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Abstract: Buried pipelines are widely used, so it is necessary to analyze and study their fracture
characteristics. The locations of corrosion defects on the pipe are more susceptible to fracture under
the influence of internal pressure generated during material transportation. In the open literature, a
large number of studies have been conducted on the failure pressure or residual strength of cor-
roded pipelines. On this basis, this study conducts a fracture analysis on buried pipelines with cor-
rosion areas under seismic loads. The extended finite element method was used to model and ana-
lyze the buried pipeline under seismic load, and it was found that the stress value at the crack tip
was maximum when the circumferential angle of the crack was near 5° in the corrosion area. The
changes in the stress field at the crack tip in the corrosion zone of the pipeline under different loads
were compared. Based on the BP algorithm, a neural network model that can predict the stress field
at the pipe crack tip is established. The neural network is trained using numerical model data, and
a prediction model with a prediction error of less than 10% is constructed. The crack tip character-
istics were further studied using the BP neural network model, and it was determined that the tip
stress fluctuation range is between 450 MPa and 500 MPa. The neural network model is optimized
based on the GA algorithm, which solves the problem of convergence difficulties and improves the
prediction accuracy. According to the prediction results, it is found that when the internal pressure
increases, the corrosion depth will significantly affect the crack tip stress field. The maximum error
of the optimized neural network is 5.32%. The calculation data of the optimized neural network
model were compared with the calculation data of other models, and it was determined that
GA-BPNN has better adaptability in this research problem.

Keywords: buried pipeline; corrosion defect; crack tip; extended finite element method; neural
network prediction

1. Introduction

The key to the technological development of long-distance gas pipelines lies in the
balance between pipeline transportation efficiency and safety. In recent years, in the oil
and gas transportation industry, in order to improve the transportation efficiency of pipe-
lines, the operation of long-distance and high-pressure pipelines has become the norm.
Under high internal pressure conditions, the risk of pipeline rupture will increase signif-
icantly. Especially when affected by other geological disasters such as earthquakes, the
mechanical behavior of pipeline fractures will become more complex and dangerous.
Earthquakes constitute a common natural disaster. Seismic waves propagate from the
earthquake source to the ground, causing ground deformation. There are interactions

Materials 2024, 17, 3237. https://doi.org/10.3390/mal7133237

www.mdpi.com/journal/materials



Materials 2024, 17, 3237

2 of 19

between buried pipelines and surrounding soil, and pipelines will be damaged due to
excessive deformation [1,2]. Detailed records of corrosion incidents are found in the “Met-
als Handbook” published by the American Society for Metals (ASM) [3]. For example, 65%
of hazardous pipeline incidents between 1994 and 1999 were caused by corrosion in pipe-
lines. There are various reasons for corrosion, mainly corrosion of pipeline transportation
materials and corrosion of the soil environment. Buried pipeline networks will experience
various complex soil environments such as alpine areas, undulating mountainous areas,
and high-temperature areas, which greatly increases the risk of pipeline corrosion [4].
During the operation of long—distance pipelines, most of the environment is under-
ground, making it difficult to monitor pipeline corrosion [5-8]. If the tiny cracks caused
by corrosion cannot be discovered in time, they will not only have a great impact on the
efficiency of oil and gas transportation but also cause damage to the soil environment
around the pipeline, causing environmental pollution and soil erosion [7]. With the devel-
opment of the social economy and the increasing demand for oil and natural gas, the reli-
ability and safety analysis of buried pipelines has become more important.

In the published literature, a large number of studies have been conducted on the
crack propagation or corrosion problems of buried pipelines. For example, Ariffin et al.
studied the fracture response of multiple interacting cracks in pipelines under the action
of large plastic strains and proposed a new strain-based CTOD estimation scheme [9]. Bin
et al. used blasting experimental data to establish a failure pressure prediction formula for
corroded pipelines in high—strength steel materials and verified it [10]. In order to predict
crack initiation and crack propagation, the fracture toughness of pipes under internal
pressure was studied [11]. Nykyforchyn et al. conducted an experimental study on the
corrosion mechanical properties and hydrogen embrittlement behavior of intact X52 pipe-
lines [12]. The extended finite element method is combined with experiments to simulate
the damage parameter values required for crack propagation in the X52 pipeline [13]. The
correlation between damage parameters and material yield strength and fracture tough-
ness is discussed, and XFEM is used in Abaqus to simulate the crack propagation of the
pipe [14]. Three-dimensional finite element analysis was used to study the crack growth
behavior of repaired pipelines under cyclic internal pressure and crack growth modeling
and remeshing were automatically handled by developing a parametric design language
[15]. Compared with experimental methods, the use of numerical models to study cracked
pipes can significantly reduce experimental costs, and the model calculation results are
not very different from the experimental results.

In addition, the development of artificial neural networks and their applications in
various major scientific fields provide new ideas for crack propagation and tip stress field
prediction. Researchers have used the deep architectures of convolutional neural net-
works (CNNs) to detect cracks in structures without the need to compute defect features
[16-18]. One of the more representative neural network models is the Back Propagation
(BP) neural network. The BP neural network has an outstanding ability to solve nonlinear
complex problems. It can be used to calculate cracks in road engineering maintenance,
evaluate the condition of underground water pipes, and evaluate corrosion in buried pipe-
lines [19-22]. In order to improve the accuracy of prediction, many researchers have opti-
mized neural networks and obtained more applicable prediction models. For example,
the Whale Optimization Algorithm (WOA) neural network hybrid model was used to
study single—sided notched specimens, and standard parts were used for verification [23].
Other researchers combined the BP neural network and a genetic algorithm to predict the
stress intensity factor (SIF) of ruptured pipelines [24]. An artificial neural network is
trained based on a genetic algorithm to efficiently estimate the residual intensity of hy-
drogen damage, providing an important reference for corroded pipelines transporting hy-
drogen [25]. Based on the above research on cracks using neural networks, it is evident
that BP neural networks exhibit excellent nonlinear mapping and generalization capabil-
ities. Among commonly used neural networks, such as CNNs and RBF neural networks,
BP neural networks are highly flexible and versatile, making them well-suited for a wide
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range of problems. Therefore, to address the issue of stress fields at crack tips in this study,
the BP algorithm is highly suitable and can be considered the first-choice algorithm for
the prediction model. This study uses the BP neural network to predict and analyze the
crack tip stress field in the corrosion area of the buried pipeline and optimizes the BP
neural network model based on a genetic algorithm. The prediction models are compared
according to the calculated values of the finite element numerical model, and the better
applicability of the prediction model under earthquake conditions is selected by means of
the calculation error.

2. Physical Model
2.1. Extended Finite Element Model

For the purpose of fracture analysis in XFEM, the expansion function includes not
only a near—tip asymptotic function that captures singular points around the crack tip but
also a step discontinuity function that represents the displacement across the crack sur-
face. The function used in the unit expansion partition to approximate the displacement
vector function u is:

w=Y LN (0)[u, +Hx)a, +Y L F )b ] 1)

There is a jump function when crossing the crack surface, which is a discontinuous
step function crossing the crack surface. Formula (1) shows a sampling (Gaussian) point
that represents the function of the point closest to the crack and the unit perpendicular to
the crack vector. F(x) is a function showing the progressive crack tip in an isotropic elastic
material. We used the crack tip function for isotropic elastic materials to account for the
normal and tangential coordinates of the crack.

F“(x):{\/;Singﬂ/;cosgw/;sinHsing,x/;sin9cos§} @)

Figure 1 is a systematic illustration of the polar coordinates on the crack tip. In for-
mula (2), » and @ are polar coordinate systems with the origin at the crack tip. When
0 =0, it means that the crack tip is tangential to the crack surface.

Figure 1. Schematic diagram of normal and tangential coordinates of smooth cracks.

The extended finite element allows cracks to pass through the element. The grid and
the section are independent of each other, so the discontinuous section needs to be geo-
metrically described. The commonly used method is the level set method. The level set
function is also used when constructing the extended shape function in XFEM.

The crack geometry is defined using two coincidence distance functions, as shown in
Figure 2. The two intersecting surfaces define the crack front, and each node describes the
specific crack geometry through these two signed distance functions. The failure mecha-
nism of the crack unit in Abaqus includes two parts, one is the damage initial criterion
and the other is the damage evolution law. After a damage initial criterion is met, the
calculation can continue based on the defined damage evolution law. Figure 3 shows a
typical linear and nonlinear traction—separation response.
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Figure 3. Typical traction-separation response [26].

It is critical to model the areas of corrosion that occur. Research shows that local and
uniform corrosion are the main forms of pipeline failure, and the corrosion area can be
simplified into multiple forms during simulation modeling [27]. The shape of the corro-
sion area in the finite element analysis method is generally designed using a rectangle
[28]. This study selects the most common uniform flat-bottom corrosion pit defects for
analysis. As shown in Figure 4, setting the corrosion area below the pipeline and adopting
symmetrical modeling will make the results more conservative. According to the
B31G-1991 standard [29], the depth of corrosion defects should be greater than 10% of the
nominal wall thickness and less than 80% of the nominal wall thickness. The defect depth
is adjusted from 4 mm to 12 mm using a parametric method, and the depth range is con-
trolled to 20% to 60% using this method.

corrosion defect location
—

Crack initial position

Corrosion defect length

corrosion area
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Figure 4. Crack location in corrosion defect, (a) the whole pipeline, (b) angle of crack distribution.

The incidence direction of the seismic wave propagating from the deep crust to the
surface will gradually approach the vertical direction of the vertical-horizontal surface,
and on this basis, the vertical incidence can be considered when the seismic wave input is
carried out. In this study, the effect of vertical seismic waves on buried pipelines is ana-
lyzed by means of seismic wave input from the soil bottom. Seismic waves are selected
according to site conditions, actual strong earthquake records, artificially simulated loads,
and other reference points, and earthquake time history records suitable for buried pipe-
lines are selected, as shown in Figure 5.
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Figure 5. Seismic wave acceleration—time curve.

Because both the pipe and soil are highly symmetrical structures, symmetrical mod-
eling of the pipe and soil is carried out in order to save calculation costs and facilitate the
observation of crack locations, as shown in Figure 6. The central position of the pipeline
is 1 m away from the top of the soil model, and the simulated pipeline burial depth is 1
m. The soil mass is a cuboid with a length of 20 m, a width of 2 m, and a height of 4 m. A
symmetric constraint in the X direction is established along the middle section Z, and the
constraint is set as Ul = UR2 = UR3 = 0. The variable pressure is added inside the pipeline
to simulate the internal pressure of the material transported in the pipeline, and the dis-

placement constraint is applied to the bottom of the soil to simulate the seismic load as
shown in Figure 6.

Buried depth of
pipeline:lm

pipeline

Symmetric constraint:
Ul=UR2=UR3=0 Scismic wave load

Seismic wave load
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Figure 6. Modeling and simulation process.

The model is built using C3D8R elements. Figure 7 shows the meshing method of the
corroded pipeline model. The crack tip within the corrosion region was meshed with
higher density as a key location for analysis. Hexahedral elements are used to divide the
soil mass and the pipeline. The mesh of the contact part between the soil mass and the
outer surface of the pipeline is encrypted, and the crack tip part is encrypted with a 10
mm square area. The mesh element is encrypted along the wall thickness direction on the
pipeline. The minimum unit size of the pipe mesh at the crack tip was set as 0.5 x 0.5 x 0.5
mm?, and the incremental size of 0.5 mm was used to calculate the crack propagation
length. Fewer grid cells are used at other locations in the pipeline in order to reduce cal-
culation time. This approach also ensures calculation accuracy in the target area.

Lower element concentration

Lower element concentration

Higher element concentration

Figure 7. Corrosion defect meshing.

2.2. Neural Network Modeling

Parameters such as the number of hidden layer nodes, number of layers, and excita-
tion functions in the BP neural network (BPNN) have a great impact on the prediction
performance of the model. Currently, there is no definite method for selection [30-32], and
the network structure parameters need to be designed. The input vector of the model is
the initial length L of the crack and the change in the internal pressure P. The output vector
is the stress Y1 at the crack tip and the crack expansion length Y2 calculated in XFEM. The
initial model is shown in Figure 8. The parameters such as the diameter, wall thickness,
and length of the pipe are set to constant values, the initial crack length L ranges from 2
cm to 20 cm, and the internal pressure P ranges from 1 MPa to 4 MPa. The input layer of
the initial model has 2 nodes, the output layer has 2 nodes, the hidden layer node is set to
m, and the number of layers is set to h. The values of m and h need to be determined based
on experimental tests.
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Figure 8. BP neural network structure diagram.

The approximate range of the number of hidden layer nodes can be determined based
on relevant empirical formulas, but the precise value of the number of nodes cannot be
determined and needs to be determined after multiple experimental tests and analyses.
The mean absolute percentage error (MAPE) is analyzed as the experimental test result,
as shown in Figure 9. Continuing to add hidden layer nodes will not increase the predic-
tion accuracy. The appropriate number of hidden nodes should be selected by compre-
hensively considering issues such as training time. In this model, the number of hidden
layer nodes is selected as 30, and the number of hidden layers is 2.

T
20

30 10 50 60 0 2 4 6 8 10 12
Number of hidden layer nodes Number of hidden layers
(a) (b)

Figure 9. The relationship curve between MAPE and hidden layer. (a) Relationship curve between
MAPE and hidden layer nodes. (b) Relationship curve between MAPE and number of hidden layers.

Based on experience, the excitation function at the hidden layer node in the BPNN
model is selected as the tansig function, and the excitation function at the output layer is
the logsig function. We nput 100 sets of test data into the BPNN model with set parameters
and conducted experimental tests on the model, as shown in Table 1.

Table 1. Different excitation function MAPE values.

Excitation Function 1

Excitation Function 2 Purelin Logsig Tansig
purelin 62.084% 24.9305% 38.3906%
logsig 4.4202% 10.563% 4.8824%

tansig 2.0939% 5.7502% 10.7343%
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The minimum value of MAPE will appear when using the excitation functions
purelin and tansig, and the model prediction effect at this time is the best. We set the
BPNN hidden layer excitation function to the tansig function, and the output crack tip
stress value will also be normalized to the interval [-1, 1]. This setting will also reduce part
of the training time. The above completes the basic construction of BPNN. Next, the opti-
mization of BPNN will be studied.

The initial weights and thresholds of BPNN are usually randomly generated, which
can cause the sample to fall into a local optimal solution during the training process or
cause problems such as slow convergence. The GA algorithm has stronger adaptability in
solving global optimal solution problems and can adaptively optimize the search space
and continuously optimize parameters such as weights and thresholds. These can help
the BP algorithm get rid of over-reliance on gradient information and make up for the
shortcomings of the BPNN model. The randomly selected weights and thresholds are ex-
tracted from BPNN and encoded in real numbers to form the chromosomes in the GA
algorithm. We then completed the initialization of algorithm parameters, including pop-
ulation size, evolutionary algebra, crossover probability, mutation probability, etc. We
then used the ga function to call the genetic algorithm for optimization, passing in the
fitness function fitness and other parameters. The optimal weights and thresholds ob-
tained by optimization are assigned to the BPNN, and the initial model of the BPNN op-
timized by the genetic algorithm (GA-BPNN) is obtained.

After 50 iterations in the GA-BPNN prediction model, the best fitness value and the
average fitness value are not very different. The average fitness value tends to be stable.
Although the optimal fitness value fluctuates slightly, it is basically stable within a certain
range, as shown in Figure 10. The GA-BPNN model was constructed after 50 iterative
calculations converged, proving that the previous parameter settings are reasonable.

350

Best fitness
+  Mean fitness

300 -

2580 -

50 .

0 10 20 30 40 50
Generation

Figure 10. GA algorithm fitness function.

3. Case Study
3.1. Crack Tip Stress Field Analysis

A numerical model was constructed in ABAQUS for analysis. First, the influence of
the circumferential position of the crack on the tip stress field was studied. We controlled
the angle of crack distribution change between 0° and 10° (from the edge of the corrosion
zone to the bottom of the pipeline), set the corrosion depth on the pipeline to 4 mm, and
used a combined load of seismic wave load and pipeline internal pressure. The internal
pressure of the pipeline is set to a fixed value of 1 MPa. The data extracted through nu-
merical simulation are used to analyze the influence of the distribution change in the axial
crack in the circumferential direction on the stress field at the crack tip.
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As shown in Figure 11, the middle position of the corrosion zone is the position when
the crack circumferential angle changes to approximately 5°. The equivalent stress value
of the crack tip at this position will have a larger value. After deviating from this angle,
the stress value at the crack tip begins to decrease. It can be seen from the crack propaga-
tion direction in the corrosion area in Figure 11 that after reaching the maximum stress
value, the crack tip propagation direction also changes, and the range of stress fluctuations
also begins to decrease. It can be seen from the solution results of the Abaqus numerical
model that the expansion length that appears in the middle of the corrosion area is smaller
than that in other locations. According to the energy fracture criterion, when the energy
release within the crack is small, the crack driving force at the crack tip will have a larger
value. The above shows that under the same load, the circumferential position of the crack
in the buried pipeline will have a significant impact on the crack tip stress field.

crack propagation direction 1 crack propagation direction 2

wn

[

(=}
|

The von Mises Stress, MPa
wn
Y
(=}
1

w

[

(=}
1

500 +

The axial angle, °

Figure 11. Relationship between crack circumferential distribution and crack tip stress.

The strain at the crack tip corresponds to the stress change, and the relationship be-
tween stress and the circumferential angle is shown in Figure 12. When the circumferential
angle reaches around 5°, the strain value at the crack tip reaches a maximum value, and
then the strain value continues to decrease as the angle increases. This further explains
that cracks at different circumferential positions on buried pipelines will have different
tip strains even under the same load, and the position has a great influence on the crack

tip stress field.

8.0x107

7.0x107

crack propagation direction 1 crack propagation direction 2

6.0x107

Max principal

5.0x107 4

LE

4.0x107 4

3.0x107 A

T T T T T 1
The axial angle, ©

Figure 12. Relationship between crack circumferential distribution and crack tip strain.
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Based on the above analysis, the crack in the middle of the corrosion area will gener-
ate greater stress. The stress field of the crack tip at different corrosion depths at this loca-
tion was analyzed. The internal pressure of the pipeline varies between 1 MPa and 4 MPa,
and the corrosion depth is 1 mm, 2 mm, 4 mm, 6 mm, 8 mm, and 10 mm. The crack tip
characteristic curve is drawn based on the stress and strain data obtained from numerical
simulation.

It can be seen from Figure 13 that under the action of only the internal pressure load
of the pipeline, the stress value at the crack tip continues to increase. When the internal
pressure of the pipeline changes between 1 MPa and 3.6 MPa, the crack tip stress at dif-
ferent corrosion depths shows an increasing trend. There is not much difference between
the stress values at the crack tip of 4 mm and 6 mm depth. When the internal pressure of
the pipeline is small, the crack tip in the corrosion area will have nearly coincident stress
values, but when the corrosion depth increases to 8 mm, the stress will change signifi-
cantly. As the internal pressure of the pipeline continues to increase, the increase in stress
value at the crack tip with a corrosion depth of 8 mm is significantly greater than that of
cracks with other depths, and the maximum stress value difference is approximately 100
MPa. When the depth reaches 10 mm, the corrosion degree of the pipe wall reaches 50%.
When the internal pressure exceeds 3.6 MPa, the crack in the corrosion area expands and
the stress value at the crack tip begins to decrease.

500 4 The corrosion depth oA
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© 2mm AAA
& v 4mm \AA ﬂ(?
S 400 H < 6mm ot q4v?
£ 4 8mm ‘\‘\A (ﬂ$‘! y
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5 M AN ©©
2 300 - AT ¥ oo
2 o " ©® o0l pt
A ¢ oY 0¥t
S ' ’1{1 00 (\‘v “p I
= P C o0t
° N ¢ 00,00t
> 2249% otoofu" P
o 200 - A \ﬂﬂ oot ©
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497 fﬁj
4a3 08
it
1004 §
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1.0 1.5 2.0 25 3.0 35 4.0
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Figure 13. Relationship between crack tip stress and internal pressure under single load.

When the seismic wave load is added to the bottom of the soil model, the stress trend
at the crack tip changes significantly. As shown in Figure 14, under the combined action
of seismic wave load and pipeline internal pressure load, the difference in stress values at
the crack tip at different corrosion depths on the pipeline becomes smaller. Compared
with the case of only internal pressure load, when the depth reaches 8 mm, the pipe crack
begins to expand, and the stress value at the crack tip fluctuates. Compared with a crack
with a corrosion depth of 10 mm, the crack tip stress value with a corrosion depth of 8 mm
is larger.
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Figure 14. Relationship between crack tip stress and internal pressure under combined loads.

3.2. BPNN Prediction Analysis

First, the BPNN model is used to predict and analyze the crack tip stress field in the
pipeline corrosion area. All the crack tip stress field data in the pipeline corrosion area
calculated by Abaqus simulation are input as training samples, and the total number of
training samples is 742 sets. Each sample is a four-dimensional vector, including pipeline
corrosion depth, pipeline internal pressure value, crack circumferential angle, and crack
tip stress value. The input vector corresponding to the BP neural network in each sample
is a three—dimensional vector, and the output vector is a one-dimensional vector. The
BPNN model we built is trained to obtain the crack tip stress field prediction model in the
complete corrosion area.

In total, 180 sets of training samples are used to predict the crack tip stress field under
multiple loads. The stress and strain data derived in finite element calculations are very
different from the numerical magnitudes such as the pipeline corrosion depth, which will
lead to gradient explosion problems and slow down the training speed. In order to avoid
such problems, the crack tip stress field data need to be normalized. We used the map-
minmax method to normalize the data to the interval [30-32] and input the normalized
data into the BPNN model.

X

i min

X — X

max min

y= (ymax - ymin) + ymin (3)

»y represents the value after normalization, ),, and ),;, represent the maximum
and minimum values of the data after normalization, respectively, X and X repre-

sent the maximum and minimum values before normalization, and X; represents the
value before normalization.

The mean square error (MSE) can intuitively determine the error between the pre-
dicted value and the true value. After model training, the training set data are exported
through the saved neural network and error analysis is performed, as shown in Figure 15.
The addition of seismic wave loads makes the stress changes at the crack tip in the corro-
sion area more complex. The BP neural network is prone to falling into local optimal so-
lutions when dealing with nonlinear problems, making the model difficult to converge. In
this case, the neural network model converges slowly and reaches the best training accu-
racy at 4027 iterations of training.
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Figure 15. MSE curve during BPNN training process.

We used 180 sets of data to perform accurate error analysis on the BPNN prediction
model. The calculation results in XFEM and the predicted results of BPNN were used to
calculate the relative error, and some of the calculated results were randomly selected
from all the calculated results and are organized in Table 2 below. Judging from the cal-
culation error results, under the condition of the joint action of seismic waves and pipeline
internal pressure, the prediction error of the BPNN model does not exceed 10%. The cal-
culated average relative error is 0.72%, which meets the expected prediction requirements,
but the training time is longer.

Table 2. Analysis of crack tip stress prediction error.

Internal Pressure Corrosion Depth Mises Stress Prediction Error
(MPa) (mm) (Pa) (Pa) (%)
1.00 4.00 158,858,240.7 158,780,917.5  0.05%
1.10 4.00 166,923,981.8 172,415,759.2  3.29%
1.20 4.00 194,278,477.3 187,248,842.9  3.62%
1.30 4.00 203,356,350 201,832,701.1  0.75%
1.40 6.00 199,002,554.2 197,161,8455  0.92%
1.50 6.00 206,917,269.1 207,184,397.9  0.13%
2.00 6.00 274,833,262.7 275,189,147.5  0.13%
2.10 6.00 284,429,412 286,250,880.6  0.64%
2.20 6.00 294,036,021.3 295,401,659.5  0.46%
2.30 6.00 303,725,018.7 303,535,922.9  0.06%
2.40 8.00 344,150,725.3 346,682,699.9  0.74%
2.50 8.00 355,773,033.3 357,428,946.5  0.47%
3.10 8.00 426,593,936 425,214,183.8  0.32%
3.20 8.00 438,539,185.3 438,319,073.8  0.05%
3.30 8.00 450,516,069.3 452,357,812.2  0.41%
3.40 8.00 462,521,981.3 465,606,716.2  0.67%
2.80 10.00 268,782,703.1 270,518,563.7  0.65%
2.90 10.00 277,353,961.2 277,740,658.4  0.14%
3.00 10.00 285,967,145.8 285,472,489.9  0.17%
3.10 10.00 294,618,943.4 295,278,673.3  0.22%
3.20 10.00 310,792,703.1 307,250,193.3  1.14%
3.30 10.00 320,085,231.1 319,514,358.9  0.18%




Materials 2024, 17, 3237

13 of 19

The input parameters are randomly selected within their respective value ranges to
form sample data and introduced into the above model for prediction. The results are
shown in Figure 16. As the corrosion depth increases, the difference in stress at the crack
tip also changes. When the corrosion depth increases to 50%, large stress value fluctua-
tions will occur, ranging from approximately 350 MPa to 500 MPa.

Mises Stress(Pa)

Figure 16. Crack tip stress changes with corrosion depth and pipeline internal pressure with
BPNN prediction.

3.3. GA-BPNN Prediction Analysis

The initial weight matrix of the BPNN model is optimized using the global optimi-
zation capability of the GA algorithm and the adaptability of the optimization object,
which improves the accuracy of the BPNN model and reduces the training cost. The
GA-BPNN is used to predict and analyze the crack tip stress field under the joint action
of seismic waves and pipeline internal pressure loads. As shown in Figure 17, during the
iterative training process, the convergence of the GA-BPNN is significantly better than
that of the BPNN, and the training time is greatly shortened. After 15 iterative calculations
of the training data, the model has converged. When the number of iterations is 22, the
training accuracy is 0.0001, reaching the expected training goal. At this time, the model
has converged.

MSE(Pa)

10—2 L

10

0 5 10 15 20
Number of iterations

Figure 17. MSE curve during GA-BPNN training process.
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An additional 180 sets of data were used to conduct prediction error analysis on the
GA-BPNN model. The data of the input node are the depth of the pipeline corrosion area,
the internal pressure of the pipeline, and the length of the crack, and the data of the output
node are the calculated values of the crack tip stress.

Figure 18 shows the difference between the XFEM simulation calculation results and
the GA-BPNN prediction results. Comparing the prediction results of BPNN, it can be
found that the difference compared to the GA-BPNN is more concentrated near the 0
scale. In order to fully observe the prediction effect of the GA-BPNN model, the relative
error of the prediction results is further calculated, and some calculation results are orga-
nized in Table 3. From the calculated error data, we can determine that the error in pre-
dicting crack tip stress using the GA-BPNN model is basically less than 6%, the average
relative error is 0.57%, and the maximum error is 5.32%, which meets the basic require-
ments for pipeline engineering prediction.

7
10 x 10 :
BP Prediction .
gl GA-BP Prediction * g
.
.
6l ,
-
o
E .
= 4 i
= .
2
s *
g 2 . 5
z . . 4
=9 . L ]
R PP S R T T o
L - - 4 r ey i a y - - -
Voo NN VA T . v
L] LY o ¥
5 5
2F o 5 4
e
LX)
X

0 20 40 60 80 100 120 140 160 180
Validation Sample

Figure 18. Comparison of calculation errors of prediction models for crack tip stress field.

Table 3. The predictions and errors of the ANN model with a single input volume.

Internal Pressure Corrosion Depth Mises Stress Prediction Error
(MPa) (mm) (Pa) (Pa) (%)
2.10 4.00 297,548,268 298,136,897.6  0.20%
2.20 4.00 307,077,117.3 309,945,362.9  0.93%
2.30 4.00 316,619,324 319,584,861 0.94%
2.40 4.00 326,172,602.7 327,029,224.3  0.26%
2.50 4.00 335,741,713.3 334,648,014.3  0.33%
2.60 4.00 345,309,794.7 344,315,836.5  0.29%
2.10 6.00 303,725,018.7 302,351,752.3  0.45%
2.20 6.00 313,453,465.3 313,573,244.5  0.04%
2.30 6.00 323,217,749.3 323,932,440.5  0.22%
2.40 6.00 333,014,658.7 332,830,976 0.06%
2.50 6.00 342,841,344 342,625,170.5  0.06%
2.60 6.00 352,695,277.3 355,128,398.2  0.69%
2.10 8.00 332,594,832 333,493,727.7  0.27%
2.20 8.00 3441,50,725.3 343,971,431.9  0.05%
2.30 8.00 355,773,033.3 356,102,716.5  0.09%
2.40 8.00 367,455,537.3 367,702,048 0.07%
2.50 8.00 379,193,017.3 378,137,007.4  0.28%
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2.60 8.00 39,0979,374.7 389,107,384.8  0.48%
2.10 10.00 226,702,972.9 228,260,331.6  0.69%
2.20 10.00 234,998,611.4 234,972,060.8  0.01%
2.30 10.00 243,360,038.2 241,860,620.5  0.62%
240 10.00 251,781,316 251,142,109.8  0.25%
2.50 10.00 260,257,083.7 261,156,249.2  0.35%
2.60 10.00 268,782,703.1 269,412,972.3  0.23%

Parameters such as the depth of the corrosion area are randomly selected within their
respective value ranges to form sample data, and these data are used as input parameters
of the GA-BPNN model. We used the saved GA-BPNN prediction model to predict and
analyze each data point of the internal pressure change under the action of seismic wave
load. The results are shown in Figure 19.
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Figure 19. Crack tip stress changes with corrosion depth and pipeline internal pressure.

Judging from the prediction results, when the internal pressure is 0, a stress value
greater than 100 MPa appears at the crack tip. When the internal pressure of the pipeline
is small, the stress value does not change much as the corrosion depth increases. When
the internal pressure of the pipeline begins to increase, the stress value at the crack tip
increases with varying amplitudes. The greater the corrosion depth, the more obvious the
stress change trend at the crack tip. Due to the influence of seismic wave load, the stress
value at the crack tip will fluctuate. This change is the same as the XFEM calculation result,
which proves the accuracy of the GA-BPNN prediction model. Comparing the prediction
results of the BPNN model, the numerical results of the optimized BPNN model for pre-
dicting the crack tip stress field under seismic wave loading are closer to the numerical
calculation results, indicating that GA-BPNN is more accurate in predicting such working
conditions.

3.4. Comparative Analysis of Prediction Models

In order to judge the applicability of the GA-BPNN prediction model to buried pipe-
lines with cracks in other working conditions, it is necessary to conduct a comparative
analysis on several other sets of data samples. The data under the action of only the inter-
nal pressure of the pipeline are recorded as sample A; the data under the combined action
of the internal pressure of the pipeline and seismic wave load are recorded as sample B;
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the data of the corrosion—containing area under the action of internal pressure of the pipe-
line are recorded as sample C. Each sample consists of 100 sets of data. The longest train-
ing time and prediction results of the above data samples in different models are shown
in Table 4.

Table 4. Training time and MAPE value before and after artificial neural network optimization.

Model Training Time (s) MAPE of Sample A (%) MAPE of Sample B (%) MAPE of Sample C (%)

BPNN
GA-BPNN

0.6501% 12.2363% 0.67934%
0.8044% 1.7560% 0.25615%

We then randomly selected a set of data in sample B, used the XFEM model, BPNN
model, and GA-BPNN model to perform calculation, and then compared their calculation
times. The results are shown in Table 5. Judging from the time comparison of the three
calculation models in the table, the neural network calculation time has obvious ad-
vantages, and the calculation results are basically consistent with XFEM. The calculation
time of the BPNN model is approximately four times that of the GA-BPNN model. It can
be seen that the optimized neural network has a great advantage in calculation time and
greatly improves the efficiency of predicting the crack tip stress field.

Table 5. Computation time for different models.

Model XFEM BPNN GA-BPNN
computation time 18 min 28 ms 7 ms

We then divided the training samples in the above chapters into multiple groups of
samples with different numbers and changed the amount of training data of the model to
train the two prediction models. The obtained model was used to predict the pipe crack
tip stress, and then its average absolute percentage error was calculated, as shown in Fig-
ure 20.
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Figure 20. The impact of training data volume on prediction results.

When there are only 50 sets of training data, the MAPE value of the BPNN reaches
50% and the prediction error is large. As the amount of training data increases, the pre-
diction error of the BPNN model begins to decrease. It can be seen that the BPNN model
has a strong dependence on the number of training samples. When using the same data
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samples to train the GA-BPNN, the prediction error of the GA-BPNN is basically main-
tained within 3% when the amount of data is small. As the amount of training data in-
creases, the prediction error continues to shrink, indicating that the GA-BPNN model has
low dependence on the amount of training sample data. In this study, the GA-BPNN has
strong applicability for predicting the crack stress field of buried pipelines under variable
loads.

4. Discussion

This paper uses the extended finite element method to establish a numerical model
of buried pipelines and studies the stress field characteristics of the crack tip in the corro-
sion area of the pipeline under the action of multiple loads through parametric modeling.
Based on the BP algorithm and the GA algorithm, a model that can predict the crack tip
stress field in the corrosion area of buried pipelines is established. Compared with the
existing research on buried pipelines [33-35], this model can accurately predict the crack
tip stress field of buried pipelines under seismic load and can greatly reduce the calcula-
tion time. The main conclusions are as follows:

(1) Using single load and combined load as a comparison, it can be found that crack
propagation is easier under the conditions of seismic wave load. When the initial
length of the same crack in the pipeline is the same, there will be more crack propa-
gation in the presence of seismic waves.

(2) The stress at the crack tip is affected by the depth of the corroded zone. When the
corrosion depth is 20% to 30% of the pipe wall thickness, the crack tip stress value
has little difference under the same load, and when the corrosion depth exceeds 40%,
the difference in the crack tip stress value increases significantly. When the internal
pressure value of the pipeline reaches 3.6 MPa, the stress value of the crack tip with
a corrosion depth of 10 mm will decrease, and the crack will expand accordingly.

(3) The crack location in the corroded area also has an effect on the stress—strain at the
tip. The maximum value of stress will occur when the crack is at a circumferential
angle of 5°. At this position, the crack is located in the middle of the corrosion zone,
and the crack propagation direction will change after passing this position.

(4) The BPNN prediction model is trained by using the training samples obtained from
the numerical simulation data, and the prediction error of the neural network model
is less than 10%. It is found that when the corrosion depth of buried pipelines under
seismic load reaches 50%, the stress at the crack tip will fluctuate, with the fluctuation
range being approximately between 450 MPa and 500 MPa.

(5) A GA-BPNN prediction model was established, which improved the prediction ac-
curacy and significantly reduced model training costs. After further analysis of sev-
eral sets of data samples, the training time, mean absolute percentage error value,
and calculation time of the two models were compared, and the GA-BPNN was de-
termined to have better adaptability.

(6) In future work, it can be considered how the interaction between pipe material and
a corrosive environment affects the characteristics of the crack tip, using other neural
network models [36] and comparing them with existing models [37], as well as the
influence of a larger pipe internal pressure range and different seismic loads on the
stress field at the crack tip, which can provide more comprehensive and detailed ref-
erences for pipeline engineering.

Author Contributions: conceptualization, Z.X. and M.F.; methodology, Y.Z.; simulation, M.R. writ-
ing—original draft preparation, M.R.; writing—review and editing, Z.X., M.F. and Y.Z. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Key Laboratory of New Technology for Construction of
Cities in Mountain Aera, Ministry of Education, Chongqing University (LNTCCMA-20210111).

Informed Consent Statement: Not applicable.



Materials 2024, 17, 3237 18 of 19

Data Availability Statement: The raw data supporting the conclusions of this article will be made
available by the authors on request.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Vazouras, P.; Karamanos, S.A.; Dakoulas, P. Finite element analysis of buried steel pipelines under strike—slip fault
displacements. Soil Dyn. Earthq. Eng. 2010, 30, 1361-1376.

Banushi, G.; Squeglia, N. Seismic analysis of a buried operating steel pipeline with emphasis on the equivalent-boundary
conditions. J. Pipeline Syst. Eng. Pract. 2018, 9, 04018005.

Beavers, J.A.; Thompson, N.G. External Corrosion of Oil and Natural Gas Pipelines; ASM International: Detroit, MI, USA, 2006.
Jin, H.-]; Yu, Q.-H.; Wang, S.-L; Lii, L.-Z. Changes in permafrost environments along the Qinghai-Tibet engineering corridor
induced by anthropogenic activities and climate warming. Cold Reg. Sci. Technol. 2008, 53, 317-333.

Gomez, C.; Green, D.R. Small unmanned airborne systems to support oil and gas pipeline monitoring and mapping. Arab. |.
Geosci. 2017, 10, 202.

Zhang, S.; Gao, T.; Xu, H.; Hao, G.; Wang, Z. Study on new methods of improving the accuracy of leak detection and location
of natural gas pipeline. In Proceedings of the 2009 International Conference on Measuring Technology and Mechatronics
Automation, Zhangjiajie, China, 11-12 April 2009; pp. 360-363.

Cheng, Y.F. Stress Corrosion Cracking of Pipelines; John Wiley & Sons: Hoboken, NJ, USA, 2013.

Adedeji, K.; Hamam, Y.; Abe, B.; Abu-Mahfouz, A.M. Leakage detection algorithm integrating water distribution networks
hydraulic model. In Proceedings of the SimHydro 2017: Choosing the Right Model in Applied Hydraulics, Sophia Antipolis,
France, 14-16 June 2017.

Ariffin, M.; Zhang, Y.; Xiao, Z. Elastic-plastic fracture response of multiple 3-D interacting cracks in offshore pipelines subjected
to large plastic strains. Eng. Fail. Anal. 2017, 76, 61-79.

Ma, B.; Shuai, J.; Liu, D.; Xu, K. Assessment on failure pressure of high strength pipeline with corrosion defects. Eng. Fail. Anal.
2013, 32, 209-219.

Barsoum, I.; Almansoori, H.; Almazrouei, A.A.; Gunister, E. Fracture mechanics testing and crack propagation modelling in
polypropylene pipes. Int. |. Struct. Integr. 2021, 12, 271-283.

Gabetta, G.; Nykyforchyn, H.; Lunarska, E.; Zonta, P.; Tsyrulnyk, O.; Nikiforov, K.; Hredil, M.; Petryna, D.Y.; Vuherer, T. In-
service degradation of gas trunk pipeline X52 steel. Mater. Sci. 2008, 44, 104-119.

Lin, M.; Agbo, S.; Cheng, ].J.; Yoosef-Ghodsi, N.; Adeeb, S. Application of the Extended Finite Element Method (XFEM) to Simulate
Crack Propagation in Pressurized Steel Pipes; American Society of Mechanical Engineers: New York, NY, USA, 2017.

Lin, M.; Agbo, S.; Duan, D.-M.; Cheng, ].].R.; Adeeb, S. Simulation of Crack Propagation in API 5L X52 Pressurized Pipes Using
XFEM-Based  Cohesive = Segment  Approach. ].  Pipeline  Syst.  Eng.  Pract. 2020, 11,  04020009.
https://doi.org/10.1061/(ASCE)PS.1949-1204.0000444.

Ali Ghaffari, M.; Hosseini-Toudeshky, H. Fatigue crack propagation analysis of repaired pipes with composite patch under
cyclic pressure. J. Press. Vessel. Technol. 2013, 135, 031402.

Cha, Y.J.; Choi, W.; Biiyiikoztiirk, O. Deep learning-based crack damage detection using convolutional neural networks.
Comput.-Aided Civ. Infrastruct. Eng. 2017, 32, 361-378.

Golding, V.P.; Gharineiat, Z.; Munawar, H.S.; Ullah, F. Crack detection in concrete structures using deep learning. Sustainability
2022, 14, 8117.

Yu, Y.; Rashidi, M.; Samali, B.; Mohammadi, M.; Nguyen, T.N.; Zhou, X. Crack detection of concrete structures using deep
convolutional neural networks optimized by enhanced chicken swarm algorithm. Struct. Health Monit. 2022, 21, 2244-2263.
Najafi, M.; Kulandaivel, G. Pipeline condition prediction using neural network models. In Pipelines 2005: Optimizing Pipeline
Design, Operations, and Maintenance in Today's Economy; 2005, Proceedings of the ASCE Pipeline Division Specialty Conference,
held in Houston, Texas, August 21-24, 2005; pp. 767-781.

Li, L.; Sun, L.; Ning, G.; Tan, S. Automatic pavement crack recognition based on BP neural network. PROMET-Traffic Transp.
2014, 26, 11-22.

Zangenehmadar, Z.; Moselhi, O. Assessment of remaining useful life of pipelines using different artificial neural networks
models. ]. Perform. Constr. Facil. 2016, 30, 04016032.

Shaik, N.B.; Pedapati, S.R.; Taqvi, S.A.A.; Othman, A.; Dzubir, F.A.A. A feed-forward back propagation neural network
approach to predict the life condition of crude oil pipeline. Processes 2020, 8, 661.

Ouladbrahim, A.; Belaidi, I.; Khatir, S.; Magagnini, E.; Capozucca, R.; Wahab, M.A. Experimental crack identification of API
X70 steel pipeline using improved Artificial Neural Networks based on Whale Optimization Algorithm. Mech. Mater. 2022, 166,
104200.

Li, X.;; Dong, S.; Mohamed, H.S.; Al Agel, G.; Pirhadi, N. Prediction of tubular T/Y-joint SIF by GA-BP neural network. KSCE ].
Civ. Eng. 2020, 24, 2706-2715.

Zhang, H.; Tian, Z. Failure analysis of corroded high-strength pipeline subject to hydrogen damage based on FEM and GA-BP
neural network. Int. ]. Hydrogen Energy 2022, 47, 4741-4758.

Systemes, D. Abaqus Analysis User’s Manual; Simulia Corp.: Providence, RI, USA, 2007; Volume 40.



Materials 2024, 17, 3237 19 of 19

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

Netto, T.A,; Ferraz, U.S.; Botto, A. On the effect of corrosion defects on the collapse pressure of pipelines. Int. J. Solids Struct.
2007, 44, 7597-7614.

Zhang, Y.; Tan, T.; Xiao, Z.; Zhang, W.; Ariffin, M. Failure assessment on offshore girth welded pipelines due to corrosion
defects. Fatigue Fract. Eng. Mater. Struct. 2016, 39, 453—466.

Ma, B.; Shuai, J.; Wang, J.; Han, K. Analysis on the latest assessment criteria of ASME B31G-2009 for the remaining strength of
corroded pipelines. |. Fail. Anal. Prev. 2011, 11, 666—671.

Hagan, M.T.; Demuth, H.B.; Beale, M. Neural Network Design; PWS Publishing Co.: Boston, MA, USA, 1997.

Inampudi, S.; Mosallaei, H. Neural network based design of metagratings. Appl. Phys. Lett. 2018, 112, 241102.

Demuth, H.B.; Beale, M.H.; De Jess, O.; Hagan, M.T. Neural Network Design (2" edition); Martin Hagan, Oklahoma State
University Stillwater, OK, United States, 2014.

Okodi, A.; Lin, M.; Yoosef-Ghodsi, N.; Kainat, M.; Hassanien, S.; Adeeb, S. Crack propagation and burst pressure of
longitudinally cracked pipelines using extended finite element method. Int. |. Press. Vessels Pip. 2020, 184, 104115.

Yuzevych, V.M.; Lozovan, V.P. Influence of Mechanical Stresses on the Propagation of Corrosion Cracks in Pipeline Walls.
Mater. Sci. 2022, 57, 539-548.

Ahmadi, F.; Ranji, A.R.; Nowruzi, H. Ultimate strength prediction of corroded plates with center-longitudinal crack using FEM
and ANN. Ocean Eng. 2020, 206, 107281.

Fangnon, E.; Malitckii, E.; Latypova, R.; Vilaga, P. Prediction of hydrogen concentration responsible for hydrogen-induced
mechanical failure in martensitic high-strength steels. Int. ]. Hydrogen Energy 2023, 48, 5718-5730.

Thankachan, T.; Prakash, K.S.; Pleass, C.D.; Rammasamy, D.; Prabakaran, B.; Jothi, S. Artificial neural network to predict the
degraded mechanical properties of metallic materials due to the presence of hydrogen. Int. |. Hydrogen Energy 2017, 42, 28612—
28621.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual au-
thor(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.



