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Abstract: Ionic polymer-metal composites are electrically driven intelligent composites that are readily
exposed to bending deformations in the presence of external electric fields. Owing to their advantages,
ionicpolymer-metal composites are promising candidates for actuators. However, ionicpolymer-metal
composites exhibit strong nonlinear properties, especially hysteresis characteristics, resulting in
severely reduced control accuracy. This study proposes an ionic polymer-metal composite platform
and investigates its modeling and control. First, the hysteresis characteristics of the proposed
Pt-electrode ionic polymer-metal composite are tested. Based on the hysteresis characteristics,
ionic polymer-metal composites are modeled using the Prandtl-Ishlinskii model and the least squares
support vector machine-nonlinear autoregressive model, respectively. Then, the ionic polymer-metal
composite is driven by a random sinusoidal voltage, and the LSSVM-NARX model is established
on the basis of the displacement data obtained. In addition, an artificial bee colony algorithm is
proposed for accuracy optimization of the model parameters. Finally, an inverse controller based on
the least squares support vector machine-nonlinear autoregressive model is proposed to compensate
the hysteresis characteristics of the ionic polymer-metal composite. A hybrid PID feedback controller
is developed by combining the inverse controller with PID feedback control, followed by simulation
and testing of its actual position control on the ionic polymer-metal composite platform. The results
show that the hybrid PID feedback control system can effectively eliminate the effects of the hysteresis
characteristics on ionic polymer-metal composite control.
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1. Introduction

Intelligent materials are among the most rapidly developing technologies globally [1]. In particular,
intelligent polymer materials have attracted considerable attention owing to their light weight,
large deformation, good biocompatibility, long service life, low cost, and reasonable mouldability.
Such intelligent materials exhibit various responses (e.g., volume expansion, shape reconstruction,
and color change) to external stimulations. Among intelligent polymer materials, electroactive polymers
(EAPs) are novel flexible functional materials that undergo significant size variations under external
electric fields, and they regain their original size upon removal of the external electric fields [2–8].
According to the actuation mechanism, EAPs can be categorized as ionic EAPs and electric-field
EAPs. Ionic polymer-metal composites (IPMCs) are ionic EAPs that have been widely employed as
actuators in bionics, biomedicine, and microelectronics, owing to their low actuating voltage (1–5 V),
rapid response, large actuating displacement, good mouldability, and excellent flexibility [9–16].

In general, the ionicex change film of IPMCs contains moisture, and the water molecules combine
with free hydrophilic cations to generate hydrated cations, which tend to migrate under electric fields.
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This phenomenon is the main contributor to the electric actuating function of IPMCs. Besides the
matrix film, IPMCs contain upper and lower electrodes, which are typically noble metals such as Pt,
Pd, Au, or Ag. Figure 1 shows the structure of the IPMC actuator.
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Figure 1. Structure and mechanism of electrically driven deformations of IPMC. 
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actuator performance. In other words, they do not consider actuator performance degradation due 
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Upon application of DC voltage, the IPMC actuator film immediately bends toward the anode,
and then gradually toward the cathode during relaxation deformation [17]. The physical mechanism is
as follows. Upon application of DC voltage, an electric field is developed between the electrodes and
free cations in the matrix film combine with water molecules and migrate to the cathode, resulting in
aggregation of water molecules near the cathode followed by swelling. Consequently, the actuator film
bends toward the anode.

Nevertheless, as with other intelligent materials, IPMC control is limited by intrinsic nonlinear
properties such as hysteresis and creep. Therefore, reducing the nonlinearity of IPMCs to minimize its
adverse effects on IPMC control has been a research hotspot. The following subsections discuss the
hysteresis characteristics of IPMCs through modeling and control.

1.1. Modeling

The study of IPMC modeling can be divided into two stages. In the first stage, studies of the
electro chemical characteristics of IPMCs revealed their hysteresis characteristics and a circuit model
reflecting their nonlinearity was established [18,19]. The hysteresis characteristics of IPMCs were
shown to be affected by both the amplitude and the changing rate of stimulation voltage signals,
and an improved circuit model was proposed [20]. However, the actuating mechanism of IPMCs
was shown to be complicated. It involves not only charge movement but also other complicated
changes such as structural reconstruction of molecular chains. In addition, the circuit model cannot
explain the actuating characteristics of IPMCs, and its application range is limited. In the second
stage, researchers were not confined by the actuating mechanism of IPMCs. A nonlinear model that
combines an auto regressive neural network and a fuzzy algorithm was proposed. This model can
effectively simulate the nonlinearity of the actuating displacement of IPMCs [21]. By combining
an open-loop positioning strategy based on effective inversion with a dynamic Preisach operator,
researchers proposed a cascade model to capture the hysteresis characteristics and dynamic properties
of an IPMC actuator [22]. Furthermore, to investigate the hysteresis characteristics of IPMCs, a dynamic
model of the IPMC actuator was realized by integrating a dynamic Preisach operator with a fuzzy
NARX model and performing particle swarm optimization (PSO) [23]. Segmented modeling based on
the finite element concept can effectively reflect the hysteresis characteristics of IPMCs [24]. Although
the above-mentioned modeling approaches can reflect the nonlinearity of IPMCs, they do not consider
the effects of environmental humidity on actuator performance. In other words, they do not consider
actuator performance degradation due to dehydration after a long service time. As the migration of
hydrated cations in IPMCs is the main cause of macroscopic IPMC deformation, previous studies
have suggested that the IPMC actuating performance in humid conditions is superior to that in
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air. The hysteresis characteristics of an IPMC actuator under different temperatures and humidities
were investigated and modeled using a non-autoregressive model based on the Laguerre multilayer
perceptron network [25]. However, this model has high requirements in terms of the quality of the
sample data, as it regards all data as feature data.

1.2. Control

Based on dynamic modeling studies, an IPMC actuator was positioned using the self-adaptive
fuzzy algorithm for location control of an IPMC micro-pump [26]. The hysteresis characteristics of the
IPMC actuator were analyzed using the discrete Prandtl-Ishlinskii model, the creep model of the IPMC
actuator was obtained, and an inverse hysteresis model was developed by modifying the creep model
of piezoelectric materials, followed by the development of a self-adaptive inverse control strategy
for the displacement of the IPMC actuator [27]. In addition, a robust, discrete self-adaptive inverse
control method and a discrete self-adaptive sliding mode control method were proposed [28–30].
In these control approaches, the IPMC actuator is regarded as a time-varying system, the dynamic
model parameters of the actuator are set online by the control system, and the control parameters
are adjusted accordingly. The control effect is significantly dependent on the efficiency and accuracy
of the online setting, which is generally unreliable. Hence, time delay control (TDC), which exhibits
good robustness in various control systems, was applied to IPMC actuators and the force control of a
two-link manipulator driven by IPMC actuators [31,32]. The results indicated that, through this control
approach, the IPMC actuator performance varies with the input sinusoidal actuating voltage and the
effects of the hysteresis characteristics on the control accuracy are reduced. However, the applicability
of this approach to systems driven by other signals needs to be verified. To overcome the intrinsic
nonlinearity of IPMC actuators, external interferences, and other uncertain effects due to changes
in the working environment, a nonsingular terminal sliding mode controller was developed [33].
Compared with conventional PID controllers, the nonsingular terminal sliding mode controller exhibits
superior robustness. Considering changes in the water content of an IPMC actuator, a novel nonlinear
self-adaptive observer was designed to determine the unknown potential and humidity in the matrix
film, thus, the water content in an IPMC actuator operated for a long duration in air could be determined,
and the accuracy of motion control could be improved [34]. Although these two methods focus on
the effects of environment conditions on IPMC actuators, their control effects on the nonlinearity of
an IPMC actuator, especially under significantly varying input actuating voltages, have not been
clarified. Owing to the significant overshoot of open-loop responses of an IPMC actuator, the accuracy
of closed-loop control is adversely affected. Therefore, a PSO-based IPMC optimized position control
approach was proposed and proportional integration tuning parameters based on the conventional
Ziegler-Nichols (ZN) method and PSO were compared with each other [35]. Thus, the advantages of
PSO tuning over the conventional ZN method were demonstrated in the estimation of the optimized
tuning parameters and the reduction of the effects of the hysteresis characteristics on the control
accuracy of an IPMC actuator. However, this approach does not fundamentally solve the issue of low
modeling accuracy. Instead, it reflects the advantages of PSO in parameter optimization.

In summary, current modeling approaches are not capable of effective and comprehensive
simulation of the hysteresis characteristics of an IPMC actuator, resulting in high costs of the control
systems. The support vector machine (SVM), based on statistical theory and structuralriskminimization
principle, outperforms the artificial neural network in terms of global optimization and generalization
capability [36] and it shows good performance in hysteresis modeling [37,38]. As an extension of SVM,
the leastsquares support vector machine (LSSVM) overcomes the defect of slow trainingspeed in SVM by
solving a linear equation set rather than aquadratic optimization problem [39]. Also, LSSVM has fewer
parameters to be tuned [40], which means it can achieve accurate regression more easily. Therefore,
LSSVM is an effective methodfor creating the hysteresis model and of IPMCs. However, LSSVM
can only model one-to-one mapping, whereas the hysteresis nonlinearity is a multi-valued mapping.
A practical way is to employ then on linear auto regressive exogenous (NARX) model, which represents
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an input-output recursive model [41]. The NARX model is widely employed for nonlinear system
identification [42–44], where the current output is predicted by the current and previous inputs and
previous outputs. The least squares support vector machine-nonlinear auto regressive exogenous
integrates the two models of LSSVM and NARX effectively, and gives full play to the advantages
of LSSVM in establishing a nonlinear model and NARX in processing a multi-valued mapping
nonlinear system, which is particularly suitable for hysteresis modeling and control system design
of IPMCs [45].Furthermore, owing to the actuating mechanism of IPMCs, an IPMC actuator exhibits
better actuating performance and a longer service life in water than in air. Hence, IPMC actuators have
wider and more promising applications in water. This study proposes the modeling of electrically
driven tip displacement of an IPMC actuator in water using the LSSVM-NARX paradigm and training
based on experimental data obtained by approaches driven by random sinusoidal voltage signals.
Finally, the model parameters are optimized using artificial bee colony algorithms and an inverse
controller of an IPMC actuator is developed to compensate its hysteresis characteristics. By combining
the inverse controller with PID feedback control, the control structure is simplified, and the control
accuracy is improved.

The remainder of this paper is organized as follows. In Section 2, the tip displacements of an
actuator driven by various voltages are tested on the basis of the proposed IPMC and corresponding
platform, and its hysteresis characteristics are analyzed. In Section 3, an LSSVM-NARX model is
proposed for the hysteresis characteristics of a Pt-electrode IPMC in water, which is optimized using
artificial bee colony algorithms. In Section 4, an inverse controller to compensate the hysteresis
characteristics of the actuator is proposed and combined with PID control to generate a hybrid
PID feedback controller, which is verified by both simulations and experiments. Finally, Section 5
summarizes the findings of this study and concludes the paper.

2. Testing of Hysteresis Characteristics of the IPMC Actuator

As a complete understanding of the hysteresis characteristics of an IPMC is a prerequisite for
modeling and control, the hysteresis characteristics of the proposed IPMC were tested on a customized
platform for an IPMC actuator. The proposed IPMC consists of a matrix film and Pt electrodes.
The matrix film used was Nafion-117 (DuPontde Nemours, Inc., Wilmington, DE, USA). Pt was used
as the electrodes owing to its excellent performance in humid conditions, as well as good conductivity
and ductility. The size of the IPMC actuators used was 27 mm × 6 mm × 0.2 mm.

2.1. Testing Platform

Figure 2 shows the customized platform for the IPMC actuator. This platform allows testing and
control of IPMC actuators. Specifically, an IPMC was immersed in distilled water and AC voltages with
controllable amplitude and frequency were applied to the electrodes of the IPMC using a four-quadrant
H-bridge circuit in order to drive the motion of the IPMC. Then, the tip displacement of the IPMC
was measured using a high-precision laser displacement sensor (LE250; Banner Engineering Corp.,
Minneapolis, MN, USA) having a measuring accuracy of 0.04mm. Finally, the upper computer of
the platform was established, and serial communication with the controller was achieved via the
RS-485 bus to realize transmission, processing, and display of the control and experimental data of
the platform.
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Figure 2. Customized platform for IPMC actuators.

Figure 3 shows the working principle of the platform. Instructions by the upper computer are
transmitted to and processed by the main control chip (TMS320F28335) of the controller. The H-bridge
driver module receives the CPU signals and drives H-bridge circuit to deliver the expected actuating
voltage, and the IPMC generates displacement responses under stimulation by the actuating voltage.
The displacement information detected by the laser displacement sensor is transmitted to the main
control chip via a low-pass filter, an A/D converter, and an isolated circuit, and the main control chip
transmits the data to the upper computer via serial communication for processing, display, and saving.
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Figure 3. Structure diagram of the IPMC actuator platform.

As the IPMC tip moves along an arc centered at the clamping end under voltage, the laser
displacement sensor cannot directly measure the tip displacement of the IPMC actuator. Therefore,
the returned data of the tip displacement is compensated by the upper computer, as shown in Figure 4.
Here, L1 and L2 denote the length of the IPMC actuator and the initial distance from the laser point
to the electrode clamp, respectively, d is the initial reading of the laser displacement sensor, a is the
angle between the dotted line position and the initial position of the IPMC actuator, x is the reading
of the displacement sensor when the IPMC is in the dotted line position, and y is the target value.
These parameters can be calculated as

y = L1× sin(arctan((d− x)/L2))
d− L1× sin(arccos(L2/L1)) < x ≤ L1× sin(arccos(L2/L1)) + d

(1)
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The testing results showed that the maximum deflection angle of the actuator exceeded 90◦ if the
amplitude of the sinusoidal actuating voltage exceeded 3V. To guarantee the reliability of the collected
data, the amplitude of the sinusoidal actuating voltage was kept below 3V during testing.

2.2. Testing of Hysteresis Characteristics

The amplitudes and frequencies of the sinusoidal AC voltages applied to the IPMC were 1V, 2V,
and 3V and 0.5/2π Hz, 1/2π Hz, and 5/2π Hz, respectively. Figures 5–16 show the tip displacements of
different samples.
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Figure 5. Tip displacement at actuating voltage with amplitude of 1V and frequency of 0.5/2π Hz.
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Figure 13. Tip displacement at actuating voltage with amplitude of 3V and frequency of 5/2π Hz.
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Figure 16. Results of the Prandtl-Ishlinskii model at sinusoidal actuating voltage with amplitude of 2V
and frequency of 1/2π Hz.

In the above figures, the top left subfigures of the figures are the actuating voltages of IPMC with
different amplitude and frequency, the bottom left subfigures of the figures are the tip displacements
of IPMC, and the right subfigures of the figures are the hysteresis curves combined by the actuating
voltages and tip displacements; Table 1 is the range comparison of IPMC tip displacement.

Table 1. IPMCtip displacement range comparison table.

Amplitude of Actuating
Voltage (V) 1 2 3

Frequency of actuating
voltage (Hz) 0.5/2π 1/2π 5/2π 0.5/2π 1/2π 5/2π 0.5/2π 1/2π 5/2π

Lower limit of tip
displacements (mm) −0.9873 −1.1276 −1.1993 −2.5604 −3.9327 −2.487 −4.7787 −8.7983 −6.1326

Upper limit of tip
displacements (mm) 0.8256 0.8923 0.8134 1.988 2.3796 2.7003 2.6328 2.5967 2.7528

Range of tip
displacements (mm) 1.8129 2.0199 2.0127 4.5484 6.3123 5.1873 7.4115 11.395 8.8854

From Figures above and Table 1, under constant amplitude and varying frequency, delay of the
IPMC displacement from the actuating voltage curve was observed, indicating hysteresis of the IPMC
in terms of time. Meanwhile, the IPMC deformations at negative voltages were significantly larger than
those at positive voltages. In addition, the actuating range of the IPMC actuator increased significantly
with the frequency of the sinusoidal AC voltage, when the amplitude of sinusoidal voltage is 1V,
2V and 3V respectively, the range of tip displacement of IPMC increases by 0.207, 1.764 and 3.984,
respectively, as the frequency rises from 0.5/2πHz to 1/2πHz, while the range of tip displacement of
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IPMC increases by −0.007, −1.125, −2.510, respectively, as the frequency rises from 1/2π Hz to 5/2π
Hz. Under constant frequency and varying amplitude, the overall IPMC deformation increased with
the amplitude, when the amplitude is 3V, the range of tip displacement is much larger than that of
2V and 1V, resulting in improved actuating performance. Under constant amplitude and varying
frequency, the tip displacement range was maximized, and the actuating performance was optimized
at a frequency of 1/2πHz. In summary, testing of the hysteresis characteristics of the IPMC revealed
two features of the Pt-electrode IPMC in water:

1. Multiple mapping: For systems with hysteresis, a specific input may yield different outputs
and a specific output may be attributed to different inputs.

2. Memory: For systems with hysteresis, the current output is determined not only by the current
input but also historical signals and the varying trend.

3. Modeling of IPMC Actuator Based on Hysteresis Characteristics

Owing to the adverse effects of the hysteresis characteristics on the accuracy of IPMC control,
considerable effort has been devoted toward establishing accurate and reliable mathematical models
for the hysteresis characteristics of IPMC [46]. In this section, a least squares support vector
machine-nonlinear autoregressive (LSSVM-NARX) model is proposed for the hysteresis characteristics
of the Pt-electrode IPMC in water, and it is compared with the conventional Prandtl-Ishlinskii model.
Furthermore, an artificial bee colony algorithm is developed to optimize the LSSVM-NARX model.

3.1. IPMC Actuator Modeling Based on Prandtl-Ishlinskii Method

The Prandtl-Ishlinskii model has been widely used for the modeling and compensation of
hysteresis nonlinearity. A typical Prandtl-Ishlinskii model consists of a play hysteresis operator and a
density function [47]. The play hysteresis operator of the Prandtl-Ishlinskii model is continuous and
rate independent [48]; the Schematic diagram is shown in Figure 14. Suppose that Cm[0, tE] represents
a piecewise monotone continuous space, if any input v(t) ∈ Cm[0, tE] is monotonic (0 = t0 < t1 < . . . <
tN = tE) on any subinterval [ti, ti+1] of the time variable [0, tN], the play hysteresis operator is expressed
as follows:

Fr[v](0) = fr(v(0), 0) = w(0)
Fr[v](t) = fr(v(t), Fr[v](ti)), ti < t ≤ ti+10 ≤ i ≤ N − 1

fr(v, w) = max(v− r, min(v + r, w))

(2)

where the characteristic parameters of the Play hysteresis operator are input v and threshold r.
Figure 15 shows the structure of the proposed Prandtl-Ishlinskii model. This model was obtained

by the weighted sum of 10 play hysteresis operators. Here, a1-a10 and r1-r10 denote the weighted
values and thresholds of the operators, respectively. These variables, which are the parameters
of the Prandtl-Ishlinskii model, are usually obtained using optimization algorithms. In this study,
the parameters were determined using PSO.

The procedure of PSO is as follows:
I. Initialization of particle swarms: 100particleswith a dimension of 20, including the number of

particle swarms, random position, and speed of particles, are initialized.
II. Calculation of fitness of each particle:

fitness =

√∑
(Ytest −Y1)

2

ltest
(3)

where Ytest is the experimental data, Y1 is the output calculated on the basis if the optimized parameters,
and ltest is the number of experimental data.

III. Recording of optimized position of each particle: For each particle, the current position is regarded
as the optimized position if its fitness exceeds that of the previous optimized position.
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IV. Recording of optimized position of particle swarm: For each particle, the fitness of the global
optimized position is replaced by that of the current position if the latter exceeds the former.

V. The speed and position of the particle are updated as:

vi, j(t1 + 1) = w′vi, j(t1) + c1r1[pi, j − xi, j(t1)] + c2r2[pg, j − xi, j(t1)] (4)

where the inertial weight is used as the weighting factor (w′), ci and ri are constants, and pi, j is the
current position.

The weight is updated by

w′ = w′max −
t1× (w′max −w′min)

t1max
(5)

The position is updated by

xi, j(t1 + 1) = xi, j(t1) + vi, j(t1 + 1), j = 1 (6)

VI. Obtain the results: The optimization ends if the number of iterations reaches its maximum
value (100) or the fitness reaches the prescribed value.

Owing to the symmetry of play hysteresis operators, the Prandtl-Ishlinskii model was obtained by
recognition of the tip displacement data at an actuating voltage with an amplitude of 3V and frequency
of 1/2π Hz by PSO. The 20parameters are summarized in Table 2.

Table 2. Parameters of Prandtl-Ishlinskii model.

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

Value 2.446 −8.8831 −2.5468 −5.3785 7.4586 −8.13 3.711 4.986 2.3852 10

r1 r2 r3 r4 r5 r6 r7 r8 r9 r10

Value 4.2268 −10 −4.2276 2.6812 6.3775 10 −7.9211 10 −10 −3.8301

The Prandtl-Ishlinskii model was verified using the tip displacement data obtained at two
sinusoidal actuating voltages which one voltage is an amplitude of 2V and a frequency of 1/2π Hz
and another voltage is an amplitude of 3V and a frequency 5/2π Hz. The results of one period of two
sinusoidal actuating voltages are shown in Figure 16; Figure 17. Here, the blue solid line and the
red dotted line represent the tip displacements obtained experimentally and by the Prandtl-Ishlinskii
model, respectively. The errors of the Prandtl-Ishlinskii model at two sinusoidal actuating voltages are
shown in Figures 18 and 19, the root mean square errors (RMSE) are 0.5685 and 0.8345. These curves
are not consistent, indicating severe modeling errors. The maximum absolute value of the error of the
Prandtl-Ishlinskii model exceeded 1.5 and the errors were widely distributed.
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Figure 17. Results of the Prandtl-Ishlinskii model at sinusoidal actuating voltage with amplitude of 3V
and frequency of 5/2π Hz.
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Figure 18. Errorof the Prandtl-Ishlinskii model at sinusoidal actuating voltage with amplitude of 2V
and frequency of 1/2π Hz (RMSE = 0.5685).
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Figure 19. Error of the Prandtl-Ishlinskii model at sinusoidal actuating voltage with amplitude of 3V
and frequency of 5/2π Hz (RMSE = 0.8345).
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3.2. Modeling of IPMC Actuators Based on the LSSVM-NARX Method

NARX is a dynamic neural network with excellent nonlinearity mapping capability. The concept of
the dynamic autoregressive time sequence has been introduced into NARX. Hence, NARX exhibits good
interference resistance and dynamic features in predictions of issues involving time sequences [49–52].
The mathematical equation of NARX is

y(n + 1) = f
[

y(n), y(n− 1), . . . y(n− dy + 1),
u(n), u(n− 1), . . . u(n− du + 1)

]
(7)

where y(n) and u(n) are the output and input at moment n, respectively, while dy and du are the output
and input delays, respectively. In NARX, the current output is determined by not only the current
input but also the delay du of the current input and delay du of the output. The weight parameters of
the neural network can be continuously adjusted by learning the nonlinearity of these data so that the
prediction of future parameters can be achieved.

Figure 20 shows the structure of NARX, Z−1 is the delay operator in picture. Like neural networks,
NARX consists of an input layer, a hidden layer, and an output layer. However, NARX involves
analysis of the input and output delays. The prediction accuracy is proportional to the delay; however,
an increase in the delay leads to increased calculation. Hence, the delay is determined by optimization
of the accuracy and efficiency.
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As a modification of SVM, LSSVM exhibits significantly higher calculation speed and lower
complexity [53–55]. In general, LSSVM is applicable only to issues involving single mapping of input
and output. Hence, multiple mapping in hysteresis characteristics is converted into single mapping
in the modeling. In the NARX model, the input and output at the previous moment are used as the
reference input in the current moment. This feature overcomes the limitation of LSSVM in issues
involving multiple mapping.

A regression model was established on the basis of the structure of the NARX model:

hk = f (xk) + ξk (8)

where xk = [uk, . . . , uk−m, yk−1, . . . yk−n], uk and yk are the input voltage and output displacement at
moment k, respectively, ξk is the prediction error, and f (·)denotes the nonlinear regressive model.
In addition, m ≥ 0 and n ≥ 0 denote the regression orders of the model.

It has been shown that the input data are mapped to a high-dimensional feature space in LSSVM,
followed by the development of a linear regressive function. The hysteresis characteristics of the IPMC
were modeled using LSSVM. Here, f (·) is as follows:

h(x) = ωTϕ(x) + b (9)
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where the input is mapped to a high-dimensional space by the nonlinear function ϕ(x),{xk, hk}
N
k=1 is

the given training set, and N is the number of training samples. Furthermore,ω and b are the weight
vector and error, respectively, and they can be determined by min

ω,ξ,b
J(ω, ξ) = 1

2ω
Tω+ 1

2 C
N∑

k=1
ξ2

k

yk= ωTϕ(xk) + b + ξk

(10)

where C is the regularization factor balancing the training error and the model complexity.
The Lagrangian function can be expressed as

L(ω, b, ξ, β) = J(ω, ξ) −
N∑

k−1

αk
[
ωTϕ(xk) + b + ξk − hk

]
(11)

where αk denotes the Lagrangian factor. The optimized solutions meet the following requirements:

∂L
∂ω = 0→ ω =

N∑
k=1

αkϕ(xk)

∂L
∂ξk

= 0→ αk = Cξk

∂L
∂b = 0→

N∑
k=1

αk = 0

∂L
αk

= 0→ ωTϕ(x) + b + ξk − hk = 0

(12)

In LSSVM, regression is regarded as an optimization problem in the initial weight space.
The optimized conditions are determined by solving a series of partial derivatives. The dual function
established on the basis of these partial derivatives is[

0 eT
N×1

eN×1 Ω + IN/C

][
b
α

]
=

[
0
H

]
(13)

where eN×1 = [1; 1; . . . ; 1], α = [α1;α2; . . . ;αN], H = [h1; h2; . . . ; hN], IN is a unit matrix, Ωi j =

ϕT(xi)·ϕ(x j) = K(xi, x j), and K(·) is a radial basis kernel function:

K(xi, x j) = exp(−‖xi − x j‖
2/2σ2) (14)

where σ > 0 is the bandwidth parameter of the kernel function.
Furthermore, σ and b can be obtained by Equation (11), and the LSSVM-NARX regressive model

is given by

yk = h(x) =
N∑

k=1

αkK(x, xk) + b (15)

Figure 21 shows the structure of the LSSVM-NARX model. In addition to the existing input,
three delays of the initial input and the output were introduced to overcome the limitation of the
LSSVM model in issues involving multiple mapping of input and output.
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Figure 20 shows the structure of the LSSVM‐NARX model. In addition to the existing input, 
three delays of the initial input and the output were introduced to overcome the limitation of the 
LSSVM model in issues involving multiple mapping of input and output. 
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Figure 21. Structure of the LSSVM-NARX model.

3.3. Results of the LSSVM-NARX Model

For comparison with the Prandtl-Ishlinskii model, the LSSVM-NARX model was developed,
using tip displacements at a sinusoidal actuating voltage with an amplitude of 3V and a frequency
of 1/2π Hz as the training data. The model parameters were C = 998.0867 and σ = 0.2. Then,
the LSSVM-NARX model was verified using tip displacements at sinusoidal actuating voltages,
whereby one voltage has an amplitude of 2V and a frequency of 1/2π Hz and another voltage has
an amplitude of 3V and a frequency 5/2π Hz. The results (16 periods) are shown in Figures 22
and 23, where the blue solid line and the red dotted line represent the tip displacements obtained
experimentally and by the LSSVM-NARX model, respectively. The two curves have consistent trends
despite slight differences in certain sections. Figures 24 and 25 show the corresponding error curves.
The errors of the LSSVM-NARX model were concentrated and most of them had absolute values below
1, although the maximum absolute value exceeded 2.5. The RMSEswere0.5147 and 0.3042, which was
lower than those of the Prandtl-Ishlinskii model (0.5685 and 0.8345). In summary, the proposed
LSSVM-NARX model can accurately reflect the input and output features of the IPMC actuator.
Furthermore, it exhibits advantages in terms of the number of model parameters to be recognized and
the recognition complexity. In addition, it has negligible requirements in terms of the form of the input
data. Therefore, the model of the Pt-electrode IPMC in water was established using the LSSVM-NARX
model in this study.
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Figure 22. Results of the LSSVM-NARX model at sinusoidal actuating voltage with amplitude of 2V
and frequency of 1/2π Hz.
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Figure 23. Results of the LSSVM-NARX model at sinusoidal actuating voltage with amplitude of 3V
and frequency of 5/2π Hz.
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Figure 24. Error of the LSSVM-NARX model at sinusoidal actuating voltage with amplitude of 2V and
frequency of 1/2π Hz (RMSE = 0.5147).
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Figure 25. Error of the LSSVM-NARX model at sinusoidal actuating voltage with amplitude of 3V and
frequency of 5/2π Hz (RMSE = 0.3042).
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To verify the adaptability of LSSVM-NARX model, two random sinusoidal actuating voltages
were applied, the results of experiments are shown in Figures 26 and 27, the corresponding error curves
of LSSVM-NARX model are shown in Figure 28 (RMSE = 0.6695) and Figure 29 (RMSE = 0.9606).Mathematics 2019, 7, x FOR PEER REVIEW 18 of 34 
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Figure 26. Results of the LSSVM-NARX model at random sinusoidal actuating voltage I.
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Figure 27. Results of the LSSVM-NARX model at random sinusoidal actuating voltage II.
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Figure 28. Error of the LSSVM-NARX model at random sinusoidal actuating voltage I (RMSE = 0.6695).
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Figure 29. Error of the LSSVM-NARX model at random sinusoidal actuating voltage II (RMSE =

0.9606).

As observed form RMSEs in Figures 24–26 and 29, although LSSVM-NARX model is superior to
the Prandtl-Ishlinskii model when the inputs are tip displacements at sinusoidal actuating voltages,
the RMSEs of LSSVM-NARX model are larger than those of the Prandtl-Ishlinskii model when the inputs
are tip displacements at random sinusoidal actuating voltages. That is because that LSSVM-NARX
model was trained using sinusoidal signals and the parameters model were not optimized, so the
adaptability of the model was poor.

3.4. LSSVM-NARX Model Optimization Based on Artificial Colony Algorithm

As mentioned above, the LSSVM-NARX model has negligible requirements in terms of the form
of the input data. Therefore, it was trained using the tip displacements of the IPMC actuator driven
by a random sinusoidal voltage to enhance its accuracy. Figure 30a shows the random sinusoidal
actuating voltage curve of this training data group, and Figure 30b shows the tip displacement curve
of the IPMC actuator in response to this training data group. Owing to the direct effects of the hyper
parameters (C and σ) of the LSSVM-NARX model on its accuracy, the two hyperparameters were
optimized using the artificial bee colony algorithm to further improve the model accuracy.
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The artificial bee colony algorithm is a global optimization algorithm developed on the basis of the
working principle of the bee colony. By appropriate division of labor, bees can share information about
nectar sources so that the optimal nectar sources can be identified in a short time [56,57]. Optimization
of the LSSVM-NARX model by the artificial bee colony algorithm can be divided into six steps:

I. Initialization of bee colony: 100 bees (employed bees and scout bees) corresponding to 100nectar
sources are initialized, and the corresponding solution of each nectar source has two dimensions.

II. Search for new nectar source by bee colony: The employed bee corresponding to the ith nectar
source searches for a new nectar source (i.e., new solution) according to the following equation:

x′id = xid + φid(xid − xkd) (16)

where i = 1, 2, . . . , 100, d = 1,2, φid is a random number, and i , k is within [–1,1].
The new nectar source identified is X′i = {x′i1, x′i2}.
III. Update of nectar source: The new nectar source (X′i) is compared with the initial one (Xi), and the

nectar source is updated according to the following equation:

pi =
f iti

2∑
j=1

f it j

(17)

where f iti is the fitness of Xi.
IV. Departure of scout bee: The employed bee corresponding to the abandoned nectar source in

Step III becomes a scout bee to search for a new nectar source according to the following equation:

xid = xmin
d + r1(xmax

d − xmin
d ) (18)

where r1 ∈ [0, 1] and xmin
d and xmax

d are the upper and lower limits of the solution, respectively.
V. Memorization of the optimized nectar source: The position of the optimized nectar source

(i.e., the optimized solution) is memorized, and Steps II-V are repeated 100 times.
VI. Termination of nectar source search: If a nectar source with expected fitness was identified or

100 cycles are completed, optimization is terminated and the optimized solution is generated.

3.5. Verification of Optimized LSSVM-NARX Model

The two hyperparameters obtained by the artificial bee colony algorithm were Cbest = 6.45× 1010

and σbest = 7.2951 × 1011. Then, the optimized model was verified using another data group of the
IPMC driven by a random sinusoidal voltage. Figure 31 shows the random sinusoidal actuating
voltage and the tip displacement of the IPMC actuator corresponding to this data group, respectively.

Figure 32; Figure 33 are the results of the optimized LSSVM-NARX model at sinusoidal actuating
voltages of which one voltage is an amplitude of 2 V and a frequency of 1/2π Hz and another voltage
is an amplitude of 3 V and a frequency 5/2π Hz, where the blue solid line and the red dotted line
represent the tip displacements of the IPMC actuator obtained experimentally and by the optimized
LSSVM-NARX model, respectively. Figure 34; Figure 35 show the corresponding error curves, of which
the RMSEs are 0.1308 and 0.1261. Figure 36; Figure 37 show the results obtained by the optimized
LSSVM-NARX model at random sinusoidal actuating voltages, where the blue solid line and the red
dotted line represent the tip displacements of the IPMC actuator obtained experimentally and by the
optimized LSSVM-NARX model, respectively. Figure 38; Figure 39 show the corresponding error
curves, which have RMSEs of0.1169 and 0.0941, respectively.



Mathematics 2019, 7, 741 21 of 34

Mathematics 2019, 7, x FOR PEER REVIEW 21 of 34 

 

  
(a) (b) 

Figure 30. The displacement of tip by the Random sinusoidal drive voltage II: (a) Random 
sinusoidal drive voltage II; (b) Random sinusoidal tip displacement II. 

 
Figure 31. Results of the optimized LSSVM‐NARX model at sinusoidal actuating voltage 
with amplitude of 2V and frequency of 1/2π Hz. 

 

Figure 32. Results of the optimized LSSVM‐NARX model at sinusoidal actuating voltage 
with amplitude of 3V and frequency of 5/2π Hz. 

Vo
lta

ge
(V

)

Figure 31. The displacement of tip by the Random sinusoidal drive voltage II: (a) Random sinusoidal
drive voltage II; (b) Random sinusoidal tip displacement II.

Mathematics 2019, 7, x FOR PEER REVIEW 21 of 34 

 

  
(a) (b) 

Figure 30. The displacement of tip by the Random sinusoidal drive voltage II: (a) Random 
sinusoidal drive voltage II; (b) Random sinusoidal tip displacement II. 

 
Figure 31. Results of the optimized LSSVM‐NARX model at sinusoidal actuating voltage 
with amplitude of 2V and frequency of 1/2π Hz. 

 

Figure 32. Results of the optimized LSSVM‐NARX model at sinusoidal actuating voltage 
with amplitude of 3V and frequency of 5/2π Hz. 

Vo
lta

ge
(V

)

Figure 32. Results of the optimized LSSVM-NARX model at sinusoidal actuating voltage with amplitude
of 2V and frequency of 1/2π Hz.

Mathematics 2019, 7, x FOR PEER REVIEW 21 of 34 

 

  
(a) (b) 

Figure 30. The displacement of tip by the Random sinusoidal drive voltage II: (a) Random 
sinusoidal drive voltage II; (b) Random sinusoidal tip displacement II. 

 
Figure 31. Results of the optimized LSSVM‐NARX model at sinusoidal actuating voltage 
with amplitude of 2V and frequency of 1/2π Hz. 

 

Figure 32. Results of the optimized LSSVM‐NARX model at sinusoidal actuating voltage 
with amplitude of 3V and frequency of 5/2π Hz. 

Vo
lta

ge
(V

)

Figure 33. Results of the optimized LSSVM-NARX model at sinusoidal actuating voltage with amplitude
of 3V and frequency of 5/2π Hz.
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Figure 34. Error of the optimized LSSVM-NARX model at sinusoidal actuating voltage with amplitude
of 2V and frequency of 1/2π Hz (RMSE = 0.1308).
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Figure 35. Error of the optimized LSSVM-NARX model at sinusoidal actuating voltage with amplitude
of 3V and frequency of 5/2π Hz (RMSE = 0.1261).
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Figure 36. Results of the optimized LSSVM-NARX model at random sinusoidal actuating voltage I.
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Figure 37. Results of the optimized LSSVM-NARX model at random sinusoidal actuating voltage II.
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As observed, whether the input signal of the optimized LSSVM-NARX model was a sinusoidal
signal with different frequency and amplitude or a random sinusoidal signal, the curves are highly
consistent, and the errors were smaller than the unoptimized LSSVM-NARX and the absolute values of
most of the errors were below 0.4, and the RMSEs were basically around 0.1. In summary, the optimized
LSSVM-NARX model is exposed to small errors and it can effectively enhance the accuracy of IPMC
modeling, which has better adaptability for different types of input signals.

4. Design of IPMC Actuator Control Method Based on Inverse Controller

Strong hysteresis characteristics have adverse effects on the control accuracy of IPMC actuators.
The best solution to this problem is compensation of the hysteresis characteristics by an inverse
controller to reduce the control difficulty. Therefore, an inverse controller was proposed on the basis
of the structural characteristics of the LSSVM-NARX model, in addition to the establishment of an
accurate mathematical model by the LSSVM-NARX method. The inverse controller was combined
with PID feedback control to improve the IPMC control accuracy.

4.1. Inverse Controller Based on the LSSVM-NARX Model

Based on the LSSVM-NARX modeling discussed in Section 3, an inverse LSSVM-NARX model for
inverse control was established. The input and output of the LSSVM-NARX model were the actuating
voltage and IPMC displacement, respectively. The input and output of the inverse LSSVM-NARX model
were the IPMC displacement and actuating voltage, respectively. Hence, the inverse LSSVM-NARX
model is

ul = h1(x) =
N∑

l=1

αlK(x, xl) + b1 (19)

where xl = [yl, . . . yl−n, ul−1, . . . , ul−m], yl and ul are the input displacement and output voltage at
moment l, respectively, and h1(x) = ω1

Tϕ1(x) + b1, the input space is mapped to a high-dimensional
space by the nonlinear function ϕ1(x). Furthermore, ω1 and b1 are the weight vector and error,
while K(·) denotes the kernel function in Equation (13).

The inverse model was established using the artificial bee colony algorithm, and Cin and σin of the
inverse LSSVM-NARX model were calculated as4.0521×106 and 7.1077×103, respectively. Figure 40
shows the structure of the LSSVM-NARX inverse controller. In this inverse controller, the input and
output of the inverse LSSVM-NARX model are the expected displacement and actuating voltage,
respectively. Three delays were involved in both input and output. The output voltage of the inverse
model was regarded as the actuating voltage of the IPMC so that the expected displacement could
easily be reached by compensation.
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4.2. Simulation of Inverse Controller

The tip displacements of the IPMC actuator driven by a random sinusoidal voltage were regarded
as the input of the LSSVM-NARX inverse controller, and the inverse controller was verified by MATLAB
simulations (see Figure 41). Here, the blue solid line and the red dotted line represent the input of the
inverse controller (i.e., expected tip displacement of the IPMC) and the actual tip displacement of the
IPMC with the inverse controller, respectively. As observed, these two curves are highly consistent.
Figure 42 shows the corresponding error curves. As observed, the control errors of the inverse controller
based on the LSSVM-NARX model were small, and the absolute values of most errors were below 0.5.
The root mean square error was calculated as 0.1152, indicating that the proposed inverse controller
can effectively compensate the hysteresis of IPMC actuators.
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4.3. Design of Hybrid PID Control System

Although the proposed LSSVM-NARX inverse controller facilitates advances in IPMC control, it is
an open-loop controller and it cannot achieve error correction. Furthermore, systems with the proposed
LSSVM-NARX inverse controller exhibit poor stability and disturbance suppression. To enhance the
stability and accuracy of control systems, we designed a hybrid PID controller by combining the
LSSVM-NARX inverse controller with PID feedback control.
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Here, yi and ui are the input displacement and output voltage of the inverse controller based on
the LSSVM-NARX model at moment i, respectively. The error signal of the hybrid controller is

e = yi −Yi (20)

where Yi is the output of the hybrid controller at moment i.
The output (u) of the PID controller can be calculated as

u = K

e + 1
TI

l∫
0

edl + TD
de
dl

 (21)

where K is the proportional gain, TI is the integration time, and TD is the differentiation time. The input
(ul) of the IPMC is

ul = u + ui (22)

Figure 43 shows the structure of the proposed hybrid PID feedback controller. The input and
output were the expected tip displacement of the IPMC (yi) and actual output (Yi), respectively.
Essentially, the inverse LSSVM-NARX model of the actuator acts as the feedforward element of the
PID feedback control, and they constitute the hybrid PID controller.
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Figure 43. Structure of hybrid PID feedback controller.

The control system was simulated using MATLAB with the following parameters: K = 1.2,
TI = 0.87, and TD = 0.13.

Figure 44 shows the control results of the hybrid PID feedback controller, where the blue solid line
and the red dotted line represent the input data of the hybrid controller (i.e., expected tip displacement
of IPMC) and the actual tip displacement of the IPMC actuator involving the inverse controller,
respectively. As observed, these two curves are highly consistent. Figure 45 compares the output
errors of the inverse controller (blue solid line) and the hybrid PID feedback controller (red dotted
line). As observed, the red curve is lower than the blue one. The root means square errors of the red
dotted line and the blue solid line were 0.0244 and 0.1152, respectively.
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4.4. Experimental Results and Analysis

The hybrid PID feedback control was applied to the IPMC on the customized IPMC platform
described above. The displacement data in different forms were used as input, regressively processed by
the upper computer, and then transmitted to the inverse controller to obtain the compensating voltage
of the IPMC actuator. Information about the compensating voltage and the input displacement were
transmitted to the controller by serial communication. The hybrid PID feedback control system was
developed by combining the inverse controller with the PID feedback control function and compensating
the voltage to achieve control of the tip displacement of the IPMC actuator. Meanwhile, information
about the actual tip displacements was transmitted to the upper computer by serial communication.

Figure 46 shows the control results with a constant displacement of 4mm as input, where the blue
solid line and the red dotted line represent the expected displacement and actual output of the IPMC.
As observed, these two curves are significantly different. Figure 47 shows the corresponding error
curves. The root mean square error was calculated as 0.8756. In summary, the performances of control
systems were relatively poor with constant displacement as input.

Figure 48 shows the control results with sinusoidal displacements having a frequency of 1/2π Hz
and an amplitude of 2.5mm as input. Here, the blue solid line and the red dotted line represent the
input and the actual output tip displacement of the IPMC, respectively. As observed, these two curves
are highly consistent. Figure 49 shows the corresponding error curves. As observed, the absolute values
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of most errors were below 0.15. The RMSE was calculated as 0.0365. In summary, the performances of
the control systems were good with regular sinusoidal displacement as input.Mathematics 2019, 7, x FOR PEER REVIEW 28 of 34 
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Figure 48. Input displacement is the control result at a frequency of 1/2π Hz and an amplitude of
2.5 mm.
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Figure 49. Input displacement is the control error at a frequency of 1/2π Hz and an amplitude of
2.5 mm.

Figure 50 shows the control results with random sinusoidal displacement as input. Here, the blue
solid line and the red dotted line represent the input and actual output tip displacement of the IPMC,
respectively. As observed, these two curves are highly consistent. Figure 51 shows the corresponding
error curves. As observed, the absolute values of most errors were below 0.08. The root mean square
error was calculated as0.0306. In summary, the performances of control systems were also good with
random sinusoidal displacement as input.
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Figure 52 shows the spectrum of the input random sinusoidal displacement of the control
system shown in Figure 50. As observed, the frequency and amplitude of input random sinusoidal
displacement were 0–0.7 Hz and −9–4 mm, respectively. Hence, the feasibility of the hybrid PID
feedback control can be effectively verified with random sinusoidal displacement as input.
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The control system exhibited poor performance and severe errors with constant input displacement.
The LSSVM-NARX inverse controller in the hybrid PID feedback controller was developed on the basis
of the hysteresis characteristics of the IPMC actuators, which are dynamically nonlinear, especially
in the case of input voltages with varying amplitude and frequency. However, at constant input
displacement, the IPMC nonlinearity is mainly reflected as creep characteristics, resulting in limited
accuracy of the control system. With regular or random sinusoidal displacements as input, the control
system exhibited good performance and small control errors. Therefore, our experiments demonstrated
that the proposed control system could effectively overcome IPMC hysteresis and achieve good
control effects.

5. Conclusions and Prospects

As an electrically driven intelligent composite, an IPMC used as an actuator exhibits strong
hysteresis characteristics, resulting in limited control accuracy. This study aimed to develop a control
approach that can reduce, if not eliminate, the adverse effects of hysteresis characteristics on IPMC
control. First, the performance of an electrically driven Pt-electrode IPMC was tested. Specifically,
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the tip displacements of the IPMC at different voltages were measured and the hysteresis characteristics
of the IPMC actuator were analyzed. To overcome the IPMC hysteresis, the tip displacements of an
electrically driven IPMC actuator were modeled using the LSSVM-NARX model and an artificial bee
colony algorithm was proposed to optimize the parameters of the LSSVM-NARX model, and compared
with those obtained using the conventional Prandtl-Ishlinskii model. The results indicated that the
RMSEs of optimized LSSVM-NARX model was only about 0.1, which is far less than that of the
Prandtl-Ishlinskii model (0.6–0.8); therefore, modeling of the Pt-electrode IPMC in water by the
LSSVM-NARX model is accurate and efficient. Subsequently, an LSSVM-NARX inverse controller
was designed to compensate the hysteresis characteristics of the IPMC, and it was combined with PID
feedback control to generate a hybrid PID feedback controller that is capable of accurate control of
the Pt-electrode IPMC in water. The experiments indicated that the hybrid PID feedback controller
can control the precise trajectory of tip displacement of IPMC with the RMSE of about 0.03 in the
range of 0 to 0.7 Hz. Those studies demonstrated the feasibility and effectiveness of the proposed
control approach.

In addition, if the purity of the distilled water soaked by IPMC is maintained and the electrode
voltage of IPMC is less than 3V, the service life of the IPMC can reach 2600–2800 h, during which time
the models and control methods in article are applicable. Meanwhile, the IPMC was exposed to severe
creep if the expected displacement remained constant and the continuous control time exceeded 4h.
Therefore, the ways to improve service life of IPMC and compensation of creep for continuous control
of IPMC over a long time should be investigated for further improvement.

Author Contributions: L.H., Y.H. and Y.L. conceived of the presented idea; L.H. and Y.H. developed the theory
and Testing platform, Y.H. and Y.Z. verified the methods by experiment. L.H. wrote the paper.

Funding: The study was supported by the “Major scientific and technological innovation project of Shandong
Province, China (Grant No. 2017CXGC0901)” and the “Major basic research project of Shandong natural science
foundation, China (Grant No. ZR2018ZC0436)”.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Wang, H. Application of intelligent materials in the control system. J. Comput. Theor. Nanosci. 2015, 12,
2830–2836. [CrossRef]

2. Mutlu, R.; Alici, G.; Xiang, X.; Li, W. Electro-mechanical modelling and identification of electroactive polymer
actuators as smart robotic manipulators. Mechatronics 2014, 24, 241–251. [CrossRef]

3. Hong, W.Y.J.; Almomani, A.; Cchen, Y.F.; Jamshidi, R.; Montazami, R. Soft ionic electroactive polymer
actuators with tunable non-linear angular deformation. Materials 2017, 10, 664. [CrossRef] [PubMed]

4. Guo, J.; Bamber, T.; Zhao, Y.; Chamberlain, M.R.; Justham, L.; Jackson, M. Toward adaptive and intelligent
electro-adhesives for robotic material handling. IEEE Robot. Autom. Lett. 2017, 2, 538–545. [CrossRef]

5. Alekseev, N.I.; Broiko, A.P.; Kalenov, V.E. Structure of a graphene-modified electroactive polymer for
membranes of biomimetic systems: Simulation and experiment. J. Struct. Chem. 2018, 59, 1707–1718.
[CrossRef]

6. Bashir, M.; Rajendran, P. A review on electroactive polymers development for aerospace applications. J. Intell.
Mater. Syst. Struct. 2018, 28, 3681–3695. [CrossRef]

7. Chang, L.F.; Liu, Y.F.; Yang, Q.; Yu, L.; Liu, J.; Zhu, Z.; Lu, P.; Wu, Y.; Hu, Y. Ionic electroactive polymers used
in bionic robots: A review. J. BionicEng. 2018, 15, 765–782. [CrossRef]

8. Palza, H.; Zapata, P.A.; Angulo-Pineda, C. Electroactive smart polymers for biomedical applications. Materials
2019, 12, 277. [CrossRef]

9. Chidsey, C.E.; Murray, R.W. Electroactive polymers and macromolecular electronics. Science 1986, 231, 25–31.
[CrossRef]

10. Tiwari, R.; Garcia, E. The state of understanding of ionic polymer metal composite architecture: A review.
SmartMater. Struct. 2011, 20. [CrossRef]

11. Li, H.Y.; Liu, Y.L. Nafion-functionalized electrospun poly (vinylidene fluoride) (PVDF) nanofibers for high
performance proton exchange membranes in fuel cells. J. Mater. Chem. A 2014, 2, 3783–3793. [CrossRef]

http://dx.doi.org/10.1166/jctn.2015.4185
http://dx.doi.org/10.1016/j.mechatronics.2014.02.002
http://dx.doi.org/10.3390/ma10060664
http://www.ncbi.nlm.nih.gov/pubmed/28773036
http://dx.doi.org/10.1109/LRA.2016.2646258
http://dx.doi.org/10.1134/S0022476618070260
http://dx.doi.org/10.1177/1045389X18798951
http://dx.doi.org/10.1007/s42235-018-0065-1
http://dx.doi.org/10.3390/ma12020277
http://dx.doi.org/10.1126/science.231.4733.25
http://dx.doi.org/10.1088/0964-1726/20/8/083001
http://dx.doi.org/10.1039/C3TA14264G


Mathematics 2019, 7, 741 32 of 34

12. Peng, K.J.; Lai, J.Y.; Liu, Y.L. Nanohybrids of graphene oxide chemically-bonded with Nafion: Preparation
and application for proton exchange membrane fuel cells. J. Membr. Sci. 2016, 514, 86–94. [CrossRef]

13. Kim, D.J.; Jo, M.J.; Nam, S.Y. A review of polymer-nanocomposite electrolyte membranes for fuel cell
application. J. Ind. Eng. Chem. 2015, 21, 36–52. [CrossRef]

14. Liu, Y.; Chang, L.; Hu, Y.; Niu, Q.; Yu, L.; Wang, Y.; Lu, P.; Wu, Y. Rough interface in IPMC: Modeling and its
influence analysis. SmartMater. Struct. 2018, 27. [CrossRef]

15. Shen, Q.; Stalbaum, T.; Minaian, N.; Oh, I.K.; Kim, K.J. A robotic multiple-shape-memory ionic polymer-metal
composite (IPMC) actuator: Modeling approach. SmartMater. Struct. 2019, 28. [CrossRef]

16. Zhu, Z.C.; Bian, C.S.; Ru, J.; Bai, W.F.; Chen, H.L. Rapid deformation of IPMC under a high electrical pulse
stimulus inspired by action potential. SmartMater. Struct. 2019, 28. [CrossRef]

17. Jain, R.K.; Datta, S.; Majumder, S. Design and control of an IPMC artificial muscle finger for micro gripper
using EMG signal. Mechatronics 2013, 23, 381–394. [CrossRef]

18. Tadokoro, S.; Yamagami, S.; Takamori, T.; Oguro, K. An actuator model of ICPF for robotic applications on
the basis of physicochemical hypotheses. In Proceedings of the IEEE International Conference on Robotics &
Automation, San Francisco, CA, USA, 24–28 April 2000; pp. 1340–1346.

19. Tadokoro, S.; Fukuhara, M.; Maeba, Y.; Takamori, T. A dynamic model of ICPF actuator considering
ion-induced lateral strain for molluskan robotics. In Proceedings of the IEEE/RSJ International Conference
on Intelligent Robots & Systems, Lausanne, Switzerland, 30 September–4 October 2002.

20. Bonomo, C.; Fortuna, L.; Giannone, S.; Mazza, D. A circuit to model the electrical behavior of an ionic
polymer-metal composite. IEEE Trans. Circuits Syst. I: Regul. Pap. 2012, 53, 338–350. [CrossRef]

21. Anh, H.P.H.; Ahn, K.K. Identification of pneumatic artificial muscle manipulators by a MGA-based nonlinear
NARX fuzzy model. Mechatronics 2009, 19, 106–133. [CrossRef]

22. Chen, Z.; Hedgepeth, D.R.; Tan, X. A nonlinear, control-oriented model for ionic polymer-metal composite
actuators. SmartMater. Struct. 2009, 18, 1851–1856. [CrossRef]

23. Nam, D.N.C.; Ahn, K.K. Identification of an ionic polymer metal composite actuator employing Preisach
type fuzzy NARX model and Particle Swarm Optimization. Sens. Actuators A Phys. 2012, 183, 105–114.
[CrossRef]

24. Lagosh, A.V.; Broyko, A.P.; Kalyonov, V.E.; Khmelnitskiy, I.K.; Luchinin, V.V. Modeling of IPMC actuator.
In Proceedings of the 2017 IEEE Conference of Russian Young Researchers in Electrical and Electronic
Engineering (EIConRus), St. Petersburg, Russia, 1–3 February 2017; pp. 916–918.

25. Zamyad, H.; Naghavi, N. Behavior identification of IPMC actuators using laguerre-MLP network with
consideration of ambient temperature and humidity effects on their performance. IEEETrans. Instrum. Meas.
2018, 67, 2723–2732. [CrossRef]

26. Oh, S.J.; Kim, H. A study on the control of an IPMC actuator using an adaptive fuzzy algorithm. KSME Int. J.
2004, 18, 1–11. [CrossRef]

27. Hao, L.; Li, Z. Modeling and adaptive inverse control of hysteresis and creep in ionic polymer-metal
composite actuators. SmartMater. Struct. 2010, 19, 865–870. [CrossRef]

28. Sun, Z.; Hao, L.; Chen, W.; Li, Z.; Liu, L. A novel discrete adaptive sliding modelike control method for ionic
polymermetal composite manipulators. SmartMater. Struct. 2013, 22, 95–108. [CrossRef]

29. Hao, L.; Chen, Y.; Sun, Z. The sliding mode control for different shapes and dimensions of IPMC on resisting
its creep characteristics. SmartMater. Struct. 2015, 24, 964–978. [CrossRef]

30. Chen, Y.; Hao, L.; Yang, H.; Gao, J. Kriging modeling and SPSA adjusting PID with KPWF compensator
control of IPMC gripper for mm-sized objects. Rev. Sci. Instrum. 2017, 88, 1–9. [CrossRef]

31. Caponetto, R.; Luca, V.D.; Graziani, S. A multiphysics model of IPMC actuators dependence on relative
humidity. In Proceedings of the 2015 IEEE International Instrumentation and Measurement Technology
Conference (I2MTC) Proceedings, Pisa, Italy, 11–14 May 2015; pp. 1482–1487.

32. Kim, M.H.; Kim, K.Y.; Lee, J.H.; Jho, J.Y.; Kim, D.M.; Rhee, K.; Lee, S.J. An experimental study of force control
of an IPMC actuated two-link manipulator using time-delay control. SmartMater. Struct. 2016, 25, 117–130.
[CrossRef]

33. Khawwaf, J.; Zheng, J.; Al-Cihanimi, A.; Man, Z.; Nagarajah, R. Modeling and tracking control of an IPMC
actuator for underwater applications. In Proceedings of the 2016 International Conference on Advanced
Mechatronic Systems (ICAMechS), Melbourne, VIC, Australia, 30 November–3 December 2016; pp. 550–554.

http://dx.doi.org/10.1016/j.memsci.2016.04.062
http://dx.doi.org/10.1016/j.jiec.2014.04.030
http://dx.doi.org/10.1088/1361-665X/aaca59
http://dx.doi.org/10.1088/1361-665X/aaeb83
http://dx.doi.org/10.1088/1361-665X/aadc38
http://dx.doi.org/10.1016/j.mechatronics.2013.02.008
http://dx.doi.org/10.1109/TCSI.2005.856042
http://dx.doi.org/10.1016/j.mechatronics.2008.06.004
http://dx.doi.org/10.1088/0964-1726/18/5/055008
http://dx.doi.org/10.1016/j.sna.2012.05.012
http://dx.doi.org/10.1109/TIM.2018.2822418
http://dx.doi.org/10.1007/BF03028784
http://dx.doi.org/10.1088/0964-1726/19/2/025014
http://dx.doi.org/10.1016/j.msea.2012.11.058
http://dx.doi.org/10.1088/0964-1726/24/4/045040
http://dx.doi.org/10.1063/1.4993663
http://dx.doi.org/10.1088/0964-1726/25/11/117001


Mathematics 2019, 7, 741 33 of 34

34. Bernat, J.; Kolota, J. Adaptive observer-based control for an IPMC actuator under varying humidity conditions.
SmartMater. Struct. 2018, 27, 55–64. [CrossRef]

35. Sainag, T.L.; Sujoy, M. Optimal position control of ionic polymer metal composite using particle swarm
optimization. In Proceedings of the SPIE 20th Conference on Electroactive Polymers Actuators and Devices,
Denver, CO, USA, 27 March 2018; Volume 18, pp. 1059–1068.

36. Darnag, R.; Minaoui, B.; Fakir, M. QSAR models for prediction study of HIV protease inhibitors using support
vector machines, neural networks and multiple linear regression. Arabian J. Chem. 2017, 10, S600–S608.
[CrossRef]

37. Ma, Y.; Zhang, X.; Xu, M.; Xie, S. Hybrid model based on preisach and support vector machine for novel
dual-stack piezoelectric actuator. Mech. Syst. Signal Process. 2013, 34, 156–172. [CrossRef]

38. Wong, P.K.; Xu, Q.; Vong, C.M.; Wong, H.C. Rate-dependent hysteresis modeling and control of a piezostage
using online support vector machine and relevance vector machine. IEEE Trans. Ind. Electron. 2012, 59,
1988–2001. [CrossRef]

39. Mao, X.; Wang, Y.; Liu, X.; Guo, Y. An adaptive weighted least square support vector regression for hysteresis
in piezoelectric actuators. Sens. Actuators A Phys. 2017, 263, 423–429. [CrossRef]

40. Yang, J.; Bouzerdoum, A.; Phung, S. A Training algorithm for sparse LS-SVM using compressive sampling.
In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, Dallas, TX,
USA, 14–19 March 2010; pp. 2054–2057.

41. Napoli, R.; Piroddi, L. Nonlinear active noise control with NARX models. IEEE Trans. Audio Speech Lang.
Process. 2010, 18, 286–295. [CrossRef]

42. Sahoo, H.K.; Dash, P.K.; Rath, N.P. NARX model based nonlinear dynamic system identification using low
complexity neural networks and robust H∞ filter. Appl. Soft Comput. 2013, 13, 3324–3334. [CrossRef]

43. Wang, H.; Song, G. Innovative NARX recurrent neural network model for ultra-thin shape memory allow
wire. Neurocomputing 2014, 134, 289–295. [CrossRef]

44. Asgari, H. NARX models for simulation of the start-up operation of a single-shaft gas turbine. Appl. Therm.
Eng. 2016, 93, 368–376. [CrossRef]

45. Mao, X.F.; Wang, Y.J.; Liu, X.D. A hybrid feedforward-feedback hysteresis compensator in piezoelectric
actuators based on least-squares support vector machine. IEEE Trans. Ind. Electron. 2018, 65, 5704–5711.
[CrossRef]

46. Xu, Q. Identification and compensation of piezoelectric hysteresis without modeling hysteresis inverse. IEEE
Trans. Ind. Electron. 2013, 60, 3927–3937. [CrossRef]

47. Al Janaideh, M.; Rakotondrabe, M.; Aljanaidwh, O. Further Results on Hysteresis Compensation of Smart
Micropositioning Systems with the Inverse Prandtl-Ishlinskii Compensator. IEEE Trans. Control Syst. Technol.
2015, 24, 428–439. [CrossRef]

48. Jiang, C.; Deng, M.; Inoue, A. A novel modeling of nonlinear plants with hysteresis described by
non-symmetric play operator. In Proceedings of the 7th World Congress on Intelligent Control and
Automation, Chongqing, China, 25–27 June 2008; pp. 2221–2224.

49. Guzman, S.M.; Paz, J.O.; Tagert, M.L.M.; Mercer, A.E. Evaluation of seasonally classified inputs for the
prediction of daily groundwater levels: NARX networks vs support vector machines. Environ. Modeling
Assess. 2019, 24, 223–234. [CrossRef]

50. Ezzeldin, R.; Hatata, A. Application of NARX neural network model for discharge prediction through lateral
orifices. Alex. Eng. J. 2018, 54, 2991–2998. [CrossRef]

51. Jaleel, E.A.; Aparna, K. Identification of realistic distillation column using NARX based hybrid artificial
neural network and artificial bee colony algorithm. J. Intell. Fuzzy Syst. 2018, 34, 2075–2086. [CrossRef]

52. Avellina, M.; Brankovic, A.; Piroddi, L. Distributed randomized model structure selection for NARX models.
Int. J. Adapt. Control Signal Process. 2017, 31, 1853–1870. [CrossRef]

53. Suykens, J.A.K.; Vandewalle, J. Least squares support vector machine classifiers. Neural Process. Lett. 1999, 9,
293–300.

54. Kaytez, F.; Taplamacioglu, M.C.; Cam, E.; Hardalac, F. Foreacsting electricity consumption: A comparison of
regression analysis, neural networks and least squares support vector machine. Int. J. Electr. Power Energy
Syst. 2015, 67, 431–438. [CrossRef]

55. Cao, L.J.; Tay, F.H. Support vector machine with adaptive parameters in financial time series forcasting. IEEE
Trans. Neural Netw. 2003, 14, 1506–1518. [CrossRef]

http://dx.doi.org/10.1088/1361-665X/aab56e
http://dx.doi.org/10.1016/j.arabjc.2012.10.021
http://dx.doi.org/10.1016/j.ymssp.2012.05.015
http://dx.doi.org/10.1109/TIE.2011.2166235
http://dx.doi.org/10.1016/j.sna.2017.06.030
http://dx.doi.org/10.1109/TASL.2009.2025798
http://dx.doi.org/10.1016/j.asoc.2013.02.007
http://dx.doi.org/10.1016/j.neucom.2013.09.050
http://dx.doi.org/10.1016/j.applthermaleng.2015.09.074
http://dx.doi.org/10.1109/TIE.2017.2777398
http://dx.doi.org/10.1109/TIE.2012.2206339
http://dx.doi.org/10.1109/TCST.2015.2446959
http://dx.doi.org/10.1007/s10666-018-9639-x
http://dx.doi.org/10.1016/j.aej.2018.04.001
http://dx.doi.org/10.3233/JIFS-161966
http://dx.doi.org/10.1002/acs.2803
http://dx.doi.org/10.1016/j.ijepes.2014.12.036
http://dx.doi.org/10.1109/TNN.2003.820556


Mathematics 2019, 7, 741 34 of 34

56. Karaboga, D. AnIdea Based on Honey Bee Swarm for Numerical Optimization; Technical Report; Computers
Engineering Department, Engineering Faculty, Eriyes University: Kayseri, Turkey, 2005.

57. Tereshko, V.; Loengarov, A. Collective decision-making in honeybee foraging dynamics. Comput. Inf. Syst. J.
2005, 9, 1–7.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Modeling 
	Control 

	Testing of Hysteresis Characteristics of the IPMC Actuator 
	Testing Platform 
	Testing of Hysteresis Characteristics 

	Modeling of IPMC Actuator Based on Hysteresis Characteristics 
	IPMC Actuator Modeling Based on Prandtl-Ishlinskii Method 
	Modeling of IPMC Actuators Based on the LSSVM-NARX Method 
	Results of the LSSVM-NARX Model 
	LSSVM-NARX Model Optimization Based on Artificial Colony Algorithm 
	Verification of Optimized LSSVM-NARX Model 

	Design of IPMC Actuator Control Method Based on Inverse Controller 
	Inverse Controller Based on the LSSVM-NARX Model 
	Simulation of Inverse Controller 
	Design of Hybrid PID Control System 
	Experimental Results and Analysis 

	Conclusions and Prospects 
	References

