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Abstract: To meet the development and application needs of advanced high-strength steel, the laser
welding of 22MnB5 hot-forming steel plates with thicknesses of 2 mm, 3 mm, and 4 mm was studied
in this paper. Mechanical testing revealed that as plate thickness increased, the tensile strength of
welded joints decreased from 1489 MPa to 1357 MPa and 1275 MPa, equating to 96%, 91%, and
88% of the corresponding base metal strength, respectively. The heat-affected zone exhibited the
lowest mechanical properties. Microstructural characterization showed that with increasing plate
thickness, martensite grains in the welded joints grew larger, transitioning from fine acicular to
larger island structures. Concurrently, dislocation density in the welded joints decreased gradually.
Furthermore, microstructural changes in the heat-affected zone were more pronounced than those in
the fusion zone. The larger grain size and reduced dislocation density softened the joint structure,
which consequently decreased the strength and hardness of the welded joint. Laser-welded joints of
three thicknesses can exceed 85% of the corresponding base metal strength, demonstrating strong
industrial application potential.

Keywords: 22MnB5; plate thickness; laser welding; microstructure; mechanical properties

1. Introduction

As environmental awareness rises and modern industry advances, the demand for
lightweight and safer transportation vehicles continues to grow [1,2]. As an advanced
ultra-high-strength steel, 22MnB5 hot-forming steel allows for reduced thickness while
maintaining structural strength, achieving the goal of lightweight design. It has been
widely used in load-bearing structural components such as A-pillars, B-pillars, and crash
beams in automobiles [3–5]. The thickness of these components typically does not exceed
2 mm. Welding, a key process for permanently joining metallic materials, is essential to the
mechanical performance of steel structures. In recent years, extensive research has been
conducted on the welding performance of 22MnB5 hot-forming steel with thicknesses of
2 mm or less [6–9].

According to the reviewed literature, the welding methods for 22MnB5 steel with
plate thicknesses of 2 mm and below include resistance spot welding [10–12], friction stir
welding [13], electric arc welding [14], and laser welding [15–17]. Among these methods,
laser welding stands out for its superior joint quality, with joint strength exceeding 85% of
the base metal (BM). Laser welding is also characterized by high efficiency, a high degree
of automation, and versatility across various welded structures, making it the mainstream
welding method for high-strength steels [18–21]. Zhao et al. [22] conducted a study on
butt-joint laser welding of 22MnB5 steel and QP980 steel, both with 1.2 mm plate thickness.
They analyzed the effect of heat input on the microstructural evolution and mechanical
properties of these dissimilar joints. They found that the welded heat-affected zone (HAZ)
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of the welded 22MnB5 hot-forming steel softened due to tempering. Kim et al. [23] studied
splice welding of 22MnB5 steel with a plate thickness of 1.8 mm using a laser welding
process. They obtained welded joints with a strength of about 85% of the BM and noted
that implementing a rapid cooling strategy can effectively reduce the width of the HAZ,
thereby minimizing softening. Aderibigbe et al. [24] conducted a study on laser stitching
welding of 22MnB5 steel with a thickness of 1.8 mm and dual-phase steels (DP600, DP800,
and DP1000), achieving welding joints with tensile properties comparable to those of the
BM. The findings regarding the welding of 22MnB5 hot-forming steel with thicknesses of
2 mm or less have been widely applied in the automotive field.

With the wider adoption of 22MnB5 hot-forming steel, its use has expanded beyond
the automotive industry to include special machinery manufacturing and military appli-
cations. These fields impose stricter standards on material structural strength, leading to
the conclusion that 22MnB5 steel with a thickness of less than 2 mm fails to meet these
requirements. Therefore, research on the welding process of 22MnB5 hot-forming steel
with thicknesses of 2 mm or greater has become crucial.

In previous studies, Zhao et al. [25] used TIG welding to weld 22MnB5 before and
after quenching with a plate thickness of 3 mm. They found that ferrite and pearlite in
the unquenched material transformed into martensite after quenching. The quenched BM-
welded joints exhibited good mechanical properties and a tensile strength of 1179.59 MPa,
which is 73% of the quenched BM. Tomasz et al. [26] studied MAG welding on 22MnB5 steel
pipes with a wall thickness of 3.6 mm. They obtained welded joints with good performance
and analyzed the corresponding joint organization. Currently, welding 22MnB5 steel with
thicknesses of 2 mm or greater primarily depends on arc welding. This is because welding
thicker materials requires a significant heat input to ensure complete penetration and form
a molten pool, a feature particularly suited to arc welding. However, the high heat input
and energy distribution in arc welding result in a wide fusion zone (FZ) and large grain size
in the HAZ, weakening the welded joints. Arc welding typically results in less than 80% of
the strength of quenched BM, limiting its practical industrial applications. However, the
growing use of high-power lasers offers the potential to overcome these limitations. Laser
welding of 22MnB5 hot-forming steel with thicknesses of 2 mm and above is expected to
become a significant research focus.

Therefore, the laser welding of 22MnB5 hot-forming steel with plate thicknesses of
2 mm, 3 mm, and 4 mm was studied in this paper. The influence of plate thickness on the
mechanical properties and microstructure of welded joints was revealed through mechan-
ical property testing and microstructure characterization of welded joints. This research
provides more application basis for laser welding of hot-forming steel with thicknesses of
2 mm and above.

2. Materials and Methods
2.1. Materials

The initial materials for the tests were supplied uncoated 22MnB5 steel plates with
plate thicknesses of 2 mm, 3 mm, and 4 mm, respectively, and the chemical compositions are
shown in Table 1. The 22MnB5 steel, as a low-alloy high-strength steel, achieves its excellent
performance due to its optimized chemical composition. Among them, the addition of
manganese (Mn) significantly enhances the strength of the steel, while even a very small
amount of boron (B) notably improves its hardenability [27,28].

Table 1. Chemical composition of 22MnB5 steel (wt.%).

Element C Mn Si S P Al B Fe

wt.% 0.22 1.22 0.23 0.0018 0.022 0.0456 0.0033 Bal.

The 22MnB5 plates, with thicknesses of 2 mm, 3 mm, and 4 mm, were cut into
150 mm × 75 mm small plates. The steel plates of different thicknesses were batch-processed
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using the direct hot-forming technique in a box-type high-temperature furnace (model SX-
G03173). The plates were heated to 950 ◦C for 5 min to achieve complete austenitization [29].
They were then immediately transferred to a custom-made flat die with a circulating cool-
ing water channel for hot pressing and pressure quenching, resulting in the transformation
of the BM from austenite to martensite.

2.2. Experimental Methods

Laser welding was performed on hot-forming BM with plate thicknesses of 2 mm,
3 mm, and 4 mm, using butt joints as shown in Figure 1. Before welding, the surfaces
were sequentially sanded with 300 # to 1200 # sandpaper and then cleaned with acetone to
remove surface oils and oxides.
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Figure 1. Schematic diagram of laser welding.

The laser model used for the welding test is the IPG-6kW YLR-U, operated with
a KUKA robot for automation. The laser has a maximum power of 6 kW, a maximum
welding speed of 100 mm/s, a wavelength of 1070 ± 10 nm, and an optical fiber diameter
of 200 µm. Welding was conducted with 99.99% pure argon for gas protection, with a flow
rate of 30 L/min. Based on the relevant literature [30] and pre-test results, the defocus
amount for laser welding was set to 0, as this produces a weld with an optimal depth-to-
width ratio. Welded joints with varying surface quality and mechanical properties were
achieved by adjusting the laser power and welding speed. On the basis of several groups
of welding test comparisons, three kinds of high-quality welded joints were identified.
The laser power and welding speed of the 2 mm thick steel plate were determined to
be 1.6 kW and 21 mm/s. When welding 3 mm and 4 mm thick steel plates, the welding
speed and laser power were increased appropriately in order to reduce the adverse effects
of high-temperature residence time on the joint microstructure. The welding speed was
55 mm/s, with laser powers set at 4.4 kW and 4.9 kW, respectively.

To assess the mechanical properties of welded joints under different welding param-
eters, the Vickers hardness of the specimens was measured using an automatic micro
hardness tester model HVS-1000A. The indenter material is diamond. The testing pa-
rameters included a load of 500 g, a holding time of 10 s, and a test spacing of 0.1 mm.
The tensile properties of the welded joints were evaluated using the DWD-50 electronic
universal testing machine, which has a maximum tensile force of 50 kN and a tensile rate
set at 2 mm/min. The strain was measured by an extensometer with a standard distance of
25 mm. To prevent cutting marks on the tensile specimens from affecting the test results,
the cutting surfaces were polished with sandpaper prior to testing. For each welding
parameter, three tensile specimens were tested, and the average maximum tensile strength
of these specimens was used for characterization. Data with significant discrepancies were
discarded, and new specimens were prepared for retesting.

Specimens measuring 6 mm × 4 mm × plate thickness were cut from the weld area
using a cutting machine. The polished specimens were etched with a 4% nitric acid–alcohol
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solution for 10 s. After etching, the specimens were cleaned with alcohol and dried with air.
The microstructure size and morphology of the specimens were observed using a tungsten
filament scanning electron microscope, model TESCAN VEGA3-XMU. An alcohol solution
containing 5% HClO4 was used as the electrolyte for electrolysis, with platinum electrodes
as the electrodes. During electrolysis, the specimens were connected to the positive pole of
the power supply, while the platinum electrodes were connected to the negative pole at a
voltage of 30 V for 30 s. Liquid nitrogen was used to maintain the electrolyte temperature
at 0 ◦C or below during the process. After electrolysis, the specimens were cleaned with
alcohol and dried with air. Grain size, dislocation density, and recrystallization in the
FZ and HAZ were statistically analyzed using a thermal field emission scanning electron
microscope (SEM, JSM-7900F) with an electron backscattered diffraction (EBSD) probe.

To determine the phase composition of the material, the samples were sanded progres-
sively with 600 # to 7000 # sandpaper to achieve a thickness of 100 µm or less. The thickness
was then reduced to below 100 nm using ion thinning. After ion thinning, a transmission
electron microscope (TEM, Talos F200X) was used to observe the microscopic morphology
and to analyze the selected area electron diffraction of supplied-state BM, hot-forming BM,
and welded FZ.

3. Results and Discussion
3.1. Microstructure and Properties of Base Metals Before and After Hot Forming

The microstructural morphology of the BM before and after hot forming is shown in
Figure 2. Figure 2a shows the microstructure of the 22MnB5 steel plates before hot forming,
which mainly consists of lamellar pearlite and ferrite distributed in bands along the rolling
direction. The microstructures of 22MnB5 steel plates with thicknesses of 2 mm, 3 mm,
and 4 mm after hot forming are shown in Figure 2b–d, which are all transformed into
martensite. Tensile tests were carried out on BM under two states respectively, and the
tensile test results are shown in Table 2. The tensile tests reveal that the tensile strength of
the supplied-state 22MnB5 steel plates before hot forming is 643 MPa, with an elongation
of 16.41%, indicating good plasticity. The tensile strength of the BM after hot forming
increased significantly, while elongation decreased markedly.
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Table 2. Tensile test results of base metals.

Processing State of BM Tensile Strength (MPa) Elongation (%)

Supplied state 643 ± 13 16.41 ± 1.61
Hot forming (2 mm) 1552 ± 7 9.58 ± 0.73
Hot forming (3 mm) 1482 ± 7 9.77 ± 0.55
Hot forming (4 mm) 1444 ± 8 9.92 ± 0.64

3.2. Mechanical Properties of Welded Joints

The tensile curves and tensile strength trends of the specimens with three different
plate thicknesses are shown in Figure 3. All specimens exhibited tensile fractures in the
HAZ. The highest tensile strength of the welded joints, 1489 MPa, was found in the 2 mm
plate thickness, reaching 96% of the corresponding hot-forming BM. As plate thickness
increased, the tensile strength of specimens decreased to 1357 MPa and 1275 MPa. The
tensile strength of the welded joints with 3 mm and 4 mm plate thicknesses were 91% and
88% of the corresponding hot-forming BM, respectively. Elongation decreased from 7.52%
to 3.02% and 2.13% in the specimens. The significant decrease in elongation is attributed
to stress concentration [31,32]. The tensile strength of the welded joints for all three plate
thicknesses exceeded 85% of the corresponding hot-forming BM, indicating promising
potential for industrial applications.
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Figure 4 shows the tensile fracture morphology of welded joints. As shown in
Figure 4a–c, fracture zones with a crystalline appearance are present in the fracture re-
gion of the specimens, indicating brittle fracture. This phenomenon is more pronounced
in the samples with lower elongation values. Further localized magnification shows that
the fracture of the specimen with a thickness of 2 mm contains many dimples of varying
sizes (Figure 4d), indicating ductile fracture. As the specimen thickness increases, both the
size and number of dimples decrease significantly (Figure 4e,f), while numerous river-like
streaks appear, indicating quasi-cleavage fracture.

The microhardness distribution of the welded joints is shown in Figure 5. Analysis
shows that the average microhardness of the FZ and HAZ with the 2 mm plate thickness
is the highest, and the overall hardness fluctuation is relatively small. As the plate thick-
ness increased, the average microhardness of the FZ and HAZ gradually decreased. The
minimum microhardness values in the welded joints, 422 HV, 315 HV, and 291 HV, were
observed in the HAZ. The HAZ, being the weakest area in terms of mechanical properties,
is the first to fracture during tensile testing.
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3.3. Microstructure of Welded Joints

Figure 6 shows the SEM images of three types of welded-joint FZ and HAZ. The differ-
ence in grain size of welded joints with different plate thicknesses is relatively obvious. The
2 mm welded joint’s FZ and HAZ regions contain primarily fine acicular martensite. The
grains are relatively small, around 10 µm, with minimal size variation. As plate thickness
increased, martensite size in the welded joints grew significantly. Grain growth was more
pronounced in the HAZ than in the FZ. Additionally, the morphology of martensite in
welded joints also changed. As shown in Figure 6a,d, the martensite of both FZ and HAZ
with 2 mm plate thickness showed a fine lath-like or acicular shape. However, the FZ and
HAZ microstructure of welded joints with 3 mm and 4 mm thicknesses consisted of acicular
martensite and a large amount of island martensite, and the area of island martensite
increased with increasing plate thickness.
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Analysis shows that as plate thickness increases, higher heat input and lower cooling
rate promote the growth of austenite grains in the joint microstructure. Martensite forms
through the transformation of austenite under non-equilibrium conditions. Larger austenite
grains result in a reduction in grain boundary numbers, thereby reducing the nucleation
sites for martensite. Consequently, both the amount of martensite and its formation sites
decrease, while the tendency to form island martensite increases. When the cooling rate is
slower, more heat is transferred to the HAZ and the grains have more time to grow, which
results in further grain growth. During grain growth, the number of grain boundaries
and dislocation density will also decrease, weakening the strengthening effect of the joint
microstructure, which in turn reduces the strength and hardness of the welded joint.

As plate thickness and heat input increase, larger grain sizes inevitably form in welded
joints. The grain morphology gradually shifts from acicular to island-like. Simultaneously,
the dislocation density decreases. As a result, the welded joint softens. This negative effect
becomes more pronounced as plate thickness increases.

3.4. EBSD Analysis of Welded Joints

To investigate the effects of different plate thicknesses on grain size, dislocation density,
and recrystallization of the welded joints, the samples were characterized using EBSD.

3.4.1. Fusion Zone

The Inverse Pole Figure (IPF) and average grain size statistics of the welded-joint FZ
for three plate thicknesses are shown in Figure 7. Different colors in the figure represent
different spatial orientations of the grains, with red indicating the direction [001], green
indicating the direction [101], and blue indicating the direction [111]. Columnar crystal
zones are observed in the FZ, formed as solidification progresses from the edges to the
center, with grains growing in the direction of the thermal gradient [22]. Statistical analysis
shows that the average grain sizes of FZ in welded joints with thicknesses of 2 mm, 3 mm,
and 4 mm are 0.52 µm, 1.51 µm, and 2.57 µm, respectively. The grain size of FZ becomes
larger with the increase in plate thickness. The effect of fine-grain strengthening gradually
weakened, reducing the mechanical properties of welded joints. This is consistent with the
previous analysis.
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To gain a comprehensive understanding of the microstructural changes in the welded
FZ, the samples with different thicknesses were further characterized. Figure 8 displays the
Kernel Average Misorientation (KAM) maps for the FZ of three thicknesses of welded joints.
KAM is a method used in EBSD data analysis to characterize local misorientation angles
and is also used to estimate the dislocation density in samples [33]. KAM is positively
correlated with the density of geometrically necessary dislocations (GNDs) generated by
phase transformations [34]. Blue regions indicate lower GND densities, while red and
green regions represent higher GND densities [35]. According to the statistics, the KAM
values of the welded FZ for 2 mm, 3 mm, and 4 mm thick plates are 2.52◦, 1.43◦, and 1.37◦,
respectively. Dislocation density decreases with increasing plate thickness, which reduces
the mechanical properties of welded joints. Figure 9 shows the recrystallization ratios of
three welded-joint FZs. In this figure, blue represents recrystallized grains (with orientation
differences of 0~2◦), yellow denotes subgrains (with orientation differences ranging from
2◦ to 7.5◦), and red indicates deformed grains (with orientation differences greater than
7.5◦). The recrystallization ratios (frec.) of the welded-joint FZ are 4.0%, 5.3%, and 5.9% for
2 mm, 3 mm, and 4 mm plate thicknesses, respectively.
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This indicates that higher temperatures with lower cooling rates promote recrystalliza-
tion as the plate thickness and welding heat input increase. Recrystallization involves grain
boundary migration, which reduces dislocation density. This finding is consistent with the
KAM map analysis. As dislocation density decreases, the resistance of the welded FZ to
deformation also decreases, resulting in a gradual reduction in the strength and hardness
of the welded joints.

3.4.2. Heat-Affected Zone

Under the action of the laser heat source, the HAZ is affected by the welding thermal
cycle and the microstructure will change. Moreover, HAZ is often the location where
fracture occurs in welded joints. Therefore, the HAZ of welded joints is analyzed.

The IPF and average grain size statistics for the HAZ of the three welded joints are
shown in Figure 10. The figure shows that each zone is composed of coarse grains and
some finer grains. The presence of coarse grains increases the average grain size. The
statistics show that the average grain sizes of HAZ for joints with plate thicknesses of 2 mm,
3 mm, and 4 mm are 1.8 µm, 2.52 µm, and 2.85 µm, respectively. It is clear that the size of
grain growth is positively correlated with plate thickness. The average grain size of the
welded HAZ is coarser than that of the corresponding FZ. The larger grain size reduces
the mechanical properties of the welded joints. This is one of the main reasons why tensile
fracture usually occurs in HAZ.
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Figure 11 shows the KAM maps for the HAZ of the three welded joints. Statistically,
the KAM values are 2.04◦, 1.34◦, and 1.10◦, respectively, with the increase in plate thickness.
It shows that the dislocation density of HAZ decreases with increasing plate thickness,
which is the same trend as the dislocation density of FZ. Similarly, the recrystallization
of HAZ changes with increasing heat input. Figure 12 shows the recrystallization ratio of
HAZ for the three welded joints. The statistics show that the percentage of recrystallized
HAZ in welded joints with 2 mm, 3 mm, and 4 mm plate thicknesses are 6.6%, 7.2%, and
7.9%, respectively. This indicates that the number of recrystallized grains in the HAZ
increases with the increase of plate thickness, and, concurrently, the dislocation density
decreases. In addition, the dislocation density in the HAZ decreases to smaller values with
increasing plate thickness compared to the welded FZ, which is another main reason for
tensile specimen fracture in the HAZ.
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3.5. Phase and Structure Analysis

In order to determine the microstructural composition of 22MnB5 steel plates, the
corresponding samples were characterized and analyzed for their microstructure. TEM
images of supplied-state BM, hot-forming BM, and typical welded-joint FZ are shown
in Figure 13.

Analysis of Figure 13a reveals that the supplied-state BM exhibits a pearlitic matrix
with a small amount of ferrite dispersed within it. This observation is corroborated by the
electron diffraction pattern in Figure 13b, which identifies the α-Fe phase and Fe3C phase.

Figure 13c shows the bright field phase of the BM after hot forming. Analysis indicates
that pearlite and ferrite in the BM have been transformed into acicular martensite, resulting
in a fully martensitic structure. Figure 13d presents the electron diffraction pattern of the
BM after hot forming, confirming a martensitic phase with no other phases present, and
indicating a polycrystalline diffraction pattern. This suggests that the martensite grains
are small.
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bright-field phase and selected-area electron diffraction pattern of the welded FZ.

Figure 13e shows the bright field phase of the welded-joint FZ. Compared to Figure 13c,
the martensite size in the FZ has increased, with a small amount of acicular martensite
interspersed among the island martensite. Figure 13f presents the electron diffraction
pattern of the welded FZ, confirming the martensite phase. Unlike the hot-forming BM,
which shows a polycrystalline diffraction pattern, the FZ exhibits a single-crystal diffraction
pattern. This indicates that the martensite grains in the FZ are larger than those in the
hot-forming BM. This is primarily because the hot-forming BM is cooled using water-cooled
molds, resulting in a faster cooling rate and smaller martensite grains. In contrast, the
welded FZ cools in air, where heat dissipation to the BM on both sides of the molten pool
results in a slower cooling rate and more time for martensite growth. Consequently, the
martensite grains in the welded FZ are larger than those in the hot-forming BM.

3.6. Microstructure Evolution

Figure 14 shows the microstructure evolution of 22MnB5 during hot forming and weld-
ing. In the heating and holding stage of hot forming, austenite precipitates preferentially
at the grain boundary between pearlite and ferrite and grows gradually [36]. Subsequent
cooling conditions reached a critical cooling rate and martensite was rapidly generated
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within the austenite crystals. Since the three thicknesses of steel plates were subjected to
the same hot-forming conditions, there were some differences in the microstructure and
morphology of the martensite. Martensite and austenite have good interfacial coherence,
which reduces the driving force required for interfacial migration [37]. Therefore, the
hot-forming microstructure will have an effect on the subsequent microstructure of the
welded joint.
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As shown in Figure 6b,c,e,f, two distinct martensite morphologies, acicular and in-
sular, appear in the welded-joint microstructure. A similar phenomenon was found by
Fang et al. [15]. This can be explained by the martensite and austenite formation process.
Smaller martensite grain sizes result in higher boundary densities, offering more nucleation
sites for the austenite transformation [38]. Smaller austenite grain sizes favor the generation
of finer-sized acicular martensite. During welding, in the FZ and HAZ zones, the grain
size is strongly influenced by the cooling conditions. The increase in plate thickness results
in a longer high-temperature residence time at the joint, reducing the cooling rate. Under
smaller subcooling conditions, the grains tend to grow further. Concurrently, along with the
annihilation and regeneration of dislocations, the tissue morphology is preserved during
the subsequent cooling process.

The above analysis shows that grain refinement before welding is conducive to im-
proving the mechanical properties of welded joints. During welding, rapid cooling of
the molten pool can effectively alleviate the decrease in mechanical properties as plate
thickness increases.

4. Conclusions

In this paper, 22MnB5 hot-forming steel plates were prepared by the quenching process.
Laser welding tests were carried out on steel plates of 2 mm, 3 mm, and 4 mm thicknesses,
respectively. The mechanical properties and microstructure of the three thicknesses of
welded joints were studied. Based on the analysis and discussion of experimental results,
the following conclusions were obtained.

1. The strength and hardness of the welded joints decreased gradually as plate thickness
increased. The tensile strength decreased from 1489 MPa to 1357 MPa and 1275 MPa.
The HAZ exhibited the lowest mechanical properties. This reduction in joint properties
can be attributed to the increase in martensite grain size and the decrease in dislocation
density.
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2. SEM and EBSD analysis showed that as plate thickness increased, fine acicular marten-
site was gradually replaced by larger island martensite in the welded joints. The dislo-
cation density in the martensite microstructure gradually decreased. Microstructural
changes in the HAZ were more pronounced than those in the FZ. TEM analysis con-
firmed the transformation of the martensite microstructure. The increase in martensite
size and the decrease in dislocation density softened the welded joints, resulting in
a reduction in their mechanical properties.

3. The tensile strength of the laser-welded joints for three plate thicknesses all exceeded
85% of the corresponding BM strength, showing promising potential for industrial
applications. This paper provided a reference for further improving the mechanical
properties of welded joints.
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