to each other to 
form a larger interconnected area is increased drastically. The grain in the pink color in 
Figure 4a occupies only a small corner. However, it spreads to cover a majority area in 
Figure 4b and becomes dominant in Figure 4c,d. The grain searching algorithm reveals 
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the following information for primary dendrites in Figure 4: (1) the volume fractions are: 
(a) 0.54, (b) 0.49, (c) 0.44, and (d) 0.39. (2) The largest dendrite grain occupies an area of (a) 
113,538 µm2, (b) 28,942 µm2, (c) 11,511 µm2, and (d) 2476 µm2. (3) The number of dendrites 
of significant size is (a) 1, (b) 10, (c) 26, and (d) 173, where a significant size means that the 
grain area is not in the smallest region if the grain areas between the largest and smallest 
ones are divided into 10 equal regions. For the residual phase in Figure 4, the maximum 
domain area is (a) 18,322 µm2, (b) 91,090 µm2, (c) 143,294 µm2, and (d) 189,491 µm2, re-
spectively. Although the grain searching algorithm counted the total number of grains 
and the total grain area in each phase, we avoided mentioning the average grain size in 
the present case because lots of grains are not fully visible in the image scope. However, 
it can be used in other images where most of the grains are fully displayed in the view 
scale. In oxide materials with the chemical constitution discussed in the present work, 
electrical conduction is carried out by the motion of the cations and anions. The conduc-
tivity of the solidified phase is negligible due to the rigid bonds between atoms and mol-
ecules. Those residual liquid phase domains entirely entrapped by the solidified phase 
areas do not contribute to the overall material’s electric conductance. It is well known that 
electropulsing retards the growth of the phase with high electrical resistance. The reduced 
amount of dendrite enables the residual liquid phase to form a network and conduct elec-
tricity. This partially explains the experimentally observed high conductivity up until a 
very low temperature. 

4. Discussion 
4.1. Computation of Material Deformation Using the Real Microstructure 

It is worth pointing out that the present work was merely focused on analysing mi-
crostructures rather than investigating material properties. It elucidates the image analy-
sis aspect and its potential applications but does not delve into the direct exploration of 
material properties. However, accurate interpretation of microstructure can be imple-
mented in the computation of material properties directly. The following is one of the 
examples of such applications in the computation of material deformation. The applica-
bility of the method to explain the measured material properties was validated by our 
pulsed solidification. For the original microstructure illustrated in Figure 4a, we observed 
that the maximum area of the residual phase for the pulsated sample is 35,961 µm2 when 
the fraction of dendrite is around the same. This is much larger than 18,322 µm2 reported 
earlier in this work. The increased area of the largest residual phase explains our experi-
mental measurement. The details of this will be published separately. 

There are several models to simulate material behaviours under varying mechanical 
deformation. The starting point is frequently an artificial microstructure instead of a real 
one. Examples include the deformation of space-filling polyhedrons and checking for the 
change in interface area and the length of the edge between two interfacial planes [12,27]. 
The reason for this is that the interfaces and edges are usually the nucleation sides in the 
recrystallisation of deformed materials. When the experimentally obtained microstruc-
tures are interpreted accurately, the observed true microstructure can be used to calculate 
material deformation using the following method. 

The phase property of each pixel was defined after the visual computational pro-
cessing in the present work. The coordinates of each pixel can be represented as a vector 
in space by 𝑈𝑈(𝑢𝑢1,𝑢𝑢2,𝑢𝑢3). Change in the vector after mechanical deformation, 𝑣𝑣(𝑣𝑣1, 𝑣𝑣2,𝑣𝑣3), 
can be calculated by the deformation matrix (𝑆𝑆) using the following equation [28] 

�
𝑣𝑣1
𝑣𝑣2
𝑣𝑣3
� = �

𝑆𝑆11 𝑆𝑆12 𝑆𝑆13
𝑆𝑆21 𝑆𝑆22 𝑆𝑆23
𝑆𝑆31 𝑆𝑆32 𝑆𝑆33

��
𝑢𝑢1
𝑢𝑢2 
𝑢𝑢3
�  (6) 

In homogeneous plastic deformation, 𝑆𝑆 is a constant matrix throughout the material 
pixels. The elements of 𝑆𝑆 have different values to represent various types of deformation. 
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Table 1 illustrates the non-zero elements of the 𝑆𝑆 matrix for a few simple deformations 
[25]. Complicated deformation can be recovered by adequate definition of those elements 
in the 𝑆𝑆 matrix. 

Table 1. Matrix elements for various deformations [28]. 

Deformation Non-zero elements of S 
Plain strain deformation 11 33 1S S× =  22 1S =  

Axisymmetric tension 22 33 111S S S= =  

Axisymmetric compression 11 22 331S S S= =  

Simple shear 11 22 33 1S S S= = =  13 0S ≠  

The microstructure evolution in the homogeneous plastic deformation can be ob-
tained via application of Equation (6) to every pixel in the microscopic image. The change 
om interface area and edge between interfaces can be obtained via application of Equation 
(6) to the calculated pixels’ positions after the marching square method is used. The pro-
cedure is similar to that in our previous paper [12]. The homogeneous plastic deformation 
is based on strain equivalent assumption. The more generic situation is based on stress 
equivalent assumption, where the stress balance is calculated according to the constitu-
tional stress–strain relationship of each phase in a material. The accurate classification of 
phase field in each pixel is more important. The research presented in the present work 
can be very useful for calculating the residual stress distribution, fracture, and other de-
formation-induced microstructural evolution in the materials. 

4.2. Computation of Gradient Using Equation (4) 
Without smoothing treatment, the raw noisy data obtained from Figure 1a can be 

used to calculate the gradient using Equation (4). This is particularly useful in analysing 
the aligned microstructure. Since Figure 1a has no such alignment feature, the method 
was tested for a microstructure from Fe–0.8C–0.2Si–0.5Mn (wt.%) pearlitic steel shown in 
Figure 5a. The gradient of greyscale along the x- and y-directions is represented by 𝑔𝑔𝑥𝑥 
and 𝑔𝑔𝑦𝑦, respectively. There values can be used to calculate the average values of 𝑔𝑔𝑥𝑥𝑔𝑔𝑥𝑥, 
𝑔𝑔𝑦𝑦𝑔𝑔𝑦𝑦, and 𝑔𝑔𝑥𝑥𝑔𝑔𝑦𝑦 within a box of dimension 𝐿𝐿 × 𝐿𝐿, where 𝐿𝐿 is a length scale that can be 
chosen based on the microstructural characteristics. The average values of the combined 
gradient will then be used to calculate morphological orientation and anisotropy via the 
following three parameters: 𝜆𝜆1, 𝜆𝜆2, and 𝜙𝜙 [29], 

𝜆𝜆1,2 = 1
2
�𝑔𝑔𝑥𝑥𝑔𝑔𝑥𝑥������� + 𝑔𝑔𝑦𝑦𝑔𝑔𝑦𝑦�������� ± 1

2
��𝑔𝑔𝑥𝑥𝑔𝑔𝑥𝑥������� − 𝑔𝑔𝑦𝑦𝑔𝑔𝑦𝑦��������2 + 4𝑔𝑔𝑥𝑥𝑔𝑔𝑦𝑦   (7) 

𝜙𝜙 = arctan�
𝜆𝜆1 − 𝑔𝑔𝑥𝑥𝑔𝑔𝑥𝑥�������
𝑔𝑔𝑥𝑥𝑔𝑔𝑦𝑦�������

�  (8) 
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Figure 5. Plotting of (a) the pearlitic SEM image, (b) λ2, (c) 1 − λ2/λ1, and (d) ϕ. The larger value is 
brighter. 

Figure 5b–d shows the computational results for ℎ = 1 and 𝐿𝐿 = 11. The red-line box 
in Figure 5 (as denoted by arrows) indicates the chosen boundary for the calculation. Out-
side the box, the calculation has not been performed, but the properties of pixels might be 
used if necessary. The selected computational frame allows for selective computing and 
avoids boundary conditions (although the boundary condition can be treated via the nor-
malisation of the weight function using Vignjevic and Campbell’s equation [30]). 𝐿𝐿 was 
chosen to cover several interlamellar spacings. 𝜆𝜆1 reflects the morphological orientation. 
𝜆𝜆2 reflects anomalies and serves as a method to detect anomalies in laminar microstruc-
tures. In Figure 5b, the bright areas with strong anomalies correspond to the original aus-
tenite interfaces. The orientation of the laminar structure changes at the original austenite 
boundary due to the crystallographic orientation relationship between the original aus-
tenite phase and the new ferrite phase. Therefore, 𝜆𝜆2 is a suitable parameter to highlight 
the original austenite interface. The parameter 1 − 𝜆𝜆2/𝜆𝜆1 measures the anisotropy, as is 
plotted in Figure 5c, where the dark colour indicates more isotropic regions and the white 
colour indicates more anisotropic microstructures. The local orientation ϕ is plotted in 
Figure 5d, revealing the original austenite grains. Overall, Figure 5 reveals the rich micro-
structural characteristics of the pearlitic steel sample and reveals some microstructural 
transformation histories. The characteristics in the plotting of anisotropy and local orien-
tation are in agreement with those presented in Ref. [29] for different sets of images. 

4.3. Smoothing Method 
All of the pixels in the microscopic images are distributed rectangularly and uni-

formly. For each pixel under a certain smoothing length ℎ, the total number of effective 
neighbours (𝑁𝑁), the number of different values of weight function 𝑀𝑀, and the value of the 
weight function at �𝑟𝑟𝑖𝑖 − 𝑟𝑟𝑗𝑗� = 0, 𝑊𝑊(0,ℎ) are listed in Table 2. When ℎ = 1, the property 
at a pixel is computed using the value of the property at its location and its eight effective 
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neighbours. The latter includes four nearest neighbors and four next-nearest neighbours. 
The weight factors assigned to these nine sites were found to be similar to those used in 
the D2Q9 lattice Boltzmann model [31]. These weight factors determine the contribution 
of each site to the final value of the computed pixel. The cubic spline approach allows for 
efficient truncation using the smoothing length, resulting in fast numerical calculations. It 
is also worth noting that the smoothing length does not have to be an integer. This pro-
vides flexibility in the calculation. 

The effect of smoothing length on microstructural analysis, as shown in Figure 1, can 
affect the computational results for material properties. For example, material recrystalli-
sation during annealing is related to the amount of interface because the nucleation rate 
in recrystallisation is higher at the interface. The amount of interface in Figure 1b is 203,834 
µm, in Figure 1d, it is 127,132 µm, and in Figure 1f, it is 73,625 µm, respectively. The dif-
ferent number of nucleation sites causes different average grain sizes after recrystallisa-
tion and hence the different material strengths according to the Hall–Petch equation. 

Table 2. Cubic spline parameters for various smoothing lengths. 

𝒉𝒉 𝑵𝑵 𝑴𝑴  𝑾𝑾(𝟎𝟎,𝒉𝒉) 
1 8 3 0.4547284 
2 44 9 0.1136821 
3 108 18 0.0505254 
4 192 28 0.0284205 

To compare the effectiveness of the cubic spline algorithm with the average smooth-
ing approach, the box smoothing method with 𝑊𝑊��𝑟𝑟𝑖𝑖 − 𝑟𝑟𝑗𝑗�,ℎ� = 1/𝑁𝑁 was tested. The re-
sults are presented in Figure 6, which shows that although the noise can be suppressed by 
the box average, some peaks were smeared out even with ℎ = 1. Comparing this with that 
in Figure 2b, it is obvious that the cubic spline calculation is a better approach than the 
box average for preserving the peak locations and avoiding excessive smoothing. 

 
Figure 6. Distribution of pixel greyscale at different smoothing lengths using box average. The ar-
rows indicate the location of peaks. The vertical axis is on a logarithmic scale. 

To understand the nature of the cubic spline approximation, the weight function 
𝑓𝑓(𝑟𝑟) =  𝑊𝑊��𝑟𝑟𝑖𝑖 − 𝑟𝑟𝑗𝑗�,ℎ� = 𝑊𝑊(𝑟𝑟,ℎ) was plotted in its one-dimensional format at ℎ = 1 and 
compared with the Gaussian distribution 𝑓𝑓(𝑟𝑟) = (1 𝜎𝜎√2𝜋𝜋⁄ )exp (−𝑟𝑟2/2𝜎𝜎2)  at 𝜎𝜎 = 0.6 . 
The results are plotted in Figure 7. It is evident from Figure 7 that both the cubic spline 
and the Gaussian distribution curves fit each other well, with their gradients being very 
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close to each other. This similarity between the two distributions suggests that the cubic 
spline can be used as a smoothing filter similar to the Gaussian blur technique [32], which 
also filters signals with lower frequencies to suppress noise. It is worth noting that other 
techniques, such as regularisation in neural networks and Bayesian inference, are also 
used to remove noise and prevent the overfitting of signals, and often involve the smooth-
ening of high-frequency signals through mathematical processing. 

 
Figure 7. Numerical plotting of Gaussian function with the standard deviation σ = 0.6, one-dimen-
sional cubic spline, and their derivations with regard to the coordinate parameter. 

The method presented in this work is also suitable for processing three-dimensional 
patterns. The cubic spline equation has a three-dimensional format, and the group searching 
method is unit-based, allowing for direct extension to scan through high-dimensional data. 

4.4. Scale Factor 
It is important to note that the width of an SEM image is often less than 1 mm, and 

the volume fraction of phases in a material is an average value over a much larger scale. 
Therefore, applying the volume fraction to an SEM image is only suitable for materials 
with sufficient homogeneity. In cases where there is insufficient homogeneity at the milli-
metre scale, multiple SEM images from different positions should be used to determine 
the critical greyscale value. The computational model presented in this work is also appli-
cable to images obtained through optical microscopy, and applying this method at differ-
ent scales can improve the accuracy of the results. 

5. Conclusions 
The present work reports a novel computational method to assess material micro-

structure quantitatively. The method utilises the cubic spline kernel to calculate the 
smoothed greyscale distribution and its gradient. The method removes noise from the 
microscope image, recovers missing peaks for phases, and enables the further calculation 
of material deformation and material properties. A simple group searching algorithm was 
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developed and implemented to identify the grains, their sizes, and spatial configurations. 
The following conclusions have been reached. 
• For the cubic spline kernel 𝑊𝑊(�𝑟𝑟𝑖𝑖 − 𝑟𝑟𝑗𝑗�,ℎ), the greyscale distribution in a microscopic 

image can be calculated using 𝑔𝑔(𝑟𝑟𝑖𝑖) = ∑ 𝑚𝑚𝑗𝑗

𝜌𝜌𝑗𝑗
𝑔𝑔(𝑟𝑟𝑗𝑗)𝑊𝑊(�𝑟𝑟𝑖𝑖 − 𝑟𝑟𝑗𝑗�,ℎ)𝑗𝑗  , where the factor 

𝑚𝑚𝑗𝑗 𝜌𝜌𝑗𝑗⁄  can be determined by the scale bar in the image. The truncation format by 
means of the smoothing length makes the computation very fast. The calculation not 
only suppresses the noise in the microscopic image but also recovers the peaks for 
phases. The method shows better results than that of the box average. 

• The gradient of the greyscale can be calculated by 𝜕𝜕𝜕𝜕(𝑟𝑟𝑖𝑖)
𝜕𝜕𝑥𝑥𝛼𝛼

= ∑ 𝑚𝑚𝑗𝑗�𝜕𝜕�𝑟𝑟𝑗𝑗�−𝜕𝜕(𝑟𝑟𝑖𝑖)�

𝜌𝜌𝑗𝑗
⋅𝑗𝑗

𝜕𝜕𝜕𝜕(�𝑟𝑟𝑖𝑖−𝑟𝑟𝑗𝑗�,ℎ)

𝜕𝜕𝑥𝑥𝛼𝛼
. This method allows the greyscale gradient to be calculated by the kernel 

gradient. The latter is a constant in the regularly arranged pixels, saving significant 
computing time and allowing the gradient to be obtained from the noisy data di-
rectly. The results are implemented to calculate three parameters 𝜆𝜆1 , 𝜆𝜆2  , and 𝜙𝜙 , 
which reveals not only the morphological anisotropy and local orientation of the 
grains but also reveals some microstructural histories. 

• The group searching algorithm can accurately identify the different domains in the 
same phase according to the critical greyscale values; the latter can be determined 
precisely according to the volume fraction of phases obtained from other means. 
Group searching can identify the total grain number, the size of each grain, the grain 
morphology, the ranking of grain, and the location of the grain in microscopic im-
ages. The full, detailed microstructural information was identified using the method. 
This helps to identify the relationships between the microstructure and physical and 
mechanical properties. 

• The cubic spline kernel was found to be similar to the Gaussian formula. This indi-
cates that the underlying denoising mechanism is similar to Gaussian blurring. The 
principle of removing high-frequency signals shares similarities with artificial neural 
networks and Bayesian inference. Overall, the developed method presents a promis-
ing approach for the quantitative assessment of material microstructure. 
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