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Abstract

We calculate the Doniach phase diagram of heavy-fermion systems containing Ce and
Eu ions, using the scaling solution of the periodic Anderson model, and compare the
results with the experimental data on CeRu2Ge2 and EuCu2(Ge1−xSix)2. The pressure–
temperature (p–T) phase diagram emerges from the competition between the pressure-
dependent Kondo interaction and the temperature- and pressure-dependent RKKY inter-
action. Both are derived using scaling equations in the presence of crystal-field effects:
Kondo temperature TK is related to the coupling constant g(p), where p is the control
parameter, and the temperature-dependent renormalized coupling g(T, TK(g)). For com-
parison with the experiment, we assume a linear dependence of g on the control parameter,
which could be pressure or composition. The Néel temperature TN(p) is obtained by
comparing the free energies of the system in the antiferromagnetic and paramagnetic
states. The resulting asymmetric TN(p) arises naturally from the exponential growth of
TK(p) and a much slower polynomial growth of the RKKY interaction. Phase diagrams for
CeRu2Ge2 and EuCu2(Ge1−xSix)2 successfully capture key experimental features: pressure-
induced suppression of magnetic order, the peak of RKKY interaction energy, and crossover
to a heavy-Fermi-liquid regime at high coupling strength. Our work provides the first
quantitative, material-specific construction of Doniach diagrams, clarifies the entropy re-
moval at low temperatures and offers predictive insight for future experiments under
extreme conditions.

Keywords: Doniach phase diagram; heavy fermions; Anderson model; scaling solution

1. Introduction
Heavy fermion materials are a class of intermetallic compounds that contain rare

earths or actinides and typically occur in Ce-, Yb-, Eu- and U-based compounds with
partially filled 4f or 5f shells [1,2]. Despite the diversity of their chemical composition
and structure, they all share a basic microscopic feature: the entanglement of local-
ized f electrons with itinerant conduction electrons which drives the Kondo effect and
Ruderman–Kittel–Kasuya–Yosida (RKKY) interaction [3,4]. This leads to unusual proper-
ties at low temperatures, such as an enhanced effective electron mass, non-Fermi liquid
behavior, and unconventional superconductivity [5,6]. Many heavy fermion materials
exhibit quantum phase transitions at zero temperature, and their tunability by external
pressure, magnetic field, or chemical substitution makes them exceptional systems for
fundamental quantum materials research, including studies of strong correlations, quan-
tum phase transitions, and emergent electronic ordering [7–9]. At high temperatures, the f
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electrons in these systems act as localized magnetic moments which scatter conduction
electrons, giving rise to the Kondo effect. As the temperature is lowered, this scattering
leads to the screening of local moments and, in the case of a single magnetic impurity,
it eventually gives rise to the formation of a singlet ground state [4]. In a lattice of such
screened moments, the coherence emerges below a characteristic temperature T∗, resulting
in the formation of a heavy Fermi liquid with a large Fermi surface that includes f elec-
trons [2,8]. The term “heavy fermion” arises because the effective mass of quasiparticles
in these materials can be 100–1000 times that of a free electron [1]. Conduction electrons
also mediate an indirect exchange interaction between local moments, known as the RKKY
interaction, which favours a long-range magnetic ordering [3].

The competition between Kondo screening (favouring a non-magnetic ground states)
and RKKY interaction (favouring magnetism) determines the ground state of the system
and Doniach phase diagram captures the main feature of this interplay: an increase in the
Kondo interaction JK drives a transition from an antiferromagnetically ordered phase with
a small Fermi surface, to a paramagnetic heavy Fermi liquid with a large Fermi surface.
The transition is marked by a quantum critical point (QCP) [3,7,10].

Since its introduction [3], the Doniach diagram has widely been envoked to interpret
qualitative features of magnetic and non-magnetic ground states of Ce- and Eu-based
intermetallics. Over the past few decades, extensive experimental investigations have
revealed complex phase diagrams under pressure, temperature, and magnetic field [11–14].
These works have outlined general systematics and surprising deviations in (p,T,H) phase
space, including non-Fermi-liquid behavior near quantum critical points.

Early experimental studies, such as those by Holland-Moritz et al. [15], provided neu-
tron scattering and spectroscopic insights into the hybridization and valence fluctuations
underpinning these phenomena. Bauminger et al. were the first to discover charge fluctua-
tions in EuCu2Si2 using Mössbauer spectroscopy [16]. Hossain et al. investigated a series
of EuCu2(Ge1−xSix)2 solid-state alloys and found a transition from an antiferromagnetic
phase to a fluctuating valence phase and a heavy fermionic behaviour with increasing Si
content [17]. The parallel development of Ce-based systems has provided an important
context for understanding pressure- and composition-induced transitions in rare-earth
intermetallics. Süllow et al. and Wilhelm et al. investigated the Doniach phase diagram in
pressurised CeRu2Ge2 and showed a continuous evolution from the magnetic order to the
Fermi liquid regime [11,12] and the occurrence of intermediate valence behaviour [12].

More recently, Iha et al. [18] reported a detailed experimental study of the T–x phase
diagram of CeCu2(Ge1−xSix)2 and noted its consistency with Doniach-type behavior,
though without a quantitative theoretical model. While these studies established a rich
phenomenology and qualitative trends in heavy fermion phase diagrams, the Doniach
diagram was typically invoked in a schematic way.

Theoretically, the competition between the Kondo interaction and the RKKY inter-
action, and its effect on the phase diagram of HFs, has initially been studied using the
periodic Kondo model [3,19–22] with the ensuing Doniach diagram providing a founda-
tional framework for understanding that interplay [1]. Subsequent theoretical studies
of quantum criticality have used the Anderson model to expand the Doniach concept,
so as to include valence fluctuations, disorder, and underscreened Kondo effects [2,23].
Several works have attempted semi-quantitative treatments by plotting experimental phase
boundaries alongside model curves. For example, Matsumoto et al. [22] analyzed Ce-based
122 compounds using DFT+DMFT to place real systems on a generalised Doniach diagram,
but did not numerically reproduce full T–p curves. More recently [24], the competition
between various interactions and the ensuing quantum criticality in the periodic Anderson
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model has been studied using cellular dynamical mean-field theory, with the numerical
renormalization group as a cluster impurity solver.

By introducing two essential energy scales, the Kondo temperature TK and the RKKY
interaction strength TRKKY, the Doniach diagram provides a foundational understanding of
the interaction between localized moments and conduction electrons. While simplified, it
serves as an important entry point into more complex behaviour. To account for additional
factors such as frustration, valence fluctuations, or non-Fermi liquid behaviour, the so-called
global phase diagram extends Doniach’s diagram by adding a second tuning parameter
(e.g., quantum fluctuations or dimensionality), thereby allowing for a deeper understanding
of exotic phases and multiple quantum critical points that occur in these systems [8,9,25,26].

Heavy fermion compounds such as CeRu2Ge2 or CeCu2Ge2 under pressure [27] and
CeCu2(Ge1−xSix)2 or EuCu2(Ge1−xSix)2 or EuPd2(Ge1−xSix)2 with varying Si concentra-
tions [18,28–30] are ideal platforms to study the competition between Kondo screening and
magnetic ordering. In both cases, tuning an external parameter (pressure in CeRu2Ge2

and CeCu2Ge2) or chemical substitution in CeCu2(Ge1−xSix)2, EuCu2(Ge1−xSix)2 and
EuPd2(Ge1−xSix)2, modifies the strength of the Kondo coupling JK and drives the system
to a magnetic or paramagnetic ground state. These observations align well with the Do-
niach framework, which relates the principal energy scales TK and TRKKY to the observed
phase transitions.

The functional form of the response functions of HFs depends on the relative im-
portance of these couplings which are easily changed by a control parameter, p, i.e., by
pressure, chemical pressure, or magnetic field [3,4,6,17,31–34] The data analysis yields
the Kondo temperature TK(p) and Néel temperature TN(p) and plotting them against the
control parameter yields the Doniach diagram. It separates the phase space into several
characteristic regions [3,4], as shown by Figure 1 in the case of CeRu2Ge2 [34], with pres-
sure as the control parameter, and in Figure 2 for EuCu2(Ge1−xSix)2 [33], with chemical
pressure as the control parameter. Similar behaviour is also found in CeCu2(Ge1−xSix)2,
EuPd2(Ge1−xSix)2, and several other HF materials with RE ions [17].

Various phase-space regions appearing in the Doniach diagram exhibit the following
characteristic features. In the high-temperature phase, the RE ions behave as independent
LM and all the properties of the system are determined by its pressure-dependent Kondo
temperature TK(p). The resistivity is a logarithmic function of T/TK, the susceptibility is
Curie–Weiss like with θ ≃ TK, the magnetic moment of 4 f electrons is close to what one
finds in a free Ce ion, and the entropy is dominated by a large paramagnetic contribution,
S f ≃ kB ln N, where N is the effective degeneracy of the LM in a given temperature
range [35]. Experimentally, TK(p) is either obtained from transport measurements, like
thermopower α(T) or electrical resistivity ρ(T), or it is defined by temperature at which
the entropy drops to half of its high-temperature value [17,33,34]. The overall dependence
of TK(p) on the control parameter is rather smooth, even though the experimental values
of TK(p) inferred from different measurements are not exactly the same. Theoretically, TK

is defined as the scaling invariant of the Anderson model which we use to analyze the data.
At low temperatures, a large paramagnetic entropy of LM cannot be sustained but

the mechanism by which the entropy is removed from the system and the nature of the
ensuing ground state (GS) depend on the relative magnitude of the Kondo and RKKY
interactions. We distinguish two limiting cases: TK ≫ TRKKY and TK ≪ TRKKY, where
kBTRKKY = ERKKY is the energy gain due to the antiparallel alignment of the neighbouring
LMs caused by the RKKY interaction (in what follows, we set kB = 1). The RKKY temper-
ature is related to TK and TN but, unlike these temperatures, it is not directly discernible
in the experimental data. For a given heavy fermion compound, the value of TRKKY(p)
is estimated a posteriori by model calculations (see Equation (2)). If at ambient or low
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pressure we have TK(p) < TRKKY(p), the low-entropy state is reached by an AFM transition
at temperature TN(p). On the other hand, if we have TK(p) > TRKKY(p), the paramagnetic
entropy is not eliminated by an AMF transition but rather by a crossover from a LM phase
to a heavy fermi liquid (FL). The temperature of the crossover is proportional to TK(p) and
the high-pressure behaviour is similar to what one finds for an isolated Kondo impurity: at
low temperatures, T ≪ TK, the conduction electrons screen the LM by forming a Kondo
singlet and the ensuing GS is a non-degenerate FL [4]. The two ground states are separated
by a QCP.

The presented approach aims to construct a quantitative realization of the Doniach
scenario by solving the scaling equations of the Anderson model and mapping the results
directly onto experimental pressure- and doping-dependent transition temperatures. It
provides a coherent and computationally accessible framework for the calculation of the
T–p and T–x phase diagrams of heavy fermion systems. As illustrated in the case of
CeRu2Ge2 and EuCu2(Ge1−xSix )2, by linking a simple theoretical model (Doniach picture)
with experimentally measurable parameters, we provide a practical tool for the prediction
and description of magnetic transitions and quantum critical points in f-electron systems.
This has implications for the understanding of quantum criticality, magnetic ordering, and
unconventional superconductivity in strongly correlated electron materials.

The behaviour of Yb-based intermetallics, in which the coupling constant is a decreas-
ing function of the control parameter, was explained using the same approach in Ref. [32].
Here, we discuss the cerium- and Europium-based intermetallics [17,33,34] in which the
coupling constant is an increasing function of the control parameter. The model takes into
account the charge transfer between the 4 f and c-states, which is important at high pressure,
and also considers the crystal-field (CF) splitting, which makes the effective degeneracy of
the 4 f -states pressure- and temperature-dependent.

Unlike most previous studies, our paper provides a quantitative realization of the
Doniach picture: we numerically solve the scaling equation for the Kondo temperature
TK(g), where g(p) is the coupling constant of the Anderson model [4], compute the Néel
temperature TN(g) from a temperature-dependent RKKY interaction, and map these results
onto experimental pressure or doping axes using simple linear coupling functions g(p) or
g(x). To the best of our knowledge, this is the first application of the Doniach framework
that quantitatively reproduces experimental phase boundaries over the entire T–p and T–x
range for CeRu2Ge2 and EuCu2(Ge1−xSix)2.

The paper is organised as follows. First, we introduce the model and the scaling
solution and provide the relationship between the coupling constant g(p) and the scaling
invariant TK(p). This reveals the central feature of the Kondo effect, namely, the exponential
dependence of TK(p) on g(p). The scaling law also yields the renormalised, temperature-
dependent coupling constant, g(p, T), which is used in the renormalised perturbation
theory to study the properties of the LM phase. By matching the theoretical and experi-
mental values of TK(p), we obtain the dependence of g(p) on the control parameter and
calculate TRKKY(p) of a given compound. Once we have TK(p), g(p), and g(p, T), we can
compute the free energy of the LM phase. With TRKKY(p) at hand, we estimate the free
energy of the AFM phase, and by comparing it with the free energy of the LM phase we find
the pressure dependence of TN(p). Finally, the theoretical results are used to discuss the
phase diagram of CeRu2Ge2, EuCu2(Ge1−xSix)2, and similar compounds with the RE ions.
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Figure 1. The Kondo scale TK(p) of CeRu2Ge2 obtained from data on ρ(T) (squares) and α(T)
(circles), and the Neel temperature TN(P) obtained from the data on ρ(T) (half-filled triangles), calori-
metric data (yellow triangles), and combined ρ(T) and α(T) data (blue triangles) are plotted versus
pressure [34]. The full and long-dashed lines show TN(p) and TK(p) defined by Equations (1) and (5),
respectively. The inset shows TK(p), TN(p), and TRKKY(p) defined by Equation (2) (dashed line) and
plotted versus g(p). The model parameters used for the plot and the p → g mapping which defines
the upper abscissa are explained in the text.
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Figure 2. The experimental magnetic phase diagram of EuCu2(Ge1−xSix)2. is compared with calcu-
lated Kondo temperature TK (dashed line) and the magnetic ordering temperature TN (full line).The
yellow symbols are the data from ref. [33] and the blue symbols the data from ref. [17]. The Néel
temperature (triangles) is obtained from the specific heat anomaly. The Kondo temperature is esti-
mated from the thermopower (squares), resistivity (diamonds), and from the X-ray absorption spectra
(circles). The interaction strength g = Γ/πE f used to calculate TK and TN from Equations (1) and (5),
respectively, is shown on the upper abscissa.
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2. Model and Calculation
The periodic Anderson model with the CF split 4 f states is characterized by the

unperturbed c-band of width D, the unrenormalized excitation energy of the 4 f states E f ,
the energy gain due to the hybridization of the 4 f states with conduction electrons, Γ(p),
and the degeneracies of the crystal-field split 4 f states. (In the case of independent 4 f
ions, Γ(p) is simply the width of the virtual bound state.) We consider the model in which
the number of f -electrons per site is n f , the number of c-electrons is nc, and assume an
infinite f - f correlation, so that the 4 f state can only be singly occupied or unoccupied. The
degeneracies of the CF states are determined by the point-group symmetry of the crystal,
while the neutron scattering or magnetization data provide the splittings. For a given nc,
n f , and the CF splitting, the low-energy excitations of the model depend in an essential
way [4] on the dimensionless coupling constant g(p) = Γ(p)/π|E f |.

In Ce and Eu compounds, g(p) increases with pressure and all the properties change
drastically due to the exponential dependence of TK on g(p), as discussed in Ref. [35]. The
electrical resistance of heavy fermion compounds in the LM region of the phase space is
large, so that we can treat the 4 f ions as incoherent Kondo scatterers. In that case, the Kondo
scale of the model, assuming n f ≃ 1, can be related to the coupling constant by the ‘poor
man’s scaling’ [36,37]. For two excited CF levels which are N1- and N2-fold degenerate,
and separated from the N0-fold degenerate CF ground state by energies ∆1 and ∆2, we
have the scaling equation [36–39],

g(p) exp
[
− 1

g(p)

]
=

(
TK(p)

D

)N0
(

TK(p) + ∆1

D + ∆1

)N1
(

TK(p) + ∆2

D + ∆2

)N2

. (1)

This equation holds in the LM regime and to describe CeRu2Ge2, which we take as a
case study, we assume N0 = N1 = N2 = 2, ∆1 = 500, and ∆2 = 750 K [40].

At a given pressure, the properties of the model are calculated by the lowest-order
(renormalized) perturbation theory with an effective temperature-dependent coupling
constant g(p, T), which is obtained from Equation (1) by rescaling the c-bandwidth down
to D ≃ T [41]. This is equivalent to summing up the most diverging diagrams of the
perturbation expansion in terms of the bare coupling and yields the correlation functions
which are universal functions of T/TK [41]. The results obtained by the renormalized
perturbation theory are in a qualitative agreement with the NCA [35,37] and the NRG
calculations [4,42,43], which also show that the scaling law holds not only for T ≥ TK(p)
but can be extended down to T < TK(p) and it only ceased to be valid for T ≪ TK(p).

The scaling equation allows us to estimate the pressure dependence of g(p) in the
following way. We take the experimental values of TK(p) at two different pressures, p1

and p2, find the corresponding bare couplings by solving Equation (1), and define g(p) for
p1 < p < p2 by a linear interpolation. The upper abscissa of the main panel in Figure 1
shows g(p) obtained for CeRu2Ge2 in such a way, while the inset shows TK(p) plotted as
a function of g(p) (long-dashed line). The near-exponential dependence of TK(p) on g(p)
is typical of Kondo physics and explains the extreme sensitivity of heavy fermions on the
control parameter (pressure, chemical pressure, or magnetic field).

In addition to the on-site Kondo coupling, the hybridization between the 4 f and
c-states also gives rise to the RKKY spin-density oscillations in the c-band. This spin density
couples to the LMs at the neighbouring sites and, if strong enough, it prevents the spin–flip
scattering and inhibits the Kondo effect. The energy gain due to the RKKY coupling is
calculated by the 2nd-order perturbation theory in terms of the bare coupling [44]. For Ce
ions surrounded by z neighbours at points r, this gives

ERKKY(g, r) = 18πzS(S + 1)|F (2r · kF)|D × g2 , (2)
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where S is the angular momentum of the lowest CF state, F (η) = [−η cos η + sin η]/η4 is
the oscillating function, kF is the Fermi momentum of unperturbed c-electrons and g is
the unrenormalized coupling constant. For a material with a given TK(p), the pressure-
dependent coupling constant which enters in Equation (2) is obtained by solving numeri-
cally Equation (1). Finally, the boundary between various characteristic phases of a heavy
fermion is found by equating their free energies.

The spin-density oscillations induced by the RKKY coupling follow, like Friedel charge
density oscillations, from the Fermi-edge discontinuity of the electron distribution function.
Thus, they are temperature-dependent and can be neglected at high temperatures [45].
At high pressure, where g(p) is large and TK(p) is huge, the paramagnetic entropy is
eliminated by the Kondo effect and the RKKY interaction does not play any role. For
TRKKY ≪ T ≪ TK, the screening of local moments gives rise to the LM-FL crossover. On
the other hand, the values of TK(p) at low pressure decrease exponentially with g(p), so that
the RKKY coupling, which is a parabolic function of g(p), dominates for TK < T < TRKKY.
The magnetic field due to the RKKY oscillations inhibits the Kondo effect and, if strong
enough, it quenches the Kondo scattering and stabilises the LM on the neighbouring sites
before the Kondo singlets are formed. In that case, the large entropy of the paramagnetic
state is removed at low temperatures by the formation of a magnetically ordered Néel state.
Since Kondo scattering is absent in the magnetically ordered phase, ERKKY in Equation (2)
is calculated with unrenormalised g(p).

The free energy of the Néel state is given by

FN = Ec + E f − ERKKY, (3)

where Ec and E f are the unperturbed internal energies of c and f electrons, respectively,
and ERKKY approximates the energy gain due to the alignment of 4 f moments on the
neighbouring sites, as given by Equation (2). The above expression neglects the entropy of
magnetic excitations which one can find in the AFM phase.

The free energy in the LM regime is

FLM = Ec + E f − E f c − TSLM, (4)

where E f c is the energy gain due to hybridization and SLM is the LM entropy. The renormal-
ized perturbation theory gives E f c(T) = ⟨Hc f ⟩ ≃ g(p, T)TK, where Hc f is the interacting
part of the Hamiltonian and g(p, T) is obtained from Equation (1) at D = T. For T ≫ TK,
the effective coupling is small, g(p, T) ≪ 1, and the entropy is close to the free-ion value,
SLM ≃ S f . At lower temperatures, the effective coupling and E f c grow logarithmically,
while the entropy decreases. The renormalized perturbation theory yields the approximate
relation SLM ≃ (1 − g3)S f [41].

If the paramagnetic entropy of the LM phase is removed by the magnetic tran-
sition, the Néel temperature TN follows from the condition FN = FLM, such that
ERKKY = E f c + TNSLM. This gives

TN(g) =
ERKKY(g)− g(p, TN)EK(g)

SLM
, (5)

where SLM is the paramagnetic entropy which we approximate by SLM ≃ S f . A unique
determination of TN for a particular compound requires the value of kF in the argument of
the oscillating function in Equation (2). Since this is not known, we adjust the amplitude
of F (2r · kF), so that the Néel temperature at ambient pressure matches the experimental
result. (Our choice satisfies F (η) ≥ Fmin, where Fmin = −5.06 × 10−3 is the absolute
minimum of the oscillating function.)
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The theoretical calculation and the comparison with the experimental results can be
summarised as follows. The T–p phase diagram arises from the competition between
Kondo and RKKY interactions, which depend on pressure and temperature. In our theoret-
ical model, these interactions are governed by the coupling constant g, which is assumed
to be a linear function of pressure p. Consequently, the comparison between theoretical
predictions and experimental data is carried out through this pressure dependence g(p).
To compute the Néel temperature TN according to Equation (5), the following quanti-
ties are evaluated as functions of the coupling constant g: the RKKY energy ERKKY(g),
the Kondo temperature TK(g), and the renormalized temperature-dependent coupling
constant gR(T, g). The magnetic entropy change is approximated as SLM = kB ln(N0),
where N0 is the ground-state degeneracy of the localized electrons.

The RKKY energy ERKKY(g) is obtained from Equation (2). For the lowest crystal
electric field (CEF) doublet of the cerium ion (with spin S = 1/2), and using the parameters
D = 4 eV, z = 6, and F (η) = −9.824 × 10−4, we find: ERKKY(g) = 1.000 · g2 eV. The value
of F(η) is adjusted to ensure the theoretical values of TN best fit the experimental data.
The Kondo temperature TK(g) is calculated by numerically solving Equation (1) using the
CEF parameters for the cerium ion: ∆1 = 0.043 eV, ∆2 = 0.066 eV, N0 = N1 = N2 = 2,
and bandwidth D = 4 eV. The temperature-dependent renormalized coupling constant
gR(T, g) is also derived from Equation (1) using the same parameters. For a given g,
the corresponding TK(g) is computed and substituted back into Equation (1). For a given
temperature T, D = T is set and the equation is solved numerically, now treating g as a
variable, to find g = gR(T, TK(g)) = gR(T, g).

Substituting the computed values into Equation (5), and using EK(g) = TK(g)
11600 eV/K,

we solve for TN(g) to obtain the T–g phase diagram for CeRu2Ge2. The best agreement with
the experimental T–p phase diagram is achieved after applying a linear transformation:
g(p) = a + b · p, with the coefficients a = 23 × 10−3 and b = 1.583 × 10−3 GPa−1.

A similar procedure is applied to EuCu2(Ge1−xSix)2, where the T–x phase diagram
is computed by treating the Si concentration x as the main variable instead of pressure.
For S = 7/2 (N0 = 8) and using D = 4 eV, z = 6, and F (η) = −8.514 × 10−4, the RKKY
energy becomes: ERKKY(x) = 18.20 · x2 eV. The best fit to experimental data is obtained
using a coupling constant scaled as: g(x) = (10 + 17x)× 10−3.

Finally, we provide a rough estimate of the phase boundary between the AFM and the
FL regions of the phase space, where TN ≪ TK, i.e., close to the quantum critical point. We
approximate the free energy of the FL phase as

F0 = Ec + E f − EK − TS0, (6)

where S0 ≃ Tγ ≃ (π2kB/3V0)(T/TK) is the entropy of heavy fermions in the FL regime
and V0 is the unit cell volume [46]. The condition F0 = FN gives ERKKY = EK + TNS0(TN),
such that

T2
N ≃ TK(TRKKY − TK) . (7)

Assuming a critical pressure of TN(pc) = 0 gives the approximate result TN(p) ∝
√

p − pc.

3. Discussion
Before presenting the results which show how the competition between Kondo and

RKKY interactions gives rise to Doniach diagram, we discuss briefly the characteristic
features of the Anderson model in various parts of the phase space, using the parameters
relevant for CeRu2Ge2 and similar RE intermetallics [34,35].



Materials 2025, 18, 3755 9 of 12

At ambient or low pressure and above 400 K, the low-laying CF states of cerium
ions are occupied with equal probability, so that the conduction electrons scatter on the
six-fold degenerate LMs. This gives rise to the resistivity and thermopower which are
logarithmic functions of temperature (with a negative slope) [34,35]. Below 400 K, the
excited CF states depopulate, and around T∆ ≃ 350 K there is a crossover to a new LM
regime, where the 4 f state behaves as an effective CF doublet. This LM–LM crossover is
indicated in the resistivity and thermopower data by the high-temperature maxima (see
Figures 2 and 3 in Ref. [34]). The thermopower maximum is particularly pronounced,
as α(T) drops around T∆ from positive to negative values. For TK < T < T∆, the Kondo
scattering on effective CF doublets gives rise to the resistivity and thermopower which
increase towards their low-temperature maxima. The associated Kondo scale, inferred from
the low-temperature maximum of α(T) or ρ(T), is very small [35], such that TK ≪ TRKKY.
Thus, it is not surprising that at ambient or low pressure, the paramagnetic entropy of
CeRu2Ge2 is removed at low temperatures by an AFM transition, as indicated by a large
specific heat anomaly and the discontinuity in the slope of ρ(T) and α(T) at TN . The
magnetic moment of Ce ions in the ordered state is much smaller than of a free Ce ion, but
our analysis shows that this reduction is a CF effect and it is not due to the Kondo screening.

The model calculations and the experimental data show that TN(p) increases gradually
with pressure up to a maximum and then drops rapidly. For TN ≃ TK, a precise estimate of
TN from transport data becomes difficult, because the two maxima which characterise α(T)
and ρ(T) are merged at higher pressure into a single broad maximum, such that a weak
discontinuity of the slope is difficult to measure. Above the critical pressure, pc ≃ 6 GPa,
we have TN < TK and Kondo effect inhibits the formation of a magnetically ordered state.

At large pressure, p ≥ pc, we find TRKKY ≪ TK, so that the RKKY interaction can be
neglected throughout the LM regime. As temperature is reduced, the Kondo scattering
leads gradually to the screening of the LM and, for T ≪ TK, the coherent state forms out of
Kondo singlets [47]. The CeRu2Ge2 and similar compounds behave at low temperatures
and p ≥ pc as a heavy FL with an enhanced Pauli-like susceptibility χ, and a large
specific heat coefficient, γ = CV/T. The calculations for the periodic Anderson model
show [46,47] that the enhancement of χ and γ scales with TK, i.e., Kondo temperature
provides the relevant energy scale at high and low temperatures. In the FL region of the
phase space, the transport coefficients are given by simple powers of T/TK and the system
is characterised by various universal ratios, like the Wilson ratio χ/γ, the Kadowaki–Woods
ratio ρ/γ or the q-ratio α/γ.

The comparison between the experimental and theoretical Doniach diagrams of
CeRu2Ge2 is provided by Figure 1, where the dashed line shows TK(p) calculated by
the scaling theory and the full line is TN . The values of g(p) used in the calculations are
given on the upper abscissa and TRKKY is evaluated for the lowest CF doublet (S = 1/2),
with D = 4 eV, z = 6, and F(η) = −9.824 × 10−4.

The gradual increase in TN(p) above the ambient pressure is due to the fact that TK(p)
is exponentially smaller than TRKKY(p), so it can be neglected in Equation (5) (see the inset
in Figure 1). Above a certain pressure, the exponential growth of TK(p) brings TN(p) to
a maximum before reducing it sharply to zero. The asymmetric shape of TN(p) is due to
different functional forms of TK(p) and TRKKY(p).

The scaling solution of an eight-fold degenerate Anderson model explains the phase
diagram of EuCu2(Ge1−xSix)2, where Silicon doping gives rise to the chemical pressure
which drives this system from an antiferromagnet to a valence fluctuator [17,33]. The
comparison with the experiment is shown in Figure 2, where TN (full line) and TK (dashed
line) are plotted versus Si concentration (lower abscissa). The corresponding values of g(x)
are given on the upper abscissa and the calculations are carried out following the same
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steps as in the case of CeRu2Ge2, taking S = 7/2, D = 4 eV, z = 6, and F(η) = −8.514 × 10−4.
The theoretically calculated phase boundary in Figure 2 exhibits the same generic features
as the experimental one. Note, our calculations take into account the spin–flip scattering
of c-electrons on the eight-fold degenerate Eu2+ (4 f 7) ions but neglect the fluctuations
between Eu2+ and Eu3+ (4 f 6) configurations. These fluctuations become important for
large Si concentration, but to include them one would have to go beyond the scaling theory
and consider a modified Hamiltonian which includes the Falicov–Kimball term [48].

We should also mention some important limitations that one should be aware of when
analysing the experimental data in such a simplified way. The phase diagram is obtained by
considering the competition between the Kondo and RKKY interactions, but more complex
many-body effects, such as valence fluctuations or multipolar interactions, are neglected,
even though they may be important near quantum critical points. Furthermore, the scaling
approach used to derive the renormalized coupling constant assumes a paramagnetic back-
ground which is no longer satisfied once a long-range order is established. The assumed
linear dependence of the exchange coupling constant on external control parameters (pres-
sure or doping) fits well with the experimental data. However, the underlying electronic
structure may be more complex and involve nonlinear changes in hybridisation, bandwidth,
or crystal field under pressure or substitution. The method is based on phenomenological
parameters and does not consider the data obtained from the electronic structure calcula-
tions. A more realistic treatment [22,24] takes an input from density functional theory or
dynamic mean-field theory to evaluate the change in the density of states and hybridisation
strength under pressure or doping. Disorder effects, which are particularly relevant in
chemically substituted systems such as EuCu2(Ge1−xSix)2, are also not taken into account.
Due to the local variations in the chemical environment, the disorder can affect both the
Kondo and RKKY energy and thus change the phase diagram. The comparison with the
experiment is further complicated by the fact that the characteristic temperatures obtained
from various experiments on EuCu2(Ge1−xSix)2 differ by a factor of 2 or 3 and the values
of TK inferred from the experimental data have a large error bar.

4. Conclusions
We described the phase diagram of heavy fermions with RE ions using the scaling

solution of the periodic Anderson model. At high temperatures, we find that the system is
in the LM phase with large paramagnetic entropy and that it is completely characterised by
its Kondo temperature. Using the scaling law, we estimated the dependence of the coupling
constant on the control parameter (pressure, doping, or magnetic field) and found TRKKY(p)
and TN(p). The competition between the on-site Kondo coupling and the off-site RKKY
coupling determines the mechanism by which the compound removes the paramagnetic
entropy at low temperatures, i.e., it determines whether the ground state is a heavy Fermi
liquid or an antiferromagnet. The huge effect of the control parameter on the ground
state is explained by the differences in TK(p) and TRKKY(p) considered as functions of the
control parameter.

In summary, despite its simplicity, our theoretical approach captures the main ex-
perimental features shown by the phase diagram of CeRu2Ge2, EuCu2(Ge1−xSix)2 and
other heavy fermions in which the coupling constant is an increasing function of the
control parameter.
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Reentrant Quantum Criticality in Yb2Pd2Sn. Phys. Rev. B 2011, 83, 180404. [CrossRef]

33. Fukuda, S.; Nakanuma, Y.; Sakurai, J.; Mitsuda, A.; Isikawa, Y.; Ishikawa, F.; Goto, T.; Yamamoto, T. Application of Doniach
Diagram on Valence Transition in EuCu2(SixGe1−x)2. J. Phys. Soc. Jpn. 2003, 72, 3189–3196. [CrossRef]

34. Wilhelm, H.; Jaccard, D. Probing the Phase Diagram of CeRu2Ge2 by Thermopower at High Pressure. Phys. Rev. B 2004, 69, 214408.
[CrossRef]

35. Zlatić, V.; Monnier, R. Theory of the Thermoelectricity of Intermetallic Compounds with Ce or Yb Ions. Phys. Rev. B 2005,
71, 165109. [CrossRef]

36. Yamada, K.; Yosida, K.; Hanzawa, K. A Model for the Heavy Electron State in the Periodic Anderson Model. II. Self-Consistent
Theory and Its Application. Prog. Theor. Phys. 1984, 71, 450. [CrossRef]

37. Bickers, N.E.; Cox, D.L.; Wilkins, J.W. Self-Consistent Large-N Expansion for Normal-State Properties of Dilute Magnetic Alloys.
Phys. Rev. B 1987, 36, 2036. [CrossRef]

38. Hanzawa, K.; Yamada, K.; Yosida, K. Orbital Degeneracy Effect on the Dense Kondo State in Real Systems. J. Magn. Magn. Mater.
1985, 47–48, 357. [CrossRef]

39. Yamada, K.; Yosida, K. A Model for the Heavy Electron State in the Periodic Anderson Model. III. Transport Properties and
Comparison with Experiment. Prog. Theor. Phys. 1986, 76, 681.

40. Loidl, A.; Knorr, K.; Knopp, G.; Krimmel, A.; Caspary, R.; Böhm, A.; Sparn, G.; Geibel, C.; Steglich, F.; Murani, A.P. Neutron-
Scattering Studies on CeM2Ge2 (M = Ag, Au, and Ru). Phys. Rev. B 1992, 46, 9341. [CrossRef]
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