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Abstract: The correct application of a statistical test is directly connected with information related 

to the distribution of data. Anderson–Darling is one alternative used to test if the distribution of 

experimental data follows a theoretical distribution. The conclusion of the Anderson–Darling test is 

usually drawn by comparing the obtained statistic with the available critical value, which did not 

give any weight to the same size. This study aimed to provide a formula for calculation of p-value 

associated with the Anderson–Darling statistic considering the size of the sample. A Monte Carlo 

simulation study was conducted for sample sizes starting from 2 to 61, and based on the obtained 

results, a formula able to give reliable probabilities associated to the Anderson–Darling statistic is 

reported. 
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1. Introduction 

Application of any statistical test is made under certain assumptions, and violation of these 

assumptions could lead to misleading interpretations and unreliable results [1,2]. One main 

assumption that several statistical tests have is related with the distribution of experimental or 

observed data (H0 (null hypothesis): The data follow the specified distribution vs. H1 (alternative 

hypothesis): The data do not follow the specified distribution). Different tests, generally called 

“goodness-of-fit”, are used to assess whether a sample of observations can be considered as a sample 

from a given distribution. The most frequently used goodness-of-fit tests are Kolmogorov–Smirnov 

[3,4], Anderson–Darling [5,6], Pearson’s chi-square [7], Cramér–von Mises [8,9], Shapiro–Wilk [10], 

Jarque–Bera [11–13], D’Agostino–Pearson [14], and Lilliefors [15,16]. The goodness-of-fit tests use 

different procedures (see Table 1). Alongside the well-known goodness-of-fit test, other methods 

based for example on entropy estimator [17–19], jackknife empirical likelihood [20], on the prediction 

of residuals [21], or for testing multilevel survival data [22] or multilevel models with binary 

outcomes [23] have been reported in the scientific literature. 

Tests used to assess the distribution of a dataset received attention from many researchers (for 

testing normal or other distributions) [24–27]. The normal distribution is of higher importance, since 

the resulting information will lead the statistical analysis on the pathway of parametric or non-

parametric tests [28–33]. Different normality tests are implemented on various statistical packages 

(e.g., Minitab—http://www.minitab.com/en-us/; EasyFit—http://www.mathwave.com/easyfit-

distribution-fitting.html; Develve—http://develve.net/; r(“nortest” nortest)—https://cran.r-

project.org/web/packages/nortest/nortest.pdf; etc.). 
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Table 1. The goodness-of-fit tests: approaches. 

Test Name Abbreviation Procedure 

Kolmogorov–Smirnov KS 
Proximity analysis of the empirical distribution function (obtained on the 

sample) and the hypothesized distribution (theoretical) 

Anderson–Darling AD 
How close the points are to the straight line estimated in a probability 

graphic 

chi-square CS Comparison of sample data distribution with a theoretical distribution 

Cramér–von Mises CM 
Estimation of the minimum distance between theoretical and sample 

probability distribution 

Shapiro–Wilk SW 
Based on a linear model between the ordered observations and the expected 

values of the ordered statistics of the standard normal distribution 

Jarque–Bera JB 
Estimation of the difference between asymmetry and kurtosis of observed 

data and theoretical distribution 

D’Agostino–Pearson AP Combination of asymmetry and kurtosis measures 

Lilliefors LF 
A modified KS that uses a Monte Carlo technique to calculate an 

approximation of the sampling distribution 

Several studies aimed to compare the performances of goodness-of-fit tests. In a Monte Carlo 

simulation study conducted on the normal distribution, Kolmogorov–Smirnov test has been 

identified as the least powerful test, while opposite Shapiro–Wilks test was identified as the most 

powerful test [34]. Furthermore, Anderson–Darling test was found to be the best option among five 

normality tests whenever t-statistics were used [35]. More weight to the tails are given by the 

Anderson–Darling test compared to Kolmogorov–Smirnov test [36]. The comparisons between 

different goodness-of-fit tests is frequently conducted by comparing their power [37,38], using or not 

confidence intervals [39], distribution of p-values [40], or ROC (receiver operating characteristic) 

analysis [32]. 

The interpretation of the Anderson–Darling test is frequently made by comparing the AD 

statistic with the critical value for a particular significance level (e.g., 20%, 10%, 5%, 2.5%, or 1%) even 

if it is known that the critical values depend on the sample size [41,42]. The main problem with this 

approach is that the critical values are available just for several distributions (e.g., normal and Weibull 

distribution in Table 2 [43], generalized extreme value and generalized logistic [44], etc.) but could be 

obtained in Monte Carlo simulations [45]. The primary advantage of the Anderson–Darling test is its 

applicability to test the departure of the experimental data from different theoretical distributions, 

which is the reason why we decided to identify the method able to calculate its associated p-value as 

a function also of the sample size. 

D’Augostino and Stephens provided different formulas for calculation of p-values associated to 

the Anderson–Darling statistic (AD), along with a correction for small sample size (AD*) [37]. Their 

equations are independent of the tested theoretical distribution and highlight the importance of the 

sample size (Table 3). 

Several Excel implementations of Anderson–Darling statistic are freely available to assist the 

researcher in testing if data follow, or do not follow, the normal distribution [46–48]. Since almost all 

distributions are dependent by at least two parameters, it is not expected that one goodness-of-fit test 

will provide sufficient information regarding the risk of error, because using only one method (one 

test) gives the expression of only one constraint between parameters. In this regard, the example 

provided in [49] is illustrative, and shows how the presence of a single outlier induces complete 

disarray between statistics, and even its removal does not bring the same risk of error as a result of 

applying different goodness-of-fit tests. Given this fact, calculation of the combined probability of 

independent (e.g., independent of the tested distribution) goodness-of-fit tests [50,51] is justified. 

Good statistical practice guidelines request reporting the p-value associated with the statistics of 

a test. The sample size influences the p-value of statistics, so its reporting is mandatory to assure a 

proper interpretation of the statistical results. Our study aimed to identify, assess, and implement an 

explicit function of the p-value associated with the Anderson–Darling statistic able to take into 

consideration both the value of the statistic and the sample size. 
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Table 2. Anderson–Darling test: critical values according to significance level. 

Distribution [Ref] α = 0.10 α = 0.05 α = 0.01 

Normal & lognormal [43] 0.631 0.752 1.035 

Weibull [43] 0.637 0.757 1.038 

Generalized extreme value [44] - - - 

n = 10 0.236 0.276 0.370 

n = 20 0.232 0.274 0.375 

n = 30 0.232 0.276 0.379 

n = 40 0.233 0.277 0.381 

n = 50 0.233 0.277 0.383 

n = 100 0.234 0.279 0.387 

Generalized logistic [44] - - - 

n = 10 0.223 0.266 0.374 

n = 20 0.241 0.290 0.413 

n = 30 0.220 0.301 0.429 

n = 40 0.254 0.306 0.435 

n = 50 0.258 0.311 0.442 

n = 100 0.267 0.323 0.461 

Uniform [52] * 1.936 2.499 3.903 

* Expressed as upper tail percentiles. 

Table 3. Anderson–Darling for small sizes: p-values formulas. 

Anderson–Darling Statistic Formula for p-Value Calculation 

AD ≥ 0.6 exp (1.2937 − 5.709∙(AD*) + 0.0186∙(AD*)2) 

0.34 < AD* < 0.6 exp (0.9177 − 4.279∙(AD*) − 1.38∙(AD*)2) 

0.2 < AD* < 0.34 1 − exp (−8.318 + 42.796∙(AD*) − 59.938∙(AD*)2) 

AD* ≤ 0.2 1 − exp (−13.436 + 101.14∙(AD*) − 223.73∙(AD*)2) 
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2. Materials and Methods 

2.1. Anderson–Darling Order Statistic 

For a sample Y = (y1, y2, …, yn), the data are sorted in ascending order (let X = Sort(Y), and then 

X = (x1, x2, …, xn) with xi ≤ xi+1 for 0 < i < n, and xi = yσ(i), where σ is a permutation of {1, 2, …, n} which 

makes the X series sorted). Let the CDF be the associated cumulative distribution function and 

InvCDF the inverse of this function for any PDF (probability density function). The series P = (p1, p2, 

…, pn) defined by pi = InvCDF(xi) (or Q = (q1, q2, …, qn) defined by qi = InvCDF(yi), where the P is the 

unsorted array, and Q is the sorted array) are samples drawn from a uniform distribution only if Y 

(and X) are samples from the distribution with PDF. 

At this point, the order statistics are used to test the uniformity of P (or for Q), and for this reason, 

the values of X are ordered (in Y). On the ordered probabilities (on P), several statistics can be 

computed, and Anderson–Darling (AD) is one of them: 
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 (1) 

The associated AD statistic for a “perfect” uniform distribution can be computed after splitting 

the [0, 1] interval into n equidistant intervals (i/n, with 0 ≤ i ≤ n being their boundaries) and using the 

middles of those intervals ri = (2i − 1)/2n: 

),(4),()( 1min nRHnnRADnAD +−==
, (2) 

where H1 is the Shannon entropy for R in nats (the units of information or entropy) (H1(R,n) = − 

Σri∙ln(ri)). 
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Equation (2) gives the smallest possible value for AD. The value of the AD increases with the 

increase of the departure between the perfect uniform distribution and the observed distribution (P). 

2.2. Monte Carlo Experiment for Anderson–Darling Statistic 

The probability associated with a particular value of the AD statistic can be obtained using a 

Monte Carlo experiment. The AD statistics are calculated for a large enough number of samples (let 

be m the number of samples), the values are sorted, and then the relative position of the observed 

value of the AD in the series of Monte Carlo-calculated values gives the probability associated with 

the statistic of the AD test. 

It should be noted that the equation linking the statistic and the probability also contains the size 

of the sample, and therefore, the probability associated with the AD value is dependent on n. 

Taking into account all the knowledge gains until this point, it is relatively simple to do a Monte 

Carlo experiment for any order statistic. The only remaining problem is how to draw a sample from 

a uniform distribution in such way as to not affect the outcome. One alternative is to use a good 

random generator, such as Mersenne Twister [53], and this method was used to generate our samples 

as an alternative to the stratified random approach. 

2.3. Stratified Random Strategy 

Let us assume that three numbers (t1, t2, t3) are extracted from a [0, 1) interval using Mersenne 

Twister method. Each of those numbers can be <0.5 or ≥0.5, providing 23 possible cases (Table 4). 

Table 4. Cases for the half-split of [0, 1). 

Class t1 t2 t3 Case 

“0” if ti < 0.5 

“1” if ti ≥ 0.5 

0 0 0 1 

0 0 1 2 

0 1 0 3 

0 1 1 4 

1 0 0 5 

1 0 1 6 

1 1 0 7 

1 1 1 8 

It is not a good idea to use the design presented in Table 4 in its crude form, since it is 

transformed to a problem with an exponential (2n) complexity. The trick is to observe the pattern in 

Table 4. In fact, for (n + 1) cases, with different frequencies of occurrence following the model, the 

results are given in Table 5. 

Table 5. Unique cases for the half-split of [0, 1). 

|{ti|ti < 0.5}| |{ti|ti ≥ 0.5}| Frequency (Case in Table 4) 

3 0 1 (case 1) 

2 1 3 (case 2, 3, 5) 

1 2 3 (case 4, 6, 7) 

0 3 1 (case 8) 

The complexity of the problem of enumerating all the cases stays with the design presented in 

Table 5 at the same order of magnitude with n (we need to list only n + 1 cases instead of 2n). 

The frequencies listed in Table 5 are combinations of n objects taken by two (intervals), so instead 

of enumerating all 2n cases, it is enough to record only n + 1 cases weighted with their relative 

occurrence. 

The effect of the pseudo-random generator is significantly decreased (the decrease is a precise 

order of magnitude of the binary representation, one unit in log2 transformation: 1 = log22, for the (0, 

0.5) and (0.5, 1) split) by doing a stratified random sample. 
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The extractions of a number from (0, 0.5) and from (0.5, 1) were furthermore made in our 

experiment with Mersenne Twister random (if x = Random() with 0 ≤ x < 1 then 0 ≤ x/2 < 1 and 0.5 ≤ 

0.5 + x/2 < 1). Table 5 provides all the information we need to do the design. For any n, for k from 0 to 

n, exactly k numbers are generated as Random()/2, and sorted. Furthermore, exactly n−k numbers are 

generated as 0.5 + Random()/2, and the frequency associated with this pattern is n!/(k!∙(n−k)!). 

The combinations can also be calculated iteratively: cnk(n,0) = 1, and cnk(n,k) = cnk(n,(k − 1))∙(n 

− k + 1)/k for successive 1 ≤ k ≤ n. 

2.4. Model for Anderson–Darling Statistic 

Performing the Monte Carlo (MC) experiment (generates, analyzes, and provides the outcome) 

each time when a probability associated with the AD statistic is needed is resource-consuming and 

not effective. For example, if we generate for a certain sample size (n) a large number of samples m = 

1.28 × 1010, then the needed storage space is 51.2 Gb for each n. Given 1 Tb of storage capacity, it can 

store only 20 iterations of n, as in the series of the AD(n). However, this is not needed, since it is 

possible to generate and store the results of the Monte Carlo analysis, but a proper model is required. 

It is not necessary to have a model for any probability, since the standard thresholds for rejecting 

an agreement are commonly set to α = 0.2, 0.1, 0.05, 0.02, 0.01 (α = 1 − p). A reliable result could be 

considered the model for the AD when p ≥ 0.5. Therefore, the AD (as AD = AD(n,p)) for 501 value of 

the p from 0.500 to 0.001, and for n from 2 to 61 were extracted, tabulated, and used to develop the 

model. 

A search for a dependency of AD = AD(p) (or p = p(AD)) for a particular n may not reveal any 

pattern. However, if the value of the statistic is exponentiated (see the ln function in the AD formula), 

values for the model start to appear (see Figure 1a) after a proper transformation of p. On the other 

hand, for a given n, an inconvenience for the AD(p) (or for its inverse, p = p(AD)) is to have on the 

plot, a non-uniform repartition of the points—for instance, precisely two points for 5 ≤ AD < 6 and 

144 points for AD < 1. As a consequence, any method trying to find the best fit based on this raw data 

will fail because it will give too much weight on the lower part with a much higher concentration of 

the points. The problem is the same for exp(AD) replacing AD (Figure 1b) but is no more the case for 

1/(1 − p) as a function of exp(AD) (Figure 1c), since the dependence begins to look like a linear one. 

Figure 1b suggests that a logarithm on both axes will reduce the difference in the concentration of 

points in the intervals (Figure 1d), but at this point, is not necessary to apply it, since the last spots in 

Figure 1c may act as “outliers” trailing the slope. A good fit in the rarefied region of high p (and low 

α) is desired. It is not so important if we will have a 1% error at p = 50%, but is essential not to have a 

1% error at p = 99% (the error will be higher than the estimated probability, α = 1 − p. Therefore, in 

this case (Figure 1c), big numbers (e.g., ~200, 400) will have high values of residuals, and will trail the 

model to fit better in the rarefied region. 

A simple linear regression y ~ ŷ = a∙x + b for x ← eAD and y ← α − 1 = 1/(1 − p) will do most of the 

job for providing the values of α associated with the values of the AD. Since the dependence is almost 

linear, polynomial or rational functions will perform worse, as proven in the tests. A better alternative 

is to feed the model with fractional powers of x. By doing this, the bigger numbers will not be 

disfavored (square root of 100 is 10, which is ten times lower than 100, while square root of 1 is 1; 

thus, the weight of the linear component is less affected for bigger numbers). On the other hand, 

looking to the AD definition, the probability is raised at a variable power, and therefore, to turn back 

to it, in the conventional sense of operation, is to do root. Our proposed model is given in Equation 

(3): 

xaxaxaxaay 4
4/3

3
4/2

2
4/1

10
ˆ ++++=  (3) 

The statistics associated with the proposed model for data presented in Figure 1 are given in 

Table 6. 
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(a) (b) 

  
(c) (d) 

Figure 1. Probability as function of the AD statistic for a selected case (n = 25) in the Monte Carlo 

experiment: (a) p = p(AD); (b) p = p(eAD); (c) α-1 vs. eAD; (d) −ln(α) vs. AD. 

Table 6. Proposed model tested for the AD = AD(p) series for n = 25. SST: Sum of Squares: Total; SSRes: 

Sum of Squares: Residuals; SSE = Sum of Squares Error. 

Coefficient Value (95% CI) SE t-Value 

a0 4.160 (4.126 to 4.195) 0.017567 237 

a1 −10.327 (−10.392 to −10.263) 0.032902 −314 

a2 9.357 (9.315 to 9.400) 0.02178 430 

a3 −6.147 (−6.159 to −6.135) 0.00601 −1023 

a4 3.4925 (3.4913 to 3.4936) 0.000583 5993 

SST = 1550651, SSRes = 0.0057,  

SSE = 0.0034, r2adj = 0.999999997 

The analysis of the results presented in Table 6 showed that all coefficients are statistically 

significant, and their significance increases from the coefficient of AD1/4 to the coefficient of the AD. 

Furthermore, the residuals of the regression are with ten orders of magnitude less than the total 

residuals (F value = 3.4 × 1010). The adjusted determination coefficient has eight consecutive nines. 

The model is not finished yet, because we need a model that also embeds the sample size (n). 

Inverse powers of n are the best alternatives as already suggested in the literature [43]. Therefore, for 

each coefficient (from a0 to a4), a function penalizing the small samples was used similarly: 

4
,4

3
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2
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1
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With these replacements, the whole model providing the probability as a function of AD statistic 

and n is given by Equation (5): 
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where ŷ = 1/(1 − p), bi,j = coefficients, x = eAD, n = sample size. 
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3. Simulation Results 

Twenty-five coefficients were calculated for Equation (5) from 60 values associated to sample 

sizes from 2 to 61, based on 500 values of p (0.500 ≤ p ≤ 0.999) and with a step of 0.001. The values of 

the obtained coefficients along with the related Student t-statistic are given in Table 7. 

Table 7. Coefficients of the proposed model and their Student t-values provided in round brackets. 

bi,j (ti,j) j = 0 j = 1 j = 2 j = 3 j = 4 

i = 0 
5.6737 

(710) 

−38.9087 

(4871) 

88.7461 

(11111) 

−179.5470 

(22479) 

199.3247 

(24955) 

i = 1 
−13.5729 

(1699) 

83.6500 

(10473) 

−181.6768 

(22746) 

347.6606 

(43526) 

−367.4883 

(46009) 

i = 2 
12.0750 

(1512) 

−70.3770 

(8811) 

139.8035 

(17503) 

−245.6051 

(30749) 

243.5784 

(30496) 

i = 3 
−7.3190 

(916) 

30.4792 

(3816) 

−49.9105 

(6249) 

76.7476 

(9609) 

−70.1764 

(8786) 

i = 4 
3.7309 

(467) 

−6.1885 

(775) 

7.3420 

(919) 

−9.3021 

(1165) 

7.7018 

(964) 

3.1. Stratified vs. Random 

The same experiment was conducted with both simple and random stratified Mersenne Twister 

method [53] to assess the magnitude of the increases in the resolution of the AD statistic. The 

differences between the two scenarios were calculated and plotted in Figure 2. 
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Figure 2. The effect in differences between classical and stratified random in calculated AD statistic. 

3.2. Analysis of Residuals 

The residuals, defined as the difference between the probability obtained by Monte Carlo 

simulation and the value estimated by the proposed model, without and with transformation (ln and 

respectively log), were analyzed. For each probability (p ranging from 0.500 to 0.999 with a step of 

0.001; 500 values) associated with the statistic (AD) based on the MC simulation for n ranging from 2 

to 61 (60 values), 30,000 distinct pairs (p, n, AD) were collected and investigated. The descriptive 

statistics of residuals are presented in Table 8. 

The most frequent value of residuals (~99%) equals with 0.000007 when no transformed data are 

investigated (Figure 3, left-hand graph). The right-hand chart in Figure 3 depicted the distribution of 

the same data, but expressed in logarithmical scale, showing a better agreement with normal 

distribution for the transformed residuals. 
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Table 8. Residuals: descriptive statistics. 

Parameter ( pp ˆ− ) ln( pp ˆ− ) log( pp ˆ− ) 

Arithmetic mean 3.04 × 10−7 −18.8283 −8.17703 

Standard deviation 2.55 × 10−6 3.9477 1.7144 

Standard error 1.47 × 10−8 0.02279 0.009898 

Median 1.5 × 10−8 −18.0132 −7.82304 

Mode 9.52 × 10−8 −16.1677 −7.02156 

Minimum 1.32 × 10−18 −41.167 −17.8786 

Maximum 0.000121 −9.02296 −3.9186 

 

  
(a) ( pp ˆ− ) (b) log( pp ˆ− ) 

Figure 3. Distribution of residuals (differences between MC-simulated values and the values 

estimated by our model) for the probability from regression for the whole pool of data (30,000 pairs). 

(a) untransformed data (b) log transformed data  

A sample of p ranging from 0.500 to 0.995 with a step of 0.005 (100 values), and for n in the same 

range (from 2 to 61; 60 values) was extracted from the whole pool of data, and a 3D mesh with 6000 

grid points was constructed. Figure 4 represents the differences log10( pp ˆ− ) ( p̂  is calculated with 

Equation (5)) and the values of the bi,j coefficients given in Table 4. For convenience, the equation for 

p̂and (α ≡ 1 × p) are 
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Figure 4 reveals that the calculated Equation (5) and the expected values (from MC simulation 

for AD = AD(p,n)) differ less than 1‰ (−3 on the top of the Z axis). Even more than that, with 

departure from n = 2, and from p = 0.500 to n = 61, or to p = 0.999, the difference dramatically decreases 

to 10−6 (visible on the Z-axis as −6 moving from n = 2 to n = 61), to 10−9 (visible on the plot visible on 

X-axis as −9 moving from p = 0.500 to p = 0.995), and even to 10−15 (visible on the plot on Z-axis as −15 

moving on both from p = 0.500 to p = 0.995 and from n = 2 to n = 61). This behavior shows that the 

model was designed in a way in which the estimation error ( pp ˆ− ) would be minimal for small α (α 

close to 0; p close to 1). A regular half-circle shape pattern, depicted in Figure 4, suggests that an even 

more precise method than the one archived by the proposed model must be done with periodic 

functions. 
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Figure 4. 3D plot of the estimation error for data expressed in logarithm scale as function of p (ranging 

from 0.500 to 0.999) and n (ranging from 2 to 61). 

Figure 5 illustrates, more obviously, this pattern with the peak at n = 2 and p = 0.500. 

 

Figure 5. 3D plot of the estimation error for untransformed data: Z-axis show the 105∙( pp ˆ− ) as a 

function of p (ranging from 0.500 to 0.999) and n (ranging from 2 to 61). 

Median of residuals expressed in logarithmic scale indicate that half of the points have exactly 

seven digits (e.g., 0.98900000 vs. 0.98900004). The cumulative frequencies for the residuals 
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Table 9. Characteristics of the investigated datasets. 

Set ID What the Data Represent? 
Sample 

Size 
Reference 

1 Distance (m) on treadmill test, applied on subject ts with peripheral arterial disease 24 [54] 

2 Waist/hip ratio, determined in obese insulin-resistant patients 53 [55] 

3 Insulin-like growth factor 2 (pg/mL) on newborns 60 [56] 

4 Chitotriosidase activity (nmol/mL/h) on patients with critical limb ischemia 43 [57] 

5 Chitotriosidase activity (nmol/mL/h) on patients with critical limb ischemia and on controls 86 [57] 

6 Total antioxidative capacity (Eq/L) on the control group 10 [58] 

7 Total antioxidative capacity (Eq/L) on the group with induced migraine 40 [53] 

8 Mini mental state examination score (points) elderly patients with cognitive dysfunction 163 [59] 

9 Myoglobin difference (ng/mL) (postoperative–preoperative) in patients with total hip arthroplasty 70 [60] 

10 The inverse of the molar concentration of carboquinone derivatives, expressed in logarithmic scale 37 [61] 

11 Partition coefficient expressed in the logarithmic scale of flavonoids 40 [62] 

12 
Evolution of determination coefficient in the identification of optimal model for lipophilicity of polychlorinated biphenyls using a 

genetic algorithm 
30 [63] 

13 Follow-up days in the assessment of the clinical efficiency of a vaccine  31 [64] 

14 Strain ratio elastography to cervical lymph nodes 50 [65] 

15 Total strain energy (eV) of C42 fullerene isomers 45 [66] 

16 Breslow index (mm) of melanoma lesions 29  [67] 

17 Determination coefficient distribution in full factorial analysis on one-cage pentagonal face C40 congeners: dipole moment 44 [68] 

18 The concentration of spermatozoids (millions/mL) in males with ankylosing spondylitis 60 [69] 

19 The parameter of the Poisson distribution 31 [70] 

20 Corolla diameter of Calendula officinalis L. for Bon-Bon Mix × Bon-Bon Orange 28 [71] 
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Experimental data were analyzed with EasyFit Professional (v. 5.2) [72], and the retrieved AD 

statistic, along with the conclusion of the test (Reject H0?) at a significance level of 5% were recorded. 

The AD statistic and the sample size for each dataset were used to retrieve the p-value calculated with 

our method. As a control method, the formulas presented in Table 3 [43], implemented in an Excel 

file (SPC for Excel) [47], were used. The obtained results are presented in Table 10. 

A perfect concordance was observed in regard to the statistical conclusion regarding the normal 

distribution, when our method was compared to the judgment retrieved by EasyFit. The concordance 

of the results between SPC and EasyFit, respectively, with the proposed method, was 60%, with 

discordant results for both small (e.g., n = 24, set 1) samples as well as high (e.g., n = 70, set 9) sample 

sizes. Normal probability plots (P–P) and the quantile–quantile plots (Q–Q) of these sets show slight, 

but not significant deviations from the expected normal distribution (Figure 6). 

Without any exceptions, the p-values calculated by our implemented method had higher values 

compared to the p-values achieved by SPC for Excel. The most substantial difference is observed for 

the largest dataset (set 8), while the smallest difference is noted for the set with 45 experimental data 

values (set 15). The lowest p-value was obtained by the implemented method for set 3 (see Table 10); 

the SPC for Excel retrieves, for this dataset, a value of 0.0000. The next smallest p-value was observed 

for set 8. For both these sets, an agreement related to the statistical decision was found (see Table 10). 

Table 10. Anderson–Darling (AD) statistic, associated p-values, and test conclusion: comparisons. 

Set 
EasyFit Our Method SPC for Excel 

AD Statistic Reject H0? p-Value Reject H0? p-Value Reject H0? 

1 1.18 No 0.2730 No 0.0035 Yes 

2 1.34 No 0.2198 No 0.0016 Yes 

3 15.83 Yes 3.81 × 10−8 Yes 0.0000 Yes 

4 1.59 No 0.1566 No 4.63 × 10−15 Yes 

5 6.71 Yes 0.0005 Yes 1.44 × 10−16 Yes 

6 0.18 No o.o.r.  0.8857 No 

7 3.71 Yes 0.0122 Yes 1.93 × 10−9 Yes 

8 11.70 Yes 2.49 × 10−6 Yes 3.45 × 10−28 Yes 

9 0.82 No 0.4658 No 0.0322 Yes 

10 0.60 No 0.6583 No 0.1109 No 

11 0.81 No 0.4752 No 0.0334 Yes 

12 0.34 No o.o.r.  0.4814 No 

13 4.64 Yes 0.0044 Yes 0.0000 Yes 

14 1.90 No 0.1051 No 0.0001 Yes 

15 0.39 No 0.9297 No 0.3732 No 

16 0.67 No 0.5863 No 0.0666 No 

17 5.33 Yes 0.0020 Yes 2.23 × 10−13 Yes 

18 2.25 No 0.0677 No 9.18 × 10−6 Yes 

19 1.30 No 0.2333 No 0.0019 Yes 

20 0.58 No 0.6774 No 0.1170 No 

AD = Anderson–Darling; o.o.r = out of range. 
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Figure 6. Normal probability plots (P–P) and quantile-quantile plot (Q–Q) by example: graphs for set 

9 (n = 70) in the first row, and for set 11 (n = 40) in the second row. 

Our team has previously investigated the effect of sample size on the probability of Anderson–

Darling test, and the results are published online at http://l.academicdirect.org/Statistics/tests/AD/. 

The method proposed in this manuscript, as compared to the previous one, assures a higher 

resolution expressed by the lower unexplained variance between the AD and the model using a 

formula with a smaller number of coefficients. Furthermore, the unexplained variance of the method 

present in this manuscript has much less weight for big “p-values”, and much higher weight for small 

“p-values”, which means that is more appropriate to be used for low (e.g., p ~10−5) and very low (p 

~10−10) probabilities. 

Further research could be done in both the extension of the proposed method and the evaluation 

of its performances. The performances of the reported method could be evaluated for the whole range 

of sample sizes if proper computational resources exist. Furthermore, the performance of the 

implementation could be assessed using game theory and game experiments [73,74] using or not 

using diagnostic metrics (such as validation, confusion matrices, ROC analysis, analysis of errors, 

etc.) [75,76]. 

The implemented method provides a solution to the calculation of the p-values associated with 

Anderson–Darling statistics, giving proper weight to the sample size of the investigated experimental 

data. The advantage of the proposed estimation method, Equation (5), is its very low residual 

(unexplained variance) and its very high estimation accuracy at convergence (with increasing of in 

and for p near 1). The main disadvantage is related to its out of range p-values for small AD values, 

but an extensive simulation study could solve this issue. The worst performances of the implemented 

methods are observed when simultaneously n is very low (2 or 3) and p is near 0.5 (50–50%). 
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