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Abstract: In recent years, 3D printing has been more and more used in the development of buildings
and building elements. Mostly-printed structures are subjected to compression that is oriented
perpendicular to the layer laying direction. When applying load in this way, the printed structure
exhibits characteristics similar to masonry structures. However, as the technology and application
of 3D printing develop, the structures also become more complicated and subjected not only to
direct compression but other stresses as well. In this paper, long-term properties together with
compressive strength were determined for 3D-printed specimens with load applied in the same
direction as the layers are laid. The long-term and mechanical properties were compared with cast
same-composition specimens. Results show that for the printed specimens, the compressive strength
was more than two times lower than cast specimens, while the creep properties were slightly lower
for the printed specimens.

Keywords: cement composite long-term properties; 3D-printed cement composite; tensile stress

1. Introduction

Additive manufacturing, more frequently known as 3D printing, is the fabrication
method of objects using a print head, nozzle, or other printer technologies to deposit
material to the print surface [1]. The 3D printing process has been successfully used in
many disciplines, such as aerospace, automotive, biomedical, and food industries. It is
claimed to allow quicker and cheaper production of an object, especially intricate and
delicate objects with complex geometry. Unlike other manufacturing means, 3D printing
has a much higher automation level that further contributes to labor and cost reduction,
reducing production time [2–5].

The civil engineering field also has developed to a stage where the design of the
structure has become much more complex, while load-bearing necessities have not been
reduced. Furthermore, to meet the demand for residential buildings as well as infrastructure
objects, there is a high need to build faster and reduce building costs. There are high hopes
that 3D printing, due to success in other fields, will also bear fruit in civil engineering
applications. It has been estimated that 3D printing will reduce construction waste by 30 to
60%, decrease production time by 50 to 70%, and drop labor costs by 50 to 80% [6]. To show
these improvements, cementitious material compositions are specifically designed to flow
evenly and have proper layer adhesion to one another. Furthermore, 3D-printed concrete
sections are more prone to acid attacks as well as shrinkage [7]. The weakest part of the
3D-printed section is claimed to be the layer connecting zone. They also show anisotropic
behavior and insufficient insulating properties that lead to possible heat loss [8,9].

As 3D printing of structures are more frequently used to develop a structure where
layers are put on top of one another and subjected to direct compression, it was predicted
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that the structure would work similarly to masonry structures. However, as not all the
structures are subjected to direct compression, there is a need to gain data and knowledge
on how printed structures act under other stresses. For instance, retaining walls have load
applied on the side of them. Therefore, tensile stresses significantly affect the structure’s
load-bearing capacity.

This article investigates the early-age creep and drying shrinkage properties of 3D-
printed cement composite that are loaded in the direction parallel to layers and cast cement
composite and compares them to one another.

2. Materials and Methods

Printed beam shape specimens were prepared for tensile stress impact on printed
specimens to relate creep and shrinkage property determination. Each printed specimen
had four layers. They were modeled to be 40 × 40 × 1000 mm, but due to the cement
composite mix flowability, the width of the specimens at the base was 83 mm, and 67 mm at
the top. The used cement composite composition was similar to cement mortar. Due to the
fact that the composition of the used cement composite is a trade secret, specific amounts
and types of materials cannot be disclosed in this article. The mass partition of the used
cement composite is shown in Table 1. The specimen printing process is shown in Figure 1.

Table 1. Used cement composite composition partitions.

Material Partition, %

Portland cement 33
Quartz sand 0/0.4 mm 49

Water 18
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Figure 1. Test specimen printing process. Figure 1. Test specimen printing process.

When specimens were printed, they were left overnight to set. At the same time, cast
specimens were prepared. They were poured into a steel prismatic cast of 40 × 40 × 160 mm.
A day later, cast specimens were unmolded, and printed specimens were cut to the same
shape (40 × 40 × 160 mm) as the cast specimens. They all were placed in an aqueous
environment for 25 days. After 25 days, all specimens were prepared for the creep and
drying shrinkage tests.

The compressive strength was determined for four specimens (prismatic specimens
40 × 40 × 160 mm) out of each specimen type. The load was applied to the specimens
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for creep tests according to the determined compressive strength values. Compressive
strength and creep and drying shrinkage (further in the text referred to as shrinkage) tests
were conducted using the identical shape specimens so that creep specimens would not
have shape factor impact (if the compressive strength specimens were larger or smaller
than creep specimens) in the load that they were subjected on the test stands. All of the
specimens intended for creep testing were loaded with 20% of the ultimate compressive
strength value. Specimen placement into the creep test stand and shrinkage stand is shown
in Figure 2.

Mater. Proc. 2023, 13, 35 3 of 9 
 

 

When specimens were printed, they were left overnight to set. At the same time, cast 
specimens were prepared. They were poured into a steel prismatic cast of 40 × 40 × 160 
mm. A day later, cast specimens were unmolded, and printed specimens were cut to the 
same shape (40 × 40 × 160 mm) as the cast specimens. They all were placed in an aqueous 
environment for 25 days. After 25 days, all specimens were prepared for the creep and 
drying shrinkage tests. 

The compressive strength was determined for four specimens (prismatic specimens 
40 × 40 × 160 mm) out of each specimen type. The load was applied to the specimens for 
creep tests according to the determined compressive strength values. Compressive 
strength and creep and drying shrinkage (further in the text referred to as shrinkage) tests 
were conducted using the identical shape specimens so that creep specimens would not 
have shape factor impact (if the compressive strength specimens were larger or smaller 
than creep specimens) in the load that they were subjected on the test stands. All of the 
specimens intended for creep testing were loaded with 20% of the ultimate compressive 
strength value. Specimen placement into the creep test stand and shrinkage stand is 
shown in Figure 2. 

  
(a) (b) 

Figure 2. The 3D-printed and cast cement composite shrinkage (a) and creep (b) test setup. 

Creep and shrinkage tests were carried out for 28 days. Creep and shrinkage testing 
procedure, except testing time, was performed according to RILEM TC 107 recommenda-
tions [10]. The laboratory conditions for the creep and shrinkage tests were 24 ± 1 °C and 
30 ± 3% relative humidity. 

After creep and shrinkage tests to determine the reasons for inequal creep and shrink-
age strains to the specimen sides, as well as to see the 3D-printed layer adhesion, quanti-
tative image analysis was performed to the specimen’s polished sections that were pre-
pared and made according to the [11] used process. 

3. Results and Discussion 
The compressive strength was determined before the creep tests. Four specimens 

were used to determine compressive strength values for printed and cast specimens. The 
specimen’s age at the time of testing was 28 days. The compressive strength values are 
shown in Figure 3. 

Figure 2. The 3D-printed and cast cement composite shrinkage (a) and creep (b) test setup.

Creep and shrinkage tests were carried out for 28 days. Creep and shrinkage testing
procedure, except testing time, was performed according to RILEM TC 107 recommenda-
tions [10]. The laboratory conditions for the creep and shrinkage tests were 24 ± 1 ◦C and
30 ± 3% relative humidity.

After creep and shrinkage tests to determine the reasons for inequal creep and shrink-
age strains to the specimen sides, as well as to see the 3D-printed layer adhesion, quantita-
tive image analysis was performed to the specimen’s polished sections that were prepared
and made according to the [11] used process.

3. Results and Discussion

The compressive strength was determined before the creep tests. Four specimens
were used to determine compressive strength values for printed and cast specimens. The
specimen’s age at the time of testing was 28 days. The compressive strength values are
shown in Figure 3.
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As visible from the compressive strength diagram, printed specimens loaded longitu-
dinally to their layer placement exhibit more than two times lower compressive strength
than cast specimens; furthermore, their standard measurement error is 17.9% larger than
cast specimens.

Afterward, 28 day-long early creep and shrinkage tests were run, and the resulting
readings are compiled in Figure 4.
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Figure 4. The 3D-printed and cast cement composite total recorded, creep, and shrinkage strains.

As it is clear from the curves in Figure 4, the shrinkage strains for printed and cast
specimens are very close, or even identical. However, the creep strains have significant dif-
ferences. Printed specimens show, at the peak values, 28.3% less creep strains. Additionally,
the creep curve of printed specimens shows strain-decreasing relations starting from day 12
until day 28, while creep strains in cast specimens rise until day 18 and then exhibit a slight
decrease. This implies that there must be some layer adhesion issue or that the load impact
to the specimen resulted in the degradation of the structure. As the printed specimens have
significantly lower compressive strength than cast specimens, it is necessary to calculate
specific creep to see the creep strains without applied stress impact.

Specific creep values are calculated according to the equation, and the results are
in Figure 5:

χcr(t, t0) =
εcr(t, t0)

σ
=

εkop(t)− εsh(t)− εel(t, t0)

σ
=

1
Ecr(t, t0)

(1)

where:

χcr(t, t0) is the specific creep,
εcr(t, t0) is the creep strain,
εkop(t) is the total strain,
εsh(t) is the shrinkage strain,
εel(t, t0) is the elastic strain,
σ is the compressive stress,
and Ecr(t, t0) is the modulus of creep.

In Figure 5, it is clear that 3D-printed cement composites exhibit significantly higher
specific creep; in other words, they are more willing to creep. On average, they have 32.8%
higher specific creep than cast specimens. Furthermore, their specific creep appears within
a couple of days, while it develops during the first 21 days of testing in cast specimens.
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To further elaborate the assumption that printed specimens have some issues in the
printed layers, the strain readings were divided into those that were measured to the top
surface layer and those in which the surface consists of layer-side surfaces (placement and
description shown in Figure 6).
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Figure 6. The 3D-printed cement composite strain gauge placement on layer sides and surface for
creep (a) and shrinkage (b) specimens.

The long-term shrinkage and creep strain curves according to strain gauge fitment are
shown in Figure 7.

Here, it becomes clear that while long-term strain curves in the relation are similar,
the creep strains and shrinkage strains are very different. While creep and shrinkage
curves rise steadily to the layer top surfaces, the sides seem to have deterioration due to
shrinkage. As the specimens were tested at the age of 28 days, the main shrinkage effect
came from drying shrinkage. The shrinkage strain curves from the layer side surfaces lead
to the conclusion that layers have been partially separated. To further elaborate, printed
specimens after long-term tests were saturated in epoxy resin and used to make polished
section specimens that then had their microstructure examined. It was determined that
for all specimens, one side of the layer was more porous (see Figure 8) than the rest of the
polished section surface.
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specimens. Following conclusions are: 

Figure 8. Quantitative image analysis images with matrix and filler part (red) and air void parts
(blue) to the left side (a), middle part (b), and right side (c) of the specimen cross-section.

The specimens were printed using a plastic nozzle that had been printed on the
plastic 3D printer. It had a stitched part that, as it turns out, frothed up part of the cement
composite that interacted with this part of the nozzle. The model of the nozzle is shown in
Figure 9. The white part in the model is the part where plastic layers are connected, and
the stitch is developed.
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4. Conclusions

Early-age creep and shrinkage property tests were performed on the prismatic spec-
imens at the age of 28 days. The long-term property tests were carried out for 28 days.
Prior to the long-term tests, compressive strength was determined for the cast and printed
specimens. Following conclusions are:

1. According to the subjected stress state of the specimens, the printed cement composite
specimens exhibit 53.7% lower compressive strength than cast cement composites.
They also have a 17.9% higher standard error than cast specimens.

2. Printed specimens that have had load applied in the same way as the layers are laid
show 28.3% fewer creep strains. Shrinkage strains are the same for printed and cast
specimens.

3. Printed specimens are more prone to creep, as printed specimens’ specific creep value
is 32.8% higher on average than cast specimens.

4. Shrinkage strains in printed specimens have a significant role, and due to drying,
shrinkage specimens show significant increases in shrinkage. It is very likely that
this is due to the specifics of the used nozzle geometry. An increase in porosity
in the specimen layer sides was observed. According to microstructure evaluation
on specimen sides, there are 12% and 18% more pores to the shrinkage and creep
specimens, correspondingly, than in the middle of the specimens.
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