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Abstract: Embedding quantum dots into porous matrices is a very beneficial approach for generating
hybrid nanostructures with unique properties. In this contribution we explore strategies to dope
nanoporous SiO2 thin films made by atomic layer deposition and selective wet chemical etching
with precise control over pore size with CdSe quantum dots. Two distinct strategies were employed
for quantum dot deposition: in situ growth of CdSe nanocrystals within the porous matrix via
successive ionic layer adsorption reaction, and infiltration of pre-synthesized quantum dots. To
address the impact of pore size, layers with 10 nm and 30 nm maximum pore diameter were used
as the matrix. Our results show that though small pores are potentially accessible for the in situ
approach, this strategy lacks controllability over the nanocrystal quality and size distribution. To dope
layers with high-quality quantum dots with well-defined size distribution and optical properties,
infiltration of preformed quantum dots is much more promising. It was observed that due to higher
pore volume, 30 nm porous silica shows higher loading after treatment than the 10 nm porous
silica matrix. This can be related to a better accessibility of the pores with higher pore size. The
amount of infiltrated quantum dots can be influenced via drop-casting of additional solvents on
a pre-drop-casted porous matrix as well as via varying the soaking time of a porous matrix in a
quantum dot solution. Luminescent quantum dots deposited via this strategy keep their luminescent
properties, and the resulting thin films with immobilized quantum dots are suited for integration
into optoelectronic devices.

Keywords: CdSe quantum dot; thin film; porous silica

1. Introduction

Semiconductor nanocrystals (NCs) have emerged as the pivotal material in nanotech-
nology for the applications in optoelectronics as well as sensing and biomedical imaging,
owing to their unique size-dependent optoelectronic properties [1]. Among them, quantum
dots (QDs) stand out for their excellent and wide-ranging optical and electronic properties,
which can be adjusted by varying their size. As the size of the QD is reduced, discrete
quantized energy levels are observed in contrast to the continuous energy band struc-
ture observed in bulk materials [2,3]. This phenomenon is a consequence of the strong
spatial confinement of electron and hole motion when the QD size is below the Bohr
radius [2,3]. One of the most extensively studied systems comprises cadmium selenide
(CdSe) QDs. CdSe QDs exhibit narrow photoluminescence spectra and can be designed to
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show high photoluminescence quantum yields (PLQYs); they are therefore highly suitable
for device applications such as in light-emitting diodes (LEDs) [4–6] or in sensing [7,8]
applications. The tunability of electronic properties via size allows for the optimization of
the valence band and conduction band energy levels allowing emission color, or ensures
sufficient driving force for the energy and electron transfer processes forming the basis
for sensing [7–9] concepts or the application of QDs as light absorbers to drive photocat-
alytic reactions [10–12]. The synthesis of high-quality (with respect to crystallinity and
control over size distribution) CdSe QDs is achieved via the well-established hot injec-
tion method [13,14]. QDs resulting from this synthetic approach are usually capped with
long-chain aliphatic surface ligands, e.g., tri-octylphosphine oxide, octadecylphosphonic
acid, oleic acid, hexadecylamine, etc. [15]. The surface ligands provide colloidal stability,
stabilize the surface of the QDs, and saturate dangling bonds, which are the source of
surface trap states or introduce additional trapping states, depending on the anchoring
functional group of the surface ligand [16–18]. Surface functionalization can also alter the
dispersibility of the QDs in different solvents, rendering them suitable for applications
in various solvent environments, e.g., in aqueous environments for sensing in biological
systems [7] or photocatalytic applications [12,19] in aqueous environments.

The colloidal solutions of the QDs have the advantage to allow for solution processing,
e.g., to generate thin films with controlled homogeneity and packing density, enabling fine
tuning of optoelectronic properties and allowing for much more flexibility and large-scale
processing compared to methods such as chemical vapor deposition, epitaxial growth,
etc. [20,21]. For many applications, dispersed NCs have to be transferred into thin film ar-
chitectures, e.g., for application in LEDs [22,23], materials for photovoltaic devices [24–26],
photoelectrode materials for photocatalytic applications [27] and sensors [28], or optoelec-
tronic devices [29] for detection of radiation. Beyond thin film production by deposition
of particles on substrates, immobilization and thin film production by integration of QDs
into porous matrices, e.g., mesoporous silica, is a very interesting approach. The porous
matrices support ordered assembly controlled by the structure of the porous matrix [30]
or can be used to control size [31] via pore sizes of the matrix serving as a template. The
porous matrix surrounding can shield the QDs from environmental factors such as oxygen
and moisture and improve light extraction [32], reducing thermal effects and leading to
improving long-term stability and efficiency, as observed, e.g., for LED devices [31,33,34].
Furthermore, porous matrices can support the targeted function by reduction of non-
radiative recombination, contributing to improved quantum efficiency and brightness
of the LEDs [35], or support charge carrier separation by co-immobilizing donors and
acceptors, reducing charge carrier transfer distances and enhancing photocatalytic perfor-
mances [36]. Furthermore, it can facilitate efficient diffusion of reactants and products,
leading to improved reaction rates and yields in photocatalytic processes in the confined
surrounding of the pores [37].

Two general strategies exist to deposit QDs inside a porous matrix. For a direct
generation of NCs within the porous material, the successive ionic layer adsorption and
reaction (SILAR) approach can be used [30,38,39]. For example, Besson et al. [30] and Wang
et al. [39] demonstrate the growth of CdS QDs and CdSe QDs, respectively, in porous silica
matrices via in situ growth of QDs inside the pores. Short immersion times and repeated
cycles allow for control over loading and particle sizes, though with limited precision
and broad size distributions [30]. To overcome the missing precision in controlling size
and size distribution of NCs generated via the SILAR method within the porous matrices,
infiltration of pre-synthesized particles employing methods with high control over size
distributions can be employed. This approach has been used to deposit colloidal QDs
inside mesoporous silica particles in the so-called “wet mixing method” [33,34,40], but also
has been adapted to porous silica layers by soaking in a solution of dispersed QDs [41].

In this contribution, we investigate strategies for the incorporation of nanocrystalline
CdSe into porous silica layers with pore diameters in the 10 s of nm range produced via
atomic layer deposition (ALD) [42]. Fabrication methods based on ALD are shown to be
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advantageous with respect to control over thickness of the porous layer and rigidity of the
porous structure compared to sol-gel methods [43–45]. Two general strategies are employed
to deposit nanocrystalline CdSe into the porous material: in situ growth of CdSe NCs using
the SILAR approach and infiltration of pre-synthesized QDs. Analysis of the structure and
optical properties of the thin films with dependence on experimental parameters, e.g., pore
size and deposition times, is performed to evaluate the quality of the produced layers.

2. Materials and Methods

For the NC synthesis, the following chemicals were used: Tri-octylphosphine oxide
(TOPO, 99%), Trioctylphosphine (TOP, 97%), Cadmium oxide (CdO, 99.99%), Cadmium
acetate hydrate (Cd (OAc)2·xH2O, 99.99%), Selenium (Se, 99.99%), Sodium selenide (Na2Se,
95%), Toluene (99.8% anhydrous) and Methanol (99.8% anhydrous), purchased from Sigma
Aldrich, and Octadecylphosphonic acid (ODPA, 97%), purchased from Carl Roth (Karlsruhe,
Germany).

CdSe QDs were synthesized following established protocols [46,47]. A total of 60 mg
of cadmium oxide (CdO), 0.28 g of octadecylphosphine oxide (ODPA), and 3.0 g of tri-
octylphosphine oxide (TOPO) were mixed in a 25 mL three-neck flask. The mixture was
heated to 80 ◦C under a N2 atmosphere until melting under stirring. A vacuum was applied
to remove traces of water, and after bubble formation stopped, the mixture was heated to
150 ◦C and evacuated for 1 h. Then, under N2 flow, the reaction mixture was heated up,
and at around 300 ◦C the solution became optically clear and colorless. At 320 ◦C, 1.5 g
of trioctylphosphine (TOP) was injected into the solution. When the temperature reached
380 ◦C, a solution of TOP–Se (0.058 g Se dissolved in 0.360 g TOP) was injected, and the
temperature was kept at 370 ◦C for 5 min. Then, the reaction mixture was cooled down by
removing the heating mantle, and when the temperature reached 60 ◦C, 10 mL toluene was
injected. After the synthesis, QDs were precipitated by adding 10 mL MeOH to the reaction
mixture, with centrifugation at 5300 rpm. The precipitate was redispersed in toluene, and
was repeatedly precipitated and redispersed for cleaning three more times. Finally, the
QDs were redispersed in 10 mL of toluene and stored inside a glove box (N2 atmosphere).

Nanoporous SiO2 layers were prepared using the methods reported by Ghazaryan
et al. [42] Briefly, a heterostructure of SiO2–Al2O3 was deposited by atomic layer deposition
(ALD) using a sequence of 2 cycles of SiO2 and 3 or 4 cycles of Al2O3. The sequence was
repeated 230 and 330 times, respectively. The growth rate of the SiO2 and Al2O3 was about
0.1 nm/cycle. The film thickness of the [2:3]x230 sample was 123 nm, with 230 nm for
the [2:4]x330 sample, as estimated by spectroscopic ellipsometry measurements. After
deposition, the Al2O3 was selectively etched in H3PO4 (85%) solution, and a porous SiO2
matrix was formed. The maximum pore size as estimated in a previous work by SEM was
10 nm and 30 nm, being smaller when less Al2O3 was removed from the SiO2 matrix [42].
Porous silica layers were prepared both on fused silica to enable optical characterization
and on silicon substrates to perform electron microscopy (Plano Gmbh, Wetzlar, Germany)
for imaging.

QDs were grown in situ in the pores of the silica matrix by the Successive Ionic Layer
Adsorption Reaction (SILAR) method at room temperature following a protocol described
by Sankapal et al. [48] The porous silica layer (either on fused silica or silicon substrate)
was immersed first into a Cd (OAc)2 solution (40 mL Cd (OAc)2 in methanol, 5 µM) for
5 min. After taking it out, the layer was rinsed with methanol and dried under vacuum.
Then, the layer was immersed into a Na2Se solution (40 mL Na2Se in methanol, 6 µM) for
5 min, followed by rinsing with methanol and drying under vacuum. This completed one
cycle of immersion. The immersion procedure was repeated several times, and layers were
produced by applying 5, 10, 15, and 20 immersion cycles.

To infiltrate pre-synthesized QDs into porous silica, two strategies were applied—
drop-casting of a QD solution on porous silica layers and immersion and soaking of porous
silica layers in a QD solution. For drop-casting, 100 µL of QD solution (3 µM, toluene) was
dropped on porous silica layers. Once the solvent was completely evaporated, the layers
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were rinsed with toluene to remove QDs just adsorbed at the surface and dried under
vacuum. For some of the layers, after the initial drop-casting step using a solution of QDs,
an additional amount of solvent was dropped on the substrates to wash QDs just sitting on
the surface into the pores. Alternatively, the porous silica layers were immersed in 3 mL
of QD solution (0.4 µM, toluene) to soak QDs into the pores. Soaking times of 0.5 h, 2 h,
and 24 h, followed by rinsing with toluene and drying under vacuum, were applied. For
comparison and to prove infiltration into the porous structure, a normal glass substrate,
cleaned by washing with acetone, methanol, Hellmanex, and water, was drop-casted with
100 µL of QD solution (3 µM, toluene), and one other normal glass substrate was immersed
in a QD solution (0.4 µM, toluene) for 24 h followed by washing with toluene.

UV–vis absorption spectroscopy in the wavelength range from 200 nm to 1000 nm was
performed using a Jasco V-780 spectrophotometer (Jasco, Hachioji, Tokyo, Japan) . Colloidal
dispersions were measured in a 1 cm quartz cuvette, and for thin film measurements
a special film holder was used. Absorption spectra measured in thin films contained
strong wavelength-dependent scattering contributions, which were corrected via fitting a
polynomial background [49] as described in Figure S1.

The photoluminescence spectra of the QD solution were recorded in a 1 cm cuvette
using a FLS 980 Edinburgh Instruments (Livingston, UK) Fluorimeter upon excitation at
400 nm. The photoluminescence spectra of the porous silica layers on fused silica were
recorded using a Horiba Fluorolog-3 (Glasgow, Scotland). The excitation wavelength was
set to 400 nm.

To determine the photoluminescence lifetimes, Time Correlated Single Photon Count-
ing (TCSPC) was performed with a Horiba DeltaFlex spectrometer (Glasgow, Scotland)
with a pulsed NanoLED (peak wavelength of 389 nm, pulse duration of 1.3 ns) from Horiba.
For this, QD solutions were prepared in a 1 cm quartz cuvette. QD thin films and porous
layers were measured using a suitable thin film holder.

Transmission Electron Microscopy (TEM) images were recorded using a JEM-ARM200F
NEOARM (Jeol) (Jeol, Akishima, Tokyo, Japan) operating at 80 kV. For this, Colloidal QDs
were deposited on a carbon-coated Cu grid (purchased from PLANO GmbH, Wetzlar,
Germany). To evaluate the average size and size distribution of the particles, the images
were processed using an ImageJ 1.53a program [50].

Scanning Electron Microscopy (SEM) images of QDs deposited on silicon wafers and
porous silica on silicon wafers were recorded using a JEOL JSM-6700F scanning electron
microscope (Jeol, Akishima, Tokyo, Japan) . Additionally, cross-sectional images of the
porous silica layers were collected after breaking the substrate and depositing a carbon
layer.

For elemental analysis, Energy Dispersive X-ray Spectrometry (EDX) on porous silica
layers on silicon wafers using a Bruker silicon drift detector SDD-5030 (Brucker Corporation,
Billerica, MA, USA) (30 mm2 detector area) with 10 keV electron energy was performed.
Grazing incidence X-ray diffraction (GIXRD) on porous silica layers on fused silica was
performed using a PANalytical X’Pert Pro MPD (Malvern Panalytical, Malvern, Worcester-
shire, UK) ((Cu-Kα radiation, 1.541 Å) with an omega angle of 2◦, a 2theta range from 10◦

to 90◦, a 0.026◦ step size, and measuring times from 1 h to 15 h).
Secondary Ion Mass Spectrometry (SIMS) was performed using a Hiden Analytical

SIMS Workstation equipped with 5 keV Cesium and Oxygen ion sources for ionization and
sputtering for the material within a spot of 50 µm and a high-transmission quadrupole
secondary ion mass spectrometer (Hiden Analytical Ltd., Westbrook, Warrington, UK) .
A layer of less than 10 nm Pt was deposited on top for electrically conductive surfaces to
prevent electrical charging during measurement.

3. Results and Discussion

Porous silica layers were prepared using atomic layer deposition (ALD) of a het-
erostructure of SiO2:Al2O3, followed by selective etching of Al2O3 [42]. In order to sys-
tematically investigate the extent of QD deposition by applying different methods, porous
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layers with two different pore sizes were prepared. Top view and cross section SEM images
of the porous layers are shown in Figure S3. Maximum pore sizes of 10 nm and 30 nm were
determined from SEM images. The thicknesses of the layers are in the range from 123 nm
and 230 nm.

The first preparation route applied was to grow CdSe NCs directly inside the porous
matrix. For this, a SILAR protocol was adopted [48]. Methanolic solutions of Cd (OAc)2 as
the Cd2+ source and Na2Se as the Se2− source were used. A 5 min immersion of the porous
layer into the Cd (OAc2) solution led to a monolayer adsorption of Cd2+ ions attached
to the porous surface via Van der Waals and electrostatic forces. Loosely bound Cd2+

ions were removed by rinsing the porous layers before immersion into a Na2Se solution,
which initiated the reaction of Cd2+ and Se2− to form CdSe. Further successive cycles of
immersions of the porous layers into Cd (OAc)2 and Na2Se solutions led to successive
growth of CdSe NCs. To observe the growth in the successive immersion steps, samples
were prepared with 5, 10, 15, and 20 immersions for both the layers with 10 nm and 30 nm
pore size.

Steady-state UV–vis absorption spectroscopy was performed on the porous silica
layers, which shows absorption features below 700 nm (Figure 1). With the number of
immersion steps, the absorption feature increases in intensity, and the onset of absorption
shifts to higher wavelengths. This indicates, on the one hand, an increased loading of
the SiO2 matrix with CdSe, and on the other hand, an increase of the crystal size of the
CdSe deposited (Figure 1). Similar behavior was observed upon in situ growth of CdS
NCs on TiO2 via the SILAR method [48]. Typically, CdSe QDs exhibit distinctive electronic
transitions from the valence band to the conduction band due to the presence of quantized
energy levels at the band edges [51]. In contrast, the absorption spectra show only very
broad features, without any distinct peak. This can be related to a broad size distribution
caused by uncontrolled growth of CdSe crystals and aggregation of smaller NCs, with an
increasing number of immersion cycles forming larger particles. The absorption features of
the layers with 30 nm pore size exhibit a notable increase in absorbance with the number of
immersion cycles. In contrast, the absorption of the layers with 10 nm pore size show a
pronounced rise from the initial immersions to 10 cycles, followed by a saturation. This
suggests that the limited pore volume of 10 nm pore-sized layers is fully occupied by the
NCs or that narrow parts of the porous structure are clogged, preventing further deposition
of CdSe, while the 30 nm pore-sized layers continue to fill. No photoluminescence was
detected from the layers. This potentially is due to low crystal quality, i.e., low crystallinity
and a high density of the NCs grown via this method.

To evaluate the crystal quality, the samples were characterized by GIXRD. Figure 2
shows the GIXRD patterns from porous silica layers with in situ grown CdSe QDs. As
the CdSe crystallites grown inside 10 nm and 30 nm pores are very small in size, the
corresponding XRD peaks are broadened but seem to grow in and slightly sharpen with
increasing immersion cycles [52]. The broad and less intense XRD peaks of CdSe NCs make
it very challenging to distinguish between the hexagonal phases. However, conducting the
in situ growth at room temperature increases the likelihood of cubic crystal phase formation.
From a thermodynamic perspective, the cubic phase is more stable at lower temperatures,
while the hexagonal phase is more stable at higher temperatures [52]. It seems, at least from
the dataset of the sample with the 30 nm pore size, that with the number of immersions, XRD
peaks evolve, with the potentially growing size of the embedded crystallites representing
a cubic pattern with its characteristic 2theta peaks at 24.84◦ (111) and 42.83◦ (220) (ICSD:
620421). Nevertheless, this conclusion needs to be regarded with care. On the other hand,
due to smaller pore volume, CdSe QDs grown in 10 nm pores seem to be smaller than in
30 nm pores, indicated by even broader XRD peaks than the layers of the 30 nm pore size.
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Further, to observe the CdSe QDs in the porous matrices, Energy Dispersive X-ray
Spectrometry (EDX) was performed. Figure 3 depicts the EDX spectra of 10 nm and 30 nm
porous layers. While collecting the EDX spectra, an area of 200 µm2 was exposed to the
electron beam. In comparison to spot analysis, this large area of exposure gives a good
comparability among different samples, lowering the danger of local overestimation. For
both the 10 nm and 30 nm pore-sized layers, there is a relative increase in the intensities of
the Cd and Se peaks with the number of immersion cycles (Figure 3). The increasing Cd
and Se peak intensities reflect the increasing amount of Cd and Se deposited in the layers
with every SILAR immersion cycle.
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SEM images of porous layers in silicon wafers were collected to observe the local
structure of CdSe NCs in the porous structure. Figure 4 and Figure S4 depict the SEM
images of 30 nm and 10 nm pore-sized layers, respectively. Because the resolution of SEM
is not sufficient to image single NCs, which might be even more complex in the case of a
broad size distribution, a clear presence of CdSe NCs cannot be confirmed from the top
view image. Nevertheless, it appears from the top view images that the pores gradually fill
with an increasing number of immersion cycles.

To summarize, the in situ SILAR growth leads to the deposition of CdSe NCs on
the porous matrix. Steady-state absorption and photoluminescence spectroscopy, as well
as XRD and EDX analysis complemented by SEM imaging, indicates that the NCs are
probably deposited within the porous network. However, the deposition at the surface
cannot be ruled out and prevented. The NCs exhibit indications of a cubic phase with low
crystallinity and a broad size distribution. Additionally, they demonstrate an absence of
photoluminescence, which is likely related to the high number of trap states, which in turn
decreases the PLQY. For any optoelectronic applications, it is essential to embed particles
with better controllable properties, such as distinct electronic transitions, controllable size,
and high crystalline NCs that support high PLQYs. The synthesis of highly crystalline
CdSe NCs with a narrow size distribution via the SILAR method is a challenging process,
necessitating the exploration of alternative strategies. These strategies must be capable of
embedding NCs with high crystallinity and controllable properties, including a narrow
size distribution. This leads us to seek an alternative porous silica and CdSe QD ensemble
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that exhibits superior performance, including a high PLQY, good crystallinity, and a narrow
size distribution.
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To achieve this goal, we employed an alternative method, which allowed us to benefit
from the well-controlled properties of colloidal QDs synthesized via hot injection methods
performed at high temperatures (usually > 300 ◦C), resulting in CdSe QDs with precise
control over size and size distribution, high crystallinity, high PLQY, narrow photolumines-
cence band width, etc. [14]. However, such synthesis routes are typically not applicable for
embedding CdSe QDs directly during synthesis into porous silica layers due to the lack
of thermal stability of the silica matrix in that temperature range [53]. Additionally, the
crystal growth in the hot injection method undergoes a fast nucleation mechanism [14],
which is hindered by the porous matrix, resulting in inefficient growth inside the pores. As
this rules out the feasibility of employing the hot injection method for direct growth within
the porous layer, we explore the possibility of deposition and infiltration of pre-synthesized
QDs into the porous silica matrix.

For our study, CdSe QDs were pre-synthesized via hot injection (see experimental) [46,47].
The QDs were majorly covered with TOPO as the surface ligand, along with TOP and
ODPA (used with Se and Cd precursors in the QD synthesis), which made them dispersible
in non-polar solvents like toluene, chloroform, hexane, etc. The absorption spectra of the
pure QD dispersion (toluene) shows the characteristic electronic transition from the valence
band to conduction band levels (Figure 5a). The feature at 537 nm corresponds to the lowest
excitonic band edge 1S(e)-1S3/2(h) transition [51]. A band gap of the QDs of 2.2 ± 0.04 eV
was derived from Tauc’s plot, which is in agreement with the band edge photoluminescence
peak position (547 nm, 2.26 eV) [54]. The absolute PLQY is 3.9%. The diameter of the QD
was estimated from the spectral position of the lowest excitonic transition in the absorption
spectra by the empirical formula derived by Yu et al. [55] to approximately 2.9 nm, in good
agreement with the average diameter determined by statistical analysis of TEM images
(3.2 ± 0.5 nm, Figure 5b and Figure S5a,b). Furthermore, a thin film was prepared by
drop-casting the QDs on a silicon wafer to visualize the QDs in layers via SEM (Figure 5c).
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Figure 5. (a) Normalized absorption and photoluminescence spectra (λex 400 nm) of the CdSe QDs
with 2.9 nm diameter in toluene and Tauc’s plot for band gap calculation (inset). (b) TEM and (c) SEM
image (on silicon wafer) of 2.9 nm CdSe QDs used in this study.

Pre-synthesized CdSe QDs were infiltrated into porous silica of pore size 10 nm and
30 nm via (a) drop-casting of a QD solution (3 µM) in toluene on the porous silica layers
and (b) soaking porous silica layers in a QD solution (0.4 µM) in toluene. We started with a
simple drop-casting followed by washing the layers with toluene to remove QDs sitting
just on top of the surface. To induce higher infiltration of QDs, an additional amount of
solvent (toluene) was dropped on the layers after the first step of drop-casting followed by
washing the layer in toluene. In the soaking method, porous layers were immersed in a
QD solution. The loading of QDs was influenced by soaking time. Because of the surface
ligand TOPO, QDs are hydrophobic. Therefore, in each washing step after infiltration, the
QDs sitting on the hydrophilic porous layer surface should be effectively removed.

The deposition of pre-synthesized QDs on porous silica layers was confirmed by
steady-state UV–vis absorption spectroscopy and photoluminescence spectroscopy.
Figures 6 and S6 show the spectra of porous silica layers after QD infiltration. The ab-
sorption spectra were corrected for background signal from the substrate and scattering
contributions from the porous layer (see Supplementary Information Figure S1). The char-
acteristic feature of the lowest band edge transition (1S(e)-1S3/2(h)) is clearly visible in the
absorption spectra of the treated layers, which confirms the presence of QDs. After QD
infiltration via both drop-casting and soaking, for the porous layers with 30 nm pore size a
higher absorbance is observed than for the layer with 10 nm pore size. This is an indication
of a higher loading of QDs in bigger pores (i.e., 30 nm) than in 10 nm pores, which indi-
cates an easier accessibility of the larger pores for the QDs. For the drop-casting routine,
treatment with additional solvent resulted in a relative increase compared to the drop-
casted layers without additional solvent treatment (Figure 6a). For the soaking strategy,
the amount of QDs infiltrated into the pores increases with time of soaking. The gradual
increase of the absorption of QDs in porous layers for soaking times 0.5 h to 2 h (Figure S6a)
and 2 h to 24 h (Figure 6c) indicate the increase of the amount of infiltrated QDs. The band
edge photoluminescence peak of the QDs at 541 nm in the photoluminescence spectra
of the porous layers further confirms the presence of QDs in the treated porous layers
(Figures 6b,d and S6b). Due to the inhomogeneous distribution of QDs and strong scat-
tering contributions, quantitative comparison of both absorbance and photoluminescence
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intensity among samples is not possible. It can still be assumed that due to higher loading
of QDs, porous silica layers of 30 nm pore size show higher photoluminescence intensity
than the layer of 10 nm pore size for all infiltration methods (Figures 6 and S6). Similar to
the absorption spectra, additional drop-casting of toluene increases the photoluminescence
intensity due to higher infiltration of QDs. On the other hand, the photoluminescence
intensity also increases with soaking time (Figures 6d and S6b).
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Figure 6. Absorption spectra (a) and photoluminescence spectra (b) of 10 nm (solid lines) and 30 nm
(dashed line) porous layers treated by drop-casting and drop-casted followed by solvent treatment.
Absorbance spectra (c) and photoluminescence spectra (d) of 10 nm (solid lines) and 30 nm (dashed
line) porous layers with 2 h and 24 h soaking. The wavelength scattering correction as described in
Figure S1 was employed in the absorption spectra (a,c).

Figures 7 and S7 show the decay traces of pure QDs (in both solution and film) and
the treated porous layers. These traces were modeled using a multiexponential function
with three components, and the fitted data are presented in Table S1. The average pho-
toluminescence lifetime was determined by amplitude-weighted averaging of the time
constants. The pure QD solution has an average lifetime of 38.7 ns, which is reduced
to 19.2 ns when deposited on a glass substrate. This reduction is attributed to inter-QD
interactions, such as non-radiative energy transfer within layer due to the inhomogeneous
QD size distribution [56–58]. The photoluminescence decay of QD-infiltrated porous layers
is also faster, as shown in Table S1. Porous layers with higher QD loading, as indicated by
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absorption and photoluminescence spectroscopy, exhibit faster photoluminescence decay.
The average photoluminescence lifetime of the 30 nm drop-casted layers is 20.1 ns. How-
ever, with the addition of additional solvents, the lifetime decreases to 15.5 ns. Similarly,
with increased soaking time, the photoluminescence lifetime of the 30 nm porous layer
decreases from 17.8 ns to 11.7 ns. This trend is also observed for the 10 nm porous layers. It
is expected that a higher loading of QDs will result in a denser packing inside the pores,
leading to a stronger interaction between QDs. Therefore, the faster decay of photolumi-
nescence in porous layers with higher QD loading is attributed to stronger interaction,
leading to enhanced non-deactivation. However, there is no significant difference in the
photoluminescence lifetime as dependent on pore sizes.
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Figure 7. Decay kinetic traces of 30 nm porous layers with QD infiltration via (a) drop-casting and
(b) soaking along with the pure QD both in solution and thin film.

From steady-state absorption and photoluminescence spectroscopy, we can only derive
information on the presence of QDs on the substrates in general; it is not possible to
distinguish between QDs infiltrated in the pores or just sitting at the surface. An indication
of infiltration is that after treating a glass substrate following the soaking method, no QDs
are deposited on the substrate (for absorption spectra, see supporting information; Figure
S8a). Similar behavior was observed following the drop-casting method, where absorbance
at the first excitonic peak was reduced by a factor of six after washing, as depicted in Figure
S8b. This indicates that QDs deposited on the surface are removed after the washing step
of QD infiltration in porous layers, i.e., the spectra recorded are from the QDs inside pores.

For further proof for the successful deposition of QDs inside the pores of the porous
matrix, scanning electron microscopy (SEM) images were collected for porous layers on
silicon substrates treated via the methods described above. Due to the insufficient contrast,
it is difficult to localize QDs in the porous matrix in a top-view image. Nevertheless, the
opening of the pores at the surface of the structure (Figure 8a) seems to be smaller after
infiltration (Figure 8b–e), which could be caused by QD infiltration and filling of the pores.
Figure 8b,c compares the drop-casted layer with a drop-casted layer with additional solvent
treatment, which indicates an increased pore filling after additional solvent treatment, in
agreement with the results from absorption and photoluminescence spectroscopy. On the
other hand, porous structures gradually fill with soaking time due to higher infiltration
(Figure 8d,e). Similar behavior was observed for 10 nm pore-sized layers (Figure S9).
Unfortunately, due to limited spatial resolution of the method, cross-sectional images and
EDX elemental mapping could not be collected to directly determine the presence of QDs
inside the porous layers.
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Figure 8. SEM images of (a) untreated, (b) QD drop-casted, (c) QD drop-casted + solvent, (d) soaked
for 0.5 h and (e) soaked for 24 h porous silica layers of 30 nm pore size in silicon wafer.

To collect further proof of the presence of CdSe QDs inside the pores of the porous
silica layers, Secondary Ion Mass Spectrometry (SIMS) was performed with a depth profile.
A layer of less than 10 nm Platinum (Pt) was deposited on top of the porous layer for
electrical non-charging and as an indicator for when the porous layer structure was reached
in the sputtering process. The layer system of thin Pt film (for electrical non-charging)
on porous layers on the Si wafer were sputtered by an ion beam of the SIMS setup. The
secondary ions generated from the material were recorded over the depth. Figure 9 shows
the SIMS depth profile of a QD infiltrated porous silica layer of 30 nm pore size. Generated
secondary ions from the porous layers were detected with respect to time (plotted in the
X-axis), which is correlated to the depth of the layer. The region of interest in the SIMS
depth profiles is between the two dashed lines, which corresponds to the porous layer.
As expected, the untreated porous layer does not contain Cd, which is why no signal is
observed (Figure 9a). Figure 9b,c depicts the presence of Cd in the porous layers. Even after
washing the porous layers after infiltration, there seems to be small amounts of QDs on the
surface, which are seen in the early period (before the dashed line at 1 min) as a less intense
Cd signal. Moving towards the depth of the porous layer, the Cd concentration detected
increases, which indicates that a higher amount of Cd is present inside the porous layers.
The Cd signal levels off with increasing depth, and no signal is detected once the sputtering
reaches the Si wafer (dashed line at 6 min). Similar behavior was observed for the layers
with 10 nm pore size (see Supplementary Material Figure S10). Hence, the presence of CdSe
QDs in the pores is ensured by the SIMS data shown above. The measurement reveals a
gradient of deposition of CdSe across the layer and demonstrates that deeper pores may
not be reached in the deposition process.
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Figure 9. SIMS results of (a) drop-casted and untreated, (b) drop-casted and solvent treated, and
(c) soaked for 24 h porous silica layers of 30 nm pore size. The panels from top to bottom correspond
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porous structure (Pt signal disappears). The second dashed line (6 min) corresponds to the end of
porous silica layer, which is determined from the end point of the intense signal of the Si species.
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To summarize, we showed the successful infiltration of pre-synthesized CdSe QDs
into porous silica thin films with 10 nm and 30 nm pore sizes. It was observed that due to
a higher pore volume, 30 nm porous silica shows higher loading after treatment than the
10 nm porous silica matrix. This can be related to a better accessibility of the pores with
a higher pore size. The amount of infiltrated QDs can be influenced via drop-casting of
additional solvent on a pre-drop-casted porous matrix as well as via varying the soaking
time of a porous matrix in a QD solution. Via this method, a porous thin film matrix can be
doped with luminescent QDs, which keep their luminescent properties upon deposition.
This cannot be achieved via the SILAR process, which lacks controllability over nanocrystal
quality and size distribution.
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www.mdpi.com/article/10.3390/ma17174379/s1, Figure S1: Raw absorption spectra of QD infiltrated
porous silica layers, fitted scattering curve, and corrected absorption spectra; Figure S2: Uncorrected
absorption spectra of untreated porous silica layers of 10 nm and 30 nm pore sizes; Figure S3:
30 nm porous layer with (a) Top-view, (b) cross-section SEM images and 10 nm porous layers with
(c) Top-view, and (d) cross-section SEM images; Figure S4: SEM images of (a) untreated porous silica
layers of 10 nm pore size in silicon wafer and with (b) 5, (c) 10, (d) 15, and (e) 20 SILAR immersions;
Figure S5: (a) TEM image and (b) size distribution determined from TEM image analysis of CdSe QDs.
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spectra (a) and photoluminescence spectra (b) of 10 nm (solid lines) and 30 nm (dashed line) porous
layers after 0.5 h and 2 h soaking in a QD solution; Figure S7: Decay kinetic traces of 10 nm porous
layers with QD infiltration via (a) drop-casting and (b) soaking along with the pure QD both in
solution and thin film; Figure S8: Absorption spectra of glass substrate (a) soaked in a solution of
pre-synthesized CdSe QD. ‘Soaking: before washing’ was recorded after removing the substrate from
the QD solution, and ‘soaking: after washing’ was recorded after washing the substrate removed
from QD solution. Absorption spectra of glass substrate (b) drop-casted with pre-synthesized CdSe
QD. ‘Drop casting: before washing’ was recorded after drop-casting of QDs, and ‘drop casting: after
washing’ was recorded after washing the substrate drop-casted with QDs; Figure S9: SEM images of
(a) untreated, (b) QD drop-casted, (c) QD drop-casted + solvent, (d) soaked for 0.5 h, and (e) soaked
for 24 h porous silica layers of 10 nm pore size in silicon wafer; Figure S10: SIMS depth profile of
the Pt, Cd, and Si concentration of (a) untreated, (b) drop-casted + solvent, and (c) soaked for 24 h
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QD in porous silica layers of 10 nm pore size; Figure S11: XRD pattern of pre-synthesized CdSe QD
drop-casted on silicon wafer; Table S1: Fitting parameters obtained from triexponential fitting. τ and
A are the time component and relative amplitude. τav is the average lifetime. Time components are
presented in nanoseconds, ‘ns’.
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