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Abstract: Thin-walled conical cylinders with three ring ribs (TWCCTRR) are the critical
bearing-load components of aerospace equipment, and now the high-performance fabri-
cation of TWCCTRR is confronting great challenges. Constraint ring rolling (CRR) is a
new plastic-forming technique that shows great potential in forming high-performance
TWCCTRR. However, unreasonable material flow (UMF) is prone to occur in the CRR of
TWCCTRR, which weakens its performance. Therefore, the problem of UMF in the CRR of
TWCCTRR is investigated in this work. Through finite element (FE) simulation, it is found
that UMF occurs at the bottom of the middle rib in single-pass CRR of TWCCTRR because
the rib at the middle part is the earliest among the three ribs to be completely filled. There-
fore, the double-pass CRR process is proposed for forming TWCCTRR without UMF, which
makes the three ribs fully fill simultaneously to avoid UMF. Based on the FE simulation,
in contrast to the single-pass CRR, the deformation homogeneity of TWCCTRR obviously
improved, and meanwhile, the maximum radial forming force is approximately reduced by
15% in double-pass CRR due to the variation in material flow mode. Investigation results
offer theoretical guidance for the CRR of high-performance TWCCTRR.

Keywords: conical cylinders with three ring ribs; constraint ring rolling; unreasonable
material flow; process optimization

1. Introduction
Thin-walled conical cylinders with three ring ribs (TWCCTRR) are critical light-weight

carrying components of aerospace equipment, and they must obtain high performance so
as to carry heavy loads under extreme external environments. TWCCTRR, generally con-
taining one thin conical skin and three high ring ribs, show extreme geometry, which makes
it hard to manufacture high-performance TWCCTRR. Hence, TWCCTRR is now mainly
manufactured by the cutting process. As new aerospace equipment is developing toward
the direction of higher flight safety, higher carrying capacity and longer flight distance [1],
it is essential to further improve the performance of TWCCTRR. Nevertheless, the cutting
process can no longer satisfy the manufacturing requirements of TWCCTRR utilized in new
aerospace equipment because it fails to refine grains and destroys metal streamlines [2,3].
In this situation, it is also necessary to develop a new advanced manufacturing method to
improve the performance of TWCCTRR further.

Constraint ring rolling (CRR) is a new plastic forming technique, and it is very applica-
ble for forming TWCCTRR [4]. In the CRR of TWCCTRR, the outer radius and axial height
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of conical billet do not change under the role of constraint mold and upper/lower plate, as
shown in Figure 1, by which the forming stability can be guaranteed, and meanwhile, much
material is enforced to flow axially. Through the coordinated motion of molds (i.e., both
the constraint mold and upper/lower mold rotate along their axes, and the mandrel trans-
lates radially and meanwhile rotates along its axis), the conical billet is gradually formed
into TWCCTRR, and consequently, TWCCTRR can obtain refined grains and complete
material streamlines. Owning to the above principle, CRR has great potential in forming
high-performance TWCCTRR.
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Regarding the new CRR technology, the authors’ research team has conducted some
basic investigations previously. Based on the FE simulation and experiment, the deforma-
tion mechanism and forming rules in the CRR of a thin-walled cylinder with two ring ribs
were revealed [5]. Further, the prediction model of rib height in the CRR of a thin-walled
cylinder with two ring ribs was constructed by mechanical modelling [6], and its reliabil-
ity was verified by physical experiments. Using this model, the uncoordinated growth
mechanisms of the two ribs were revealed. Compared to the CRR of a thin-walled cylinder
with two ring ribs, the material flow is more complicated in the CRR of TWCCTRR, which
may cause a shrinkage defect and unreasonable material flow (UMF) at the junction of the
skin and the middle rib. Therefore, the effects of geometric parameters on the shrinkage
defect in the CRR of TWCCTRR were analyzed, and the shrinkage defect was eliminated
by optimizing geometric parameters [7]. In addition, the material flow prediction for the
CRR of TWCCTRR was constructed and validated [4]. Using this material flow prediction
model, the relationship between the conical angle of the skin, the position of the middle rib
and the UMF in the CRR of TWCCTRR was established, and the material flow mechanism
on the condition that UMF does not occur was also revealed [4]. It should be emphasized
that UMF seriously weakens the mechanical properties of forgings [8], so UMF should
be avoided in the CRR of TWCCTRR. However, UMF is prone to occur in the CRR of
TWCCTRR due to uncoordinated material flow, and there is still no effective method of
avoiding UMF.

In practice, material flow control is very critical to the forming quality of metallic
components [9], and it is still widely studied. Until now, many investigations on material
flow control in forming metallic components have been conducted. By adjusting extrusion
parameters to narrow material flow deviation in the cross-section of the extruded profile
with complicated geometry, the performance homogeneity of the extruded profile was
improved [10]. It has been proven that both material anisotropy and loading mode are
the main causes of anisotropy material flow in the forming of metallic plate, and thus, a
new constitutive model considering time-varying r-value was developed by Yang et al.
to improve the simulation accuracy of anisotropy material flow in metallic plate forming
processes [11]. In addition, uncoordinated material flow easily promotes the occurrence
of folding defects in metal forming, and the formation causes of folding defects in the
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plastic forming of thin-walled tubes were revealed by Li et al. and Meng et al. [12,13]. As
is well known, the folding defect induced by uncoordinated material flow would directly
make the product scrapped. Therefore, the universal prediction model for various types of
folding defects in local loading forming of large, complicated components was developed
and validated by Gao et al. [14,15].

Furthermore, the control method of folding defect was proposed by Gao et al. [16,17],
by which the size limit of the formed component without folding defect was effectively
lifted. Aside from the folding defect, the defects of concave and rib underfilling also easily
occur in metal forming due to uncoordinated material flow, which seriously lowers the
forming accuracy of the product. For the concave defect, Xia et al. revealed the formation
cause of this defect in the flow forming of cylinder part with ribs by analyzing the stress and
velocity fields around the concave defect [18]. For rib underfilling, scholars mainly adopted
the approach of optimizing process parameters or billet shape to reasonably adjust material
allocation so as to eliminate the defect of rib underfilling [19–21]. With the principle of
differential material flow velocity, Zhou et al. proposed a new differential-velocity extrusion
technique for manufacturing curved bars, and the relations between process parameters,
material flow and the shape of the curved bar in differential-velocity extrusion forming
were analyzed by combining analytical solution, FE simulation and experiment [22–24].

Summarily, the material flow control methods proposed in the previous studies were
used to eliminate the defects of concave, folding and underfilling in metal forming, but they
cannot be used to eliminate the defect of UMF. Therefore, this work mainly concentrates
on the UMF problem in the CRR of TWCCTR. Firstly, the formation rules and cause of
UMF in single-pass CRR of TWCCTRR are analyzed based on physical experiments and FE
simulation. Then, the double-pass CRR process for forming TWCCTRR without UMF is
proposed, and its feasibility is validated by FE simulation. Finally, the deformation rules
of TWCCTRR in single-pass CRR and double-pass CRR are contrastively analyzed by FE
simulation.

2. Analysis of Material Flow in Single-Pass CRR of TWCCTRR
2.1. Material and Geometric Parameters

The defect of UMF easily occurs in the single-pass CRR of TWCCTRR because of
uncoordinated material flow in the axial direction. Therefore, a typical 7055 aluminum
alloy TWCCTRR utilized in aerospace equipment is chosen as a research object to analyze
material flow rules in single-pass CRR of TWCCTRR, the 1:1 dimension of which is shown
in Figure 2. The outer diameter, axial height and conical angle of conical billet used for
single-pass CRR of TWCCTRR are respectively the same as that of target TWCCTRR in
Figure 2.

2.2. Physical Experiment

Considering that the specific CRR equipment for forming large-scale aluminum alloy
TWCCTRR is still lacking, a physical experiment of plasticine for single-pass CRR of
TWCCTRR is conducted on a CNC gear shaper machine manufactured by Tianjin Machine
tools Co., TLD of Tianjin, China. As shown in Figure 3a,b, a conical billet of plasticine
with 13.6 mm in radial wall thickness is well matched with the conical cavity of constraint
mold; that is, the outer circumferential surface of the conical billet contacts with the inner
circumferential surface of constraint mold, and the axial height of conical billet is the same
as that of constraint mold. In addition, the upper plate and lower plate are respectively
installed on the upper and lower end surfaces of the constraint mold, and the lower plate is
linked with the rotational platform of the machine. Moreover, the mandrel, linked with the
spindle of the machine, makes contact with the inner surface of the conical billet, and the
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distance from the lower surface of the mandrel to the lower surface of the conical billet is
15 mm. To improve the material fluidity of the plasticine conical billet, the working surfaces
of the molds are coated with resin lubricant in advance. For the physical experiment of the
single-pass CRR, the feed speed and rotation speed of the constraint mold are 0.2 mm/s
and 1.57 rad/s, respectively; the rotation speed of the mandrel is 3.14 rad/s and the key
dimensions of molds are given in Table 1.

Materials 2025, 18, x FOR PEER REVIEW 4 of 16 
 

 

 

Figure 2. Dimensional diagram of typical TWCCTRR utilized in aerospace equipment. 

2.2. Physical Experiment 

Considering that the specific CRR equipment for forming large-scale aluminum alloy 
TWCCTRR is still lacking, a physical experiment of plasticine for single-pass CRR of 
TWCCTRR is conducted on a CNC gear shaper machine manufactured by Tianjin Ma-
chine tools Co., TLD of Tianjin, China. As shown in Figure 3a,b, a conical billet of plasti-
cine with 13.6 mm in radial wall thickness is well matched with the conical cavity of con-
straint mold; that is, the outer circumferential surface of the conical billet contacts with 
the inner circumferential surface of constraint mold, and the axial height of conical billet 
is the same as that of constraint mold. In addition, the upper plate and lower plate are 
respectively installed on the upper and lower end surfaces of the constraint mold, and the 
lower plate is linked with the rotational platform of the machine. Moreover, the mandrel, 
linked with the spindle of the machine, makes contact with the inner surface of the conical 
billet, and the distance from the lower surface of the mandrel to the lower surface of the 
conical billet is 15 mm. To improve the material fluidity of the plasticine conical billet, the 
working surfaces of the molds are coated with resin lubricant in advance. For the physical 
experiment of the single-pass CRR, the feed speed and rotation speed of the constraint 
mold are 0.2 mm/s and 1.57 rad/s, respectively; the rotation speed of the mandrel is 3.14 
rad/s and the key dimensions of molds are given in Table 1. 

 
(a) (b) 

Figure 2. Dimensional diagram of typical TWCCTRR utilized in aerospace equipment.

Materials 2025, 18, x FOR PEER REVIEW 5 of 17 
 

 

 

 
(a) (b) 

 

(c) 

Figure 3. Physical experiment for single-pass CRR of TWCCTRR: (a) appearance of molds and billet; 
(b) experimental setup; (c) appearance of formed plasticine TWCCTRR. 

Figure 3c displays the appearance of formed TWCCTRR as the feed amount of con-
straint mold reaches 8 mm. It shows that the thickness of skin is greatly reduced, and the 
height of three ribs is greatly increased. Among the three ribs, the height of the rib at the 
middle part is the largest, and the height of the rib at the small part is the smallest. This 
phenomenon was also reflected in the single-pass CRR experiment of small-scale AA1050 
TWCCTRR [4]. The above analysis illustrates that there exists an obvious gap in the 
amount of material flowing toward the rib at the large/middle/small part in single-pass 
CRR.  

Table 1. Key dimensions of molds in the physical experiment of the single-pass CRR of 
TWCCTRR. 

Parameter Value 
Diameter of conical loading surface of mandrel at the large part  180 mm 

Axial height of the conical loading surface of mandrel 150 mm 
Width of cavity on the conical loading surface of mandrel  20 mm 

Distance from the cavity on the conical loading surface to the upper surface 
of the conical loading surface of mandrel 

41 mm 

Conical angle of the conical loading surface of mandrel  7.2° 
Inner diameter of lower plate 190 mm 
Inner diameter of upper plate  146 mm 

Figure 3. Physical experiment for single-pass CRR of TWCCTRR: (a) appearance of molds and billet;
(b) experimental setup; (c) appearance of formed plasticine TWCCTRR.



Materials 2025, 18, 1262 5 of 15

Table 1. Key dimensions of molds in the physical experiment of the single-pass CRR of TWCCTRR.

Parameter Value

Diameter of conical loading surface of mandrel at the large part 180 mm
Axial height of the conical loading surface of mandrel 150 mm

Width of cavity on the conical loading surface of mandrel 20 mm
Distance from the cavity on the conical loading surface to the upper

surface of the conical loading surface of mandrel 41 mm

Conical angle of the conical loading surface of mandrel 7.2◦

Inner diameter of lower plate 190 mm
Inner diameter of upper plate 146 mm

Figure 3c displays the appearance of formed TWCCTRR as the feed amount of con-
straint mold reaches 8 mm. It shows that the thickness of skin is greatly reduced, and the
height of three ribs is greatly increased. Among the three ribs, the height of the rib at the
middle part is the largest, and the height of the rib at the small part is the smallest. This
phenomenon was also reflected in the single-pass CRR experiment of small-scale AA1050
TWCCTRR [4]. The above analysis illustrates that there exists an obvious gap in the amount
of material flowing toward the rib at the large/middle/small part in single-pass CRR.

2.3. Numerical Modeling and Analysis

To clearly analyze the material flow rules in single-pass CRR of TWCCTRR, a rigid
visco-plastic FE model is established in DEFORM-3D software with the 11th version, and
the reliability of FE model was validated in the literature [4]. In this FE model, all molds are
defined as rigid bodies, and the conical billet is defined as a deformable body. To ensure the
efficiency and accuracy of FE simulation, the conical billet is divided into 400,000 tetrahedral
meshes with the mesh size of 0.5 mm~1.5 mm, and the auto-remeshing criteria with the
relative interference depth of 0.7 is adopted to avoid mesh distortion in large deformation.
The material of conical billet is annealed 7055 aluminum alloy fabricated by spray forming,
and the constitutive model of this material considering material viscosity is obtained from
the literature [25]. The temperature of the conical billet and molds is still 723 K, and the
contact mode between the conical billet and molds is selected as constant shear friction. It
was experimentally verified that the friction factor between the aluminum alloy billet and
the steel molds in hot forming using the MoS2 lubricant is approximately 0.3 [26], so the
friction factor in this FE model is set as 0.3. The rotation speed of the constraint mold is
21.8 rad/s. The mandrel passively rotates along its axis and, meanwhile, radially translates
with a speed of 1 mm/s, and the total feed amount of the mandrel is 9.6 mm.

Through FE simulation, the shape revolution rules of deformed TWCCTRR during
single-pass CRR of TWCCTRR are displayed, as shown in Figure 4. As can be seen from
Figure 4, with the radial feed of the mandrel, the rib at the middle part shows the fastest
growth rate, while the rib at the small part shows the slowest growth rate. This is because
the distance from the rib at the middle part to the rib at the large part is approximately
twice that from the rib at the middle part to the rib at the small part. According to the
literature [4], it is known that the amount of material flowing from the upper loading area
of the skin toward the rib at the small part is much less than that of material flowing from
the lower loading area of the skin to the rib at the large part, resulting in that the growth
rate of the rib at the small part is smaller than that of the rib at the large part. On the other
hand, the amount of material flowing from both the upper and lower loading areas of the
skin to the rib at the middle part is slightly greater than that of material flowing from the
lower loading area of the skin to the rib at the large part, and thus the growth rate of the rib
at the middle part is slightly larger than that of the rib at the large part under the combined
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influences of ribs’ profile sizes. When the rolling time t = 8.2 s, the rib at the middle part is
completely filled (i.e., the height of the rib at the middle part reaches its target value), while
the other two ribs are not completely filled. Then, as the wall thickness of the skin further
decreases, the height of the rib at the middle part remains unchanged, and the other two
ribs continuously grow. When the rolling time t = 9.2 s, the rib at the large part is completely
filled, while the rib at the small part is still not completely filled. Then, as the further feed
of the mandrel, the height of the rib at the large/middle part remains unchanged, and thus,
all the material within the upper and lower loading areas of the skin flows toward the rib
at the small part, resulting in that the height of the rib at the small part quickly increases to
its target value. It can also be observed from Figure 4 that during the single-pass CRR of
TWCCTRR, macro defects such as wrinkling, shrinkage and underfilling do not occur.
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Notably, UMF does not occur around the two ribs located at the large and small parts
in the CRR of TWCCTRR [2] because the material flows from the skin to these two ribs
under the cooperative action of molds. However, UMF easily occurs around the rib located
at the middle part because there exists a complicated competition relation between the
material flow at the upper loading area of the skin and the material flow at the lower
loading area of the skin. Therefore, it is necessary to analyze the evolution rules of material
streamline around the rib at the middle part in the CRR of TWCCTRR. Based on the FE
simulation, the distribution rules of material streamline around the rib at the middle part
in single-pass CRR of TWCCTRR are revealed, as shown in Figure 5.
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When the rolling time t = 8.2 s, the rib at the middle part is not completely filled, and it
can be observed from the shape of material streamlines (the black curved lines in this figure
denote material streamlines) that the material at the upper and lower loading areas flows
together to the rib at the middle part (the blue curved arrows in this figure denote material
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flow path), as shown in Figure 5a. Under the above material flow mode, the material from
the upper and lower loading areas of the skin converges at this rib (the red dotted line
denotes the convergence surface of the material), and thus, reasonable material streamlines
are generated. Obviously, the convergence surface is closer to the upper surface of the rib at
the middle part, which means that the amount of material flowing from the upper loading
area to the rib at the middle part is far less than that of material flowing from the lower
loading area to the rib at the middle part. This phenomenon can be explained by the fact
that the upper loading area is much smaller than the lower loading area. When the rolling
time t = 9.2 s, the two ribs at the middle and large parts are completely filled, while the rib
at the small part is not completely filled, as shown in Figure 4. Therefore, the material at
the upper and lower loading areas of the skin is forced to flow to the rib at the small part at
this moment. It can be observed from Figure 5b that the material directly flows from the
lower loading area of the skin to the upper loading area. Under this material flow mode, a
long shear zone is generated at the junction of the skin and the rib located at the middle
part (the orange dotted curved line in Figure 5b denotes the shear zone), in which material
streamlines are disordered, resulting in the appearance of UMF.

3. Process Design and Analysis for Double-Pass CRR of TWCCTRR
3.1. Design of Preformed Conical Billet

From the above analysis, we found that the cause of UMF occurring in single-pass
CRR of TWCCTRR is that the rib at the small part is completely filled, the latest among
the three ribs. If the three ribs could be completely filled simultaneously, UMF may be
avoided in the CRR of TWCCTRR. Motivated by this idea, the double-pass CRR process is
proposed in this paper to form TWCCTRR without UMF; that is, a conical billet is rolled
into a preformed conical billet that has two inner ring ribs (their widths are all 15 mm) at the
small and large parts through first-pass CRR, and then the preformed conical billet is rolled
into the target TWCCTRR through the second-pass CRR, as shown in Figure 6. Importantly,
the height of the two ribs, as well as the wall thickness of the skin for the preformed conical
billet, determine if the three ribs of TWCCTRR can be completely filled simultaneously in
the second-pass CRR. Therefore, precisely designing the preformed conical billet is critical
to avoiding UMF in the double-pass CRR of TWCCTRR.
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Based on the law of material volume constancy, it is deemed that the volume of
the preformed conical billet is the same as that of target TWCCTRR shown in Figure 2.
Accordingly, the quantitative relation between key dimensions of the preformed conical
billet is determined, as expressed in Equation (1).
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10
[
(124.9 − t)2 + (124.9 − t)(143.8 − t) + (143.8 − t)2

]
3

+ (124.9 − t − hs)
2 + (145.7 − t − hb)

2 = 17780 (1)

where t denotes the radial wall thickness of the preformed conical billet, hs denotes the
height of the rib at the small part of the preformed conical billet, and hb denotes the height
of the rib at the large part of the preformed conical billet.

To ensure that the three ribs of target TWCCTRR can be completely filled simultane-
ously, the precise calculation method of key parameters t, hs and hb is proposed, by which
these key parameters can be quickly determined. As shown in Figure 7, the proposed
calculation method mainly contains the following procedures: (1) assign an initial value for
parameters t and hs, calculate hb based on Equation (1), determine the total forming steps of
the second-pass CRR (n), and assume that the reduction amount of radial wall thickness of
the skin in the ith forming step (∆ti) is the same (i in Figure 7 denotes the number of forming
step for the second-pass CRR); (2) in reference to Equations (1)–(30) in the literature [4],
judge if UMF would occur in each forming step (once UMF occurs, immediately change
the values of t and hs, and repeat the above procedures); (3) if UMF does not occur in each
forming step, calculate the height of the three ribs in the last forming step by means of
Equations (1)–(30) in the literature [4] (hsn, hmn and hbn respectively denote the height of the
rib at the small, middle and large parts in the last forming step); (4) judge if the gap among
hsn, hmn and hbn is less than 0.1 mm (once the gap is not less than 0.1 mm, immediately
change the values of t and hs and repeat the above procedures); (5) if the gap among hsn,
hmn and hbn is less than 0.1 mm, output the final value of t, hs and hb.
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Based on the proposed calculation method of key parameters t, hs and hb, it is deter-
mined that t = 11.2 mm, hs = 22 mm and hb = 11.2 mm. This means that the total reduction
in the radial wall thickness of the skin in the first-pass CRR and the second-pass CRR is
2.4 mm and 7.2 mm, respectively.

3.2. Analysis of Material Flow in Double-Pass CRR of TWCCTRR

To verify whether UMF in TWCCTRR can be effectively eliminated by the double-pass
CRR process designed above, the FE simulation for double-pass CRR of TWCCTRR is also
conducted based on DEFORM-3D software. In this FE simulation, the mandrel used for the
first-pass CRR is different from that used for the second-pass CRR. There is no ring cavity at
the middle part of the mandrel used for the first-pass CRR, and thus, the preformed conical
billet with two ring ribs at the small and large parts can be formed as the first-pass CRR is
accomplished. The shape of the mandrel for the second-pass CRR is the same as that of the
mandrel for the single-pass CRR. The radial feed amount of the mandrel for the first-pass
CRR and second-pass CRR is respectively 2.4 mm and 7.2 mm. Notably, the mandrel used
for the second-pass CRR does not contact the skin of preformed conical billet during the
first-pass CRR, and the mandrel used for the first-pass CRR does not contact the skin of
deformed TWCCTRR during the second-pass CRR. When the first-pass CRR is ended, the
mandrel used for the second-pass CRR begins to contact the skin of the preformed conical
billet. The other boundary conditions in the FE simulation conducted for the double-pass
CRR are all the same as those in the FE simulation conducted for the single-pass CRR.

Through FE simulation, the shape revolution rules of deformed TWCCTRR during
double-pass CRR of TWCCTRR are displayed in Figure 8. In the stage of the first-pass
CRR, the two ribs at the small and large parts almost grow simultaneously before they are
completely filled, the cause of which has been explained in the literature [7]. When the
rolling time t ≈ 1.5 s, the rib at the large part is completely filled firstly because the target
height of this rib (11.2 mm) is much smaller than that of the rib at the small part (22 mm).
Subsequently, as the wall thickness of the skin continues to decrease, the height of the rib
at the large part remains unchanged because this rib is completely filled, and thus, the
material in the loading area of the skin is forced to flow toward the rib at the small part.
At the end of the first-pass CRR, the rib at the small part is basically completely filled (its
height basically reaches 22 mm). Owning to the above material flow mode, UMF does not
occur at the two ribs located at the large and small parts during the first-pass CRR [4].
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In the stage of the second-pass CRR, the rib at the middle part grows fastest while the
rib at the small part grows slowest. This can be explained as follows: since the height of the
rib at the small part is much greater than that of the rib at the middle part, the resistance to
upward flow of the material in the upper loading area of the skin (this area is located at the
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middle of these two ribs) is greater than the resistance to downward flow of the material
in the upper loading area of the skin, resulting in that more material in the upper loading
area of the skin flows toward the rib at the middle part. Similarly, since the height of the rib
at the large part is much greater than that of the rib at the middle part, more material in
the lower loading area of the skin (the two ends of this area are respectively linked with
the ribs at the large and middle parts) flows toward the rib at the middle part, resulting in
that the growth rate of the rib at the large rib is obviously smaller than that of the rib at
the middle part. Since the upper loading area of the skin is much smaller than the lower
loading area of the skin, the amount of material allocated from the upper loading area of the
skin to the rib at the small part is much less than that of material allocated from the lower
loading area of the skin to the rib at the large part, resulting in that the growth rate of the
rib at the large part is obviously larger than that of the rib at the small part. For the above
reasons, the height difference between the three ribs is gradually reduced with the radial
feed of the mandrel, as shown in Figure 8, and the three ribs are nearly simultaneously
completely filled at the end of the second-pass CRR. It can also be observed from Figure 8
that through the double-pass CRR process proposed in this paper, the surface quality of
formed TWCCTRR is good (macro defects do not occur).

To verify whether UMF occurred during the second-pass CRR, the distribution rules
of material streamlines when the rolling time t = 8.2 s and t = 10.6 s are displayed in
Figure 9a,b, respectively.
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When the rolling time t = 8.2 s, the rib at the middle part is not completely filled, and
it can be observed from Figure 9a (material streamlines are denoted by the black curved
lines in this figure) that the material at the upper and lower loading areas flows together
to the rib at the middle part. Before the rolling time t = 10.6 s, the rib at the middle part is
still not completely filled, and it can be observed from Figure 9b that the material at the
upper and lower loading areas still flows together to the rib at the middle part. Under the
above material flow mode, the material from the upper and lower loading areas of the skin
converges at the rib at the middle part (the convergence surface of the material is denoted
by the red dotted line), and thus TWCCTRR without UMF is formed by the double-pass
CRR process.

4. Contrastive Analysis of Deformation Behaviors in Single-Pass CRR
and Double-Pass CRR

Based on the FE simulation, the distribution rules of effective strain in TWCC-
TRR formed by single-pass/double-pass CRR are respectively displayed in Figure 10a,b.
Figure 10a,b show that when single-pass CRR and double-pass CRR are accomplished, the
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distribution of effective strain along the axial/radial direction is highly uneven, and the
distribution of effective strain along the circumferential direction is relatively uniform. The
effective strain in the lower loading area of the skin is the maximum, and the effective strain
around the end surfaces of the two ribs at the large and small parts is the minimum. From
the bottom of the three ribs to their roofs, the effective strain basically presents a gradual
decrement trend. Additionally, the effective strain in the upper loading area of the skin is
significantly less than that in the lower loading area of the skin, and the effective strain
around the roof of the rib at the middle part is much larger than that around the roofs of
the two ribs at the large and small parts.
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Through comparing Figure 10a,b, it is found that the maximum effective strain in
TWCCTRR formed by single-pass CRR is obviously larger than that in TWCCTRR formed
by double-pass CRR, while the minimum effective strain in TWCCTRR formed by single-
pass/double-pass CRR is basically the same. This demonstrates that in contrast to single-
pass CRR, the plastic deformation in TWCCTRR formed by double-pass CRR is more
uniform, which can be explained by the stress state of the loading area of the skin. In
reference to the slab stress method [7], the schematic diagram of normal stress distribution
in the loading area of the skin during the first-pass/second-pass CRR of TWCCTRR is
drawn in Figure 11. It shows that when the rib at the middle part is not completely filled,
the material in the upper and lower loading areas of the skin flows together to this rib,
and thus, there exists a divided-flow plane in the upper/lower loading area of the skin
(the normal stress on the divided-flow plane is the largest around the divided-flow plane).
After the rib at the middle part is completely filled, a divided-flow plane only exists in the
loading area of the skin. Figure 11 shows that with increasing the number of divided-flow
planes in the skin, the maximum normal stress obviously decreases while the minimum
normal stress remains unchanged. For the single-pass CRR of TWCCTRR, the number
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of divided-flow planes is changed from 1 to 2 after the rib at the large part is completely
filled first. For the double-pass CRR of TWCCTRR, two divided-flow planes still exist
in the skin because the three ribs are filled simultaneously. Based on the above analysis,
it is illustrated that the distribution of normal stress on the skin in the final stage of the
single-pass CRR is more uneven in contrast to double-pass CRR. Therefore, the distribution
of plastic deformation in TWCCTRR formed by double-pass CRR is more uniform than
that of first-pass CRR.
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In addition, the evolution rules of radial forming force during the first-pass/double-
pass CRR of TWCCTRR are respectively displayed in Figure 12a,b. As shown in Figure 12a,
during the single-pass CRR, the radial forming force of the mandrel firstly quickly increases
and then sharply decreases. This is because in the stage of primary forming (the mandrel
continuously feeds in this stage), as the mandrel continuously feeds, the contact area
between the mandrel and the skin gradually increases. Meanwhile, both the deformation-
hardening effect and rib growth quickly increase material flow resistance, resulting in the
rapid increment of radial forming force. However, in the final finishing stage (the mandrel
does not feed in this stage), the contact area between the mandrel and the skin rapidly
decreases, resulting in the sharp decrement of radial forming force. Notably, there is a
sharp increase in the radial forming force after the feed amount of the mandrel reaches
approximately 8.2 mm. This is because after the feed amount of the mandrel reaches
approximately 8.2 mm, the rib at the middle part is completely filled, and meanwhile, the
number of divided-flow planes changes from 2 to 1, resulting in the average normal stress
in the loading area of the skin sharply increases as displayed in Figure 11. For the above
cause, the radial forming force of the mandrel presents a sharp increment trend after the
feed amount of the mandrel reaches approximately 8.2 mm.

As shown in Figure 12a, during double-pass CRR of TWCCTRR, the radial forming
force of the mandrel shows a significant increase in the stage of the first-pass CRR, while
the radial forming force firstly quickly increases and then quickly decreases in the stage of
the second-pass CRR, which is mainly induced by the variation of the contact area between
the mandrel and skin. Notably, in the transition stage between the first-pass CRR and
second-pass CRR, there is a sharp decrement in the radial forming force. This is because
the number of divided-flow planes changes from 1 to 2 in this stage, resulting in a sharp
decrease in average normal stress in the loading area of the skin, as displayed in Figure 11.
For the above cause, the radial forming force of the mandrel presents a sharp decrement
trend in the transition stage between the first-pass CRR and second-pass CRR.
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Figure 12a,b also show that the maximum radial forming force in single-pass CRR is
obviously larger than that in double-pass CRR because the rib at the middle part is first
completely filled in single-pass CRR, while the three ribs are basically filled at the same
time in double-pass CRR.
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5. Conclusions
Constraint ring rolling (CRR) is a new plastic forming technique for manufacturing

thin-walled conical cylinders with three ring ribs (TWCCTRR). This paper aimed to analyze
and solve the problem of unreasonable material flow (UMF) in the CRR of TWCCTRR by
combining FE simulations and physical experiments with plasticine. The following main
conclusions can be drawn.

(1) During the single-pass CRR of TWCCTRR, the growth of the rib at the middle part is
the fastest, while the growth of the rib at the small part is the slowest among the three
ribs at the large, middle and small parts. Once the two ribs at the large and middle
parts are completely filled, the material in the upper and lower loading areas of the
skin flows together to the rib at the small part, resulting in the occurrence of UMF
around the rib at the middle part.

(2) The double-pass CRR process is proposed for forming TWCCTRR without UMF;
that is, a conical billet is formed into the conical billet with two ring ribs by the
first-pass CRR, and then the preformed conical billet with two ring ribs is formed
into TWCCTRR by the second-pass CRR. The dimensions of the preformed conical
billet with two ribs are critical to avoiding UMF in the second-pass CRR. Thus, a
high-efficiency design method of preformed conical billet with two ribs is proposed,
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which ensures that the three ribs could be simultaneously and completely filled in the
second-pass CRR to avoid UMF.

(3) In contrast to single-pass CRR, the deformation homogeneity of TWCCTRR is obvi-
ously improved, and meanwhile, the maximum radial forming force is reduced by ap-
proximately 15% in the double-pass CRR due to the variation in material flow mode.

In contrast to the single-pass CRR process, the double-pass CRR process increases
fabrication costs due to the increment in processing time and number of molds. More im-
portantly, the double-pass CRR process could obviously improve the mechanical properties
of TWCCTRR in contrast to the single-pass CRR process due to the elimination of UMF.
In the aerospace industry, the improvement in the mechanical properties of TWCCTRR is
more important than the reduction in the fabrication cost of TWCCTRR. Thus, the proposed
double-pass process CRR has good application prospects in fabricating high-performance
thin-walled cylindrical components with the high ring ribs used in aerospace equipment.

The material flow control methods proposed in the previous studies were used to
eliminate the defects of concave, folding and underfilling in metal forming, but they cannot
be used to eliminate the defect of UMF. The double-pass CRR process proposed in this
paper can be used to eliminate the defect of UMF in the CRR of different types of cylindrical
components with three or more ring ribs. This study could provide references for exploring
the control methods of UMF in the forming of thin/thick plates with ribs.

In future, we plan to first develop a specific CRR equipment that can realize the
forming of many types of thin-walled cylindrical components with high ribs used in
aerospace equipment, then deeply investigate the regulation mechanisms of microstructure
and mechanical properties in CRR of many types of thin-walled cylindrical components
with high ribs, and finally put the CRR technology into engineering application.
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