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Abstract: An optimal restoration strategy for supply chain networks can efficiently schedule the
repair activities under resource limits. However, a wide range of previous studies solve this problem
from the perspective of cost-effectiveness instead of a resilient manner. This research formulates the
problem as a network maximum-resilience decision. We develop two metrics to measure the resilience
of the supply chain networks, i.e., the resilience of cumulative performance loss and the resilience of
restoration rapidity. Then, we propose a bi-objective nonlinear programming model, which aims to
maximize the network resilience under the budget and manpower constraints. A modified simulated
annealing algorithm is employed to solve the model. Finally, a testing supply chain network is
utilized to illustrate the effectiveness of the proposed method framework. The results show that the
optimal restoration schedule generated by the proposed model is a tradeoff between the cumulative
performance loss and the restoration rapidity. Additionally, the sensitivity analysis of parameters
indicates that decision-maker’s preference, tolerance factor of delivery time, number of work crews,
and availability of budget all have significant impacts on the restoration schedule.

Keywords: optimal restoration schedule; supply chain network; resilience; bi-objective nonlinear
programming model; simulated annealing algorithm

1. Introduction

With the development of the manufacturing industry, improvement of living standards for citizens
and growth in global trade, various countries have built huge and complex supply chain networks,
which contribute significantly to economic and social prosperity [1]. However, due to natural disasters,
man-made hazards, and internal failures, supply chain networks have become a vulnerable system and
are more inclined to suffer from unexpected disruptions [2–4], which may bring about tremendous losses
and additional costs. As such, it is essential for decision-makers to recover the supply chain networks
after a disruption occurs so that the networks can return to operation as soon as possible. To this
end, a restoration strategy for supply chain networks has attracted the attention of many researchers.
Particularly, the main purpose of the strategy is to save restoration costs, improve recovery rapidity,
and reduce economic losses [5].

There are two research streams in the existing literature focusing on network restoration problems.
One of the two streams defines restoration optimization as an optimal resource allocation problem, which
determines which network components to repair [6,7]. For example, Zhang et al. employ an inoperability
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input–output model for allocating restoration resources of a disrupted infrastructure network [8].
The other stream denotes the restoration problem as a resource constrained project scheduling problem,
which identifies the precedence relationship among all the restoration activities [9,10]. For instance, Nurre
et al. use a discrete event simulation model to determine how to schedule repair tasks for infrastructure
systems [11]. However, it is rare in literature to concentrate on this problem taking network resilience
into account. The interaction between the restoration decision and the evolution of network performance
during the recovery process has not been completely considered. Additionally, a comprehensive and
accurate evaluation of the supply chain network resilience has not been well investigated.

In view of this, the paper aims to investigate the optimization of the restoration schedule for supply
chain networks from the perspective of resilience. This work makes the following three contributions.
(1) We develop two metrics to assess the cumulative performance loss and restoration rapidity of the
supply chain network. (2) We propose a bi-objective nonlinear programming model to formulate
the restoration optimization problem aiming to maximize the network resilience subject to resource
constraints. (3) We illustrate the proposed method on a testing supply chain network and analyze the
effects of relative model parameters on the restoration results.

The remainder of this paper is organized as follows. Section 2 reviews the previous studies on the
network restoration modeling approach. Section 3 develops a mathematical model to formulate the
restoration problem and presents the model solution. Section 4 tests the proposed method framework
using a case study and analyzes the sensitivity of relevant parameters. Conclusions and future work
are discussed in Section 5.

2. Literature Review

In the literature, there is a wide range of studies that have been carried out focusing on the
network restoration problem [12–14], which aims to determine the selection of facilities in the network
to be maintained and the maintenance time sequence of these facilities [15,16]. For instance, Liu et al.
proposed a two-stage stochastic programming model to generate an optimal strategy to determine
what bridges need maintenance in a highway network with uncertainty [17]. Chen and Miller-Hooks
presented a stochastic mixed-integer programming model to obtain a recovery scheduling for intermodal
freight transportation networks with a fixed budget under different disruptive events [18]. In this
section, we mainly review the approaches that have been adopted to solve this problem. The existing
approaches can be classified into two groups, i.e., the mathematical programming approach [19,20] and
the simulation-based approach [21,22]. The approach employed in this research falls in the first group.

The mathematical programming approach formulates the restoration problem as a nonlinear or
linear mathematical model. Mixed-integer programming (MIP) and its variants are commonly used
methods, which determine whether or not every single component in the network is to be restored
using a binary variable. For example, Ciric and Popovic develop a MIP model combined with a
heuristic approach with multiple objectives to solve a distribution network restoration problem [15].
To make the post-disaster restoration planning of infrastructure networks, Fang and Sansavini propose
a mixed-integer binary linear programming model maximizing the network performance subject to
the investment cost and network connectivity [23]. González et al. develop a MIP model subject
to budget, resources, and operational constraints to generate a minimum-cost restoration strategy
of a partially destroyed infrastructure network [24]. These applications of MIP models assume that
all the model parameters are deterministic, e.g., complete information on resources and known
duration of the restoration activities. However, in the real world, some uncertainties may exist in
the restoration decision-making process. Hence, the decisions generated by the deterministic MIP
models are probably suboptimal or even infeasible. To fill this gap, many other researchers have
applied stochastic programming (SP) to deal with this problem. For instance, Fang and Sansavini put
forward a two-stage stochastic optimization model considering the effects of uncertain restoration time
and availability of resources to determine the optimal post-disruption restoration strategy of critical
infrastructure networks [25]. Sanci and Daskin propose an SP model integrating facility location and
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network restoration decisions with uncertain durations of recovery tasks for restoration decisions in
relief networks [26]. Xu et al. present a stochastic integer programming model to schedule the repair
activities taking the uncertainty of restoration times into account [27]. It is easy to understand that the
models mentioned above are NP hard, which are difficult to obtain the optimal solution even if for
small problems [28]. Hence, most of the previous studies solved the scheduling models with heuristic
and metaheuristic algorithms, e.g., tabu search, genetic algorithm, simulated annealing algorithm,
particle swarm algorithm.

The simulation-based approach is another technique employed to solve the restoration problems.
Schmitt and Singh develop a discrete-event simulation to assess the effects of inventory placement and
back-up on reducing the disruption risks for a multi-echelon supply chain network [29]. Carvalho
et al. illustrate an ARENA-based simulation model on an automotive supply chain to evaluate how
different mitigation strategies improve supply chain performance [30]. Xu et al. utilize the AnyLogic
software combined with a resilience model to simulate the structural evolution mechanism of random
disruptions at suppliers and recovery policies for supply chain networks [31]. For the supply chain
network recovery problem, the inventory model is also used as a simulation method, which optimizes
the inventory system responding to disruptions. Hishamuddin et al. present an inventory-based
recovery model with consideration of the interaction between the inventory system and the recovery
schedule, which minimizes the total relevant costs during the recovery time window [32].

3. Methodology

3.1. Assumption

This research is carried out based on the following assumptions:

(1) Each disrupted link in the supply chain network is not operational until it is completely recovered.
(2) All supplies are delivered from the supply nodes to the demand nodes through the fastest path in

the network.
(3) Each work crew can only work on the restoration of a disrupted link at a time.
(4) Each link is restored only by one work crew.
(5) Each restoration activity is non-preemptive, i.e., each restoration activity is implemented only

once over the restoration time horizon.
(6) The amount of demands from supply nodes to demand nodes is fixed and does not vary over the

restoration time horizon.

3.2. Notation

The notations used in this study are given as follows:

Sets and Indices

A Set of links in the supply chain network, indexed by a ∈ A.
T Set of discrete-time periods, indexed by t ∈ T.
R Set of available work crews, indexed by r ∈ R.
N Set of all nodes in the network, indexed by i, j ∈ N.
Ns Set of supply nodes in the network, Ns ⊆ N.
Nd Set of demand nodes in the network, Nd ⊆ N.
A∗ Set of disrupted links in the network, A∗ ⊆ A.
Ki j Set of origin-destination (OD) pairs between supply node i ∈ Ns and demand node j ∈ Nd,

indexed by k ∈ Ki j.
Pt

k Set of paths that connect OD pair k at time t, indexed by p ∈ Pt
k, t ∈ T, k ∈ Ki j.

Parameters

qi j Amount of demands between supply node i ∈ Ns and demand node j ∈ Nd.
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hi j Travel time of link (i, j) ∈ A in the network.
z0

i j Pre-disruption delivery time from supply node i ∈ Ns and demand node j ∈ Nd.

zp,t
i j Travel time of the pth path from supply node i ∈ Ns and demand node j ∈ Nd at time t,

p ∈ Pt
k, t ∈ T.
zt

i j Minimum delivery time from supply node i ∈ Ns and demand node j ∈ Nd, t ∈ T.
cai j Cost of restoration for link (i, j) ∈ A∗ in the network.
dai j Duration of restoration for link (i, j) ∈ A∗ in the network.
Mmax Maximum acceptable makespan of the entire restoration process.
B Budget limit of the restoration.
θ Tolerance factor of delivery time.

Decision Variables

Ru Resilience of cumulative loss.
Rm Resilience of restoration rapidity.
M Makespan of the entire restoration process.
ϕ(t) Supply chain network performance at time t, t ∈ T.
ρt

i j Variable indicating whether or not the demand qi j is satisfied at time t, t ∈ T.
C Total cost of all the restoration activities.
xt

i j Flow through the link (i, j) ∈ A from node i to node j at time t, t ∈ T.

δt
i j,p Binary variable that represents δt

i j,p= 1, if link (i, j) ∈ A lies on the pth path, otherwise,

δt
i j,p= 0, p ∈ Pt

k, t ∈ T.

βt,r
i j Binary variable that represents βt,r

i j = 1, if link (i, j) ∈ A∗ is to be restored by work crew r at

time t, otherwise, βt,r
i j = 0, t ∈ T, r ∈ R.

3.3. Problem Statement

We define a bi-directional supply chain network as an undirected network G=(N, A), where N is a
set of all nodes and A =

{
(i, j): i, j ∈ N, i , j

}
is a set of all links. Moreover, there is a set of supply

nodes Ns ⊆ N and a set of demand nodes Nd ⊆ N. The disrupted links in the supply chain network are
denoted as A∗ ⊆ A. There exists a fixed amount of demands qi j from supply nodes i = Ns to demand
nodes j = Nd in the supply chain network.

Figure 1 presents the post-disruption recovery process of supply chain networks. Assume that
a disruptive event occurs at time te, which destroys a set of links in the network. As a result, the
performance of the supply chain network will drop to ϕ(t e

)
from ϕ(t 0

)
in the pre-disruption period.

Responding to the disruption immediately, a restoration strategy is determined and implemented at
time te to gradually restore the network performance to a target value at time te+M. The makespan of
the restoration strategy is M.
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Herein, the network performanceϕ(t) is time-dependent, which is defined as the total OD demand
satisfaction ratio [2,12,18] in this work. ϕ(t) is formulated as in Equation (1).
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ϕ(t) =
Q(t)
Q(t 0)

=

∑
i∈Ns, j∈Nd

qi j×ρ
t
i j∑

i∈Ns, j∈Nd
qi j

, t ∈ T (1)

ρt
i j =

 1, if zt
i j ≤ θz0

i j
0, if zt

i j>θz0
i j

, i ∈ Ns, j ∈ Nd, t ∈ T (2)

where Q(t) is the satisfied OD demands at time t. ρt
i j indicates whether or not the demand qi j from

supply node i to demand node j is satisfied. Since we assume that all supplies are delivered from the
supply nodes to the demand nodes by the fastest path, the minimum travel time zt

i j between each OD
pair at time t is solved by the Dijkstra method [33,34] formulated in Equations (3) and (4).

zt
i j= min

{
zp,t

i j

}
, i ∈ Ns, j ∈ Nd, p ∈ Pt

k, t ∈ T (3)

zp,t
i j =


∑

(i, j)∈A
hi j×δ

t
i j,p, if (i, j) ∈ A\A∗, p ∈ Pt

k,∀t ∈ T

+∞ , if (i, j) ∈ A∗, p ∈ Pt
k,∀t ∈ T

(4)

3.4. Resilience Metrics

3.4.1. Resilience of Cumulative Loss

According to the definition of the network performance in Section 3.3, when a disruptive event
occurs, the network performance will not be returned to its original level until all the road segments
are restored. The fraction of OD demand at time t, t∈ [te, te+M] that can be satisfied post-disruption is
defined as the network performance loss [2]. The cumulative loss of network performance is illustrated
by the shaded area in Figure 1 and formulated by Equation (5). The level to which the cumulative loss
is reduced represents the effectiveness of the restoration strategy [35].

CL =

∫ te+M

te

[ϕ(t0)−ϕ(t)]dt (5)

Hence, we define the normalized resilience of cumulative loss Ru (0 ≤ Ru ≤ 1) as in Equation (6).
There is a positive correlation between Ru and the effectiveness of the restoration strategy, i.e., the
higher Ru is, the more effective the restoration strategy.

Ru= 1−

∫ te+M
te

[ϕ(t0)−ϕ(t)]dt

Mmax×ϕ(t 0

) ≈ 1−
ϕ(t0)×M−

∑te+M
t=te

ϕ(t)

Mmax×ϕ(t 0

) (6)

3.4.2. Resilience of Restoration Rapidity

In addition to the cumulative loss of performance, restoration rapidity is another important metric
to evaluate the effectiveness of the restoration process [36]. Restoration rapidity measures the recovery
speed, which has a great priority of the restoration strategy. Hence, we employ the resilience of
restoration rapidity Rm(0 ≤ Rm ≤ 1) as another resilience metric in this work, which is normalized and
formulated as in Equation (7). The higher Rm is, the faster the supply chain network is recovered.

Rm = 1−
M

Mmax
(7)

3.5. Modeling

For supply chain networks, recovering the network performance as quickly as possible and
satisfying the OD demands to the greatest extent are the two top priorities during the restoration process.



Mathematics 2020, 8, 163 6 of 16

Therefore, the optimal restoration schedule should aim to accomplish these two objectives. Additionally,
to avoid falling to get a unique optimal solution, a bi-objective programming model is feasible in
this work. In this subsection, we propose a bi-objective nonlinear programming model formulated in
Equations (8)–(19), which focuses on the optimal restoration schedule for supply chain networks.

maxRu= 1−

∑M
t=1[ϕ(t0)−ϕ(t)]

Mmax×ϕ(t 0

) (8)

maxRm= 1−
M

Mmax
(9)

Subject to constraints:
C =

∑
r∈R

∑
t∈T

∑
(i, j)∈A∗

βt,r
i j ×cai j (10)

C ≤ B (11)∑
(i, j)∈A

xt
i j −

∑
( j, i)∈A

xt
ji= 0, ∀i ∈ N\{Ns, Nd}, t ∈ T (12)

M = max

∑
t∈T

βt,r
i j +dai j

, ∀r ∈ R, (i, j) ∈ A∗ (13)

∑
t∈T

βt,r
i j ≤ 1, ∀r ∈ R, (i, j) ∈ A∗ (14)

∑
r∈R

dai j−1∑
t=1

βt,r
i j = 0, ∀i ∈ (i, j) ∈ A∗ (15)

∑
(i, j)∈A∗

t∑
τ=max{1,t−dai j+1}

βt,r
i j ≤ 1, ∀r ∈ R, t ∈ T (16)

∑
r∈R

∑
(i, j)∈A∗

t∑
τ=max{1,t−dai j+1}

βt,r
i j ≤ |R|, ∀ t ∈ T (17)

xt
i j ≥ 0, ∀(i, j) ∈ A∗, t ∈ T (18)

βt,r
i j ∈ {0, 1}, ∀r ∈ R, (i, j) ∈ A∗, t ∈ T (19)

Equation (8) is an objective function, which maximizes the resilience of cumulative loss for the
supply chain networks during the restoration makespan M. Another objective function in Equation (9)
aims to maximize the resilience of restoration rapidity. Equation (10) defines the total restoration costs,
i.e., the sum of restoration costs of all damaged links to be recovered

∑
r∈R

∑
t∈T

∑
(i, j)∈A∗

βt,r
i j ×cai j. The total

restoration costs C cannot exceed the availability of budget B as shown in Equation (11). Equation (12)
indicates the flow conservation at each transshipment node ∀i ∈ N\{Ns, Nd} [35]. Equation (13) defines
the makespan M of the restoration schedule, which is the maximum end time of all the damaged

links to be restored max
{∑

t∈T
βt,r

i j +dai j

}
. Equation (14) ensures that the restoration of each link is

non-preemptive, i.e., the restoration of each link is implemented only once over the restoration time
horizon. Equation (15) guarantees that each work crew r ∈ R cannot finish the restoration of the link

(i, j) ∈ A∗ prior to it restoration duration.
∑

(i, j)∈A∗

t∑
τ=max{1,t−dai j+1}

βt,r
i j in Equation (16) define the ongoing

restorations of disrupted links at time t by work crew r ∈ R. These constraints ensure that each work



Mathematics 2020, 8, 163 7 of 16

crew can concentrate on the restoration of at most one disrupted link. Similarly, the amount of the links
restored simultaneously cannot exceed the number of work crews at time t as shown in Equation (17).
Equation (18) sets the flow on the link (i, j) ∈ A as nonnegative values. Equation (19) represents the
binary restoration variables for disrupted links (i, j) ∈ A∗.

3.6. Model Solution

Before the algorithm, we first transform the bi-objective model into a single-objective model using
different weight factors to both of the objective functions as in Equation (20).

f = max(ξ×Ru+(1− ξ) ×Rm) (20)

Herein, ξ is the weight factor, which indicates the decision-maker’s preference.
Then, we employ the simulated annealing (SA) algorithm. It is not difficult to know that the

optimal restoration strategy for supply chain networks is an NP-hard combinational optimization
problem [37]. SA has been proven as an effective algorithm to solve this type of problem [38–40]. SA is a
local search algorithm based on the concept of physical annealing of solids, which can escape from being
trapped into local optima by accepting worse solutions with a low possibility. This algorithm starts
with an initial solution and a high initial temperature. Then, it performs the iteration following the
principle as “new solution generation→ objection function value calculation→ acceptance or rejection
of new solutions” with an annealing schedule [41]. The solution at the end of the iteration is considered
optimal. The framework of the SA algorithm for solving the proposed equivalent single-objective model
is presented in Algorithm 1.

Algorithm 1 Pseudo code of SA procedure

//Initialization
Randomly generate an initial solution βt,r0

i j , and the initial objection function value is f (βt,r0
i j );

βt,r,best
i j = βt,r0

i j ;

w=0; //The outer iteration times
e0= E0; //Initial Temperature
eT= ET; //Freezing Temperature
while not stop

//The search loop under the temperature tw

for l = 1 to L //The inner iteration times
Generate a new feasible solution βt,r,new

ij based on the current solution βt,r,w
ij , and calculate the objection

function value f (βt,r,new
ij ).

if f (βt,r,new
ij )<βt,r,w

ij
βt,r,w

ij = βt,r,new
ij ;

if f (βt,r,w
ij )< f (βt,r,best

i j ); βt,r,best
i j = βt,r,w

ij ;

continues;
end if

Calculate the acceptance probability P(ew) = exp[−( f (β t,r,new
ij ) − f (βt,r,w

ij ))/ew

]
;

if random(0,1) < P
βt,r,w

ij = βt,r,new
ij ;

end if
end for
//Drop down the temperature
ew+1= α× ew; w= w+1

end while
print βt,r,new

ij
end procedure



Mathematics 2020, 8, 163 8 of 16

4. Case Study

4.1. Supply Chain Network and Basic Data

We use the supply chain shown in Figure 2 to demonstrate the effectiveness of the proposed
method framework. The network consists of 33 nodes and 62 road segments (each road segment has
two links). The characteristics of all links are presented in Table 1, where a is the road segment ID; each
link is from node i to node j; and the unit of hi j is h. The daily demands of the 39 OD pairs are listed in
Table 2, where k is the ID of each OD pair and the unit of qi j is freight-unit.

Assume that a disaster occurs at t = 1, which incurs complete damages to the 22 road segments in
the dashed-line circle shown in Figure 2. Namely, every single damaged road segment is disrupted in
both directions. Decision-makers plan to restore the disrupted roads with an available budget of 2000
fund-units. The restoration duration and cost of each disrupted road segment are presented in Table 3,
where the units of cai j and dai j are fund-unit and day, respectively.

The other parameters are valued as follows:
Mmax= 200, θ = 1.5, ξ = 0.5, E0= 200, ET = 0.01, α = 0.95
The procedure is implemented using the commercial solvers CPLEX (version 12.7.1). All

experiments are conducted on a Windows 10 PC with an Intel Core i7-9700 CPU (4.6 GHz) and 16.0 GB
DDR4 (2400 MHz).

Table 1. Characteristics of all links.

a i j hij a i j hij a i j hij a i j hij

1 1 2 2.6 32 13 7 2.6 63 14 21 2.8 94 26 22 1.1
2 2 1 2.6 33 8 9 3.1 64 21 14 2.8 95 23 24 2.5
3 1 5 2.8 34 9 8 3.1 65 15 16 2.4 96 24 23 2.5
4 5 1 2.8 35 8 10 3.7 66 16 15 2.4 97 23 25 2.7
5 2 3 2.5 36 10 8 3.7 67 16 17 3.2 98 25 23 2.7
6 3 2 2.5 37 8 13 2.8 68 17 16 3.2 99 23 30 3.6
7 2 4 2.9 38 13 8 2.8 69 16 22 3.4 100 30 23 3.6
8 4 2 2.9 39 8 14 1.6 70 22 16 3.4 101 24 30 2.3
9 3 8 1.9 40 14 8 1.6 71 17 21 4.2 102 30 24 2.3

10 8 3 1.9 41 9 10 1.7 72 21 17 4.2 103 25 27 4.1
11 3 9 2.3 42 10 9 1.7 73 17 22 1.6 104 27 25 4.1
12 9 3 2.3 43 10 15 2.1 74 22 17 1.6 105 25 29 1.5
13 4 5 1.8 44 15 10 2.1 75 18 19 1.9 106 29 25 1.5
14 5 4 1.8 45 11 12 2.5 76 19 18 1.9 107 26 27 2.3
15 4 7 3.8 46 12 11 2.5 77 18 20 2.5 108 27 26 2.3
16 7 4 3.8 47 11 19 2.6 78 20 18 2.5 109 26 33 2.5
17 4 8 2.5 48 19 11 2.6 79 18 23 3.6 110 33 26 2.5
18 8 4 2.5 49 12 18 2.9 80 23 18 3.6 111 27 28 1.8
19 5 6 3.7 50 18 12 2.9 81 18 24 1.8 112 28 27 1.8
20 6 5 3.7 51 13 14 3.4 82 24 18 1.8 113 27 32 3.3
21 5 7 4.1 52 14 13 3.4 83 20 24 2.2 114 32 27 3.3
22 7 5 4.1 53 13 18 3.6 84 24 20 2.2 115 27 33 3.8
23 5 11 2.4 54 18 13 3.6 85 21 22 3.4 116 33 27 3.8
24 11 5 2.4 55 13 21 2.8 86 22 21 3.4 117 28 29 2.4
25 6 11 1.6 56 21 13 2.8 87 21 23 1.6 118 29 28 2.4
26 11 6 1.6 57 13 23 1.6 88 23 21 1.6 119 29 31 1.5
27 7 11 1.8 58 23 13 1.6 89 21 25 3.5 120 31 29 1.5
28 11 7 1.8 59 14 15 3.2 90 25 21 3.5 121 30 31 3.7
29 7 12 2.3 60 15 14 3.2 91 22 25 1.5 122 31 30 3.7
30 12 7 2.3 61 14 17 2.6 92 25 22 1.5 123 31 32 3.5
31 7 13 2.6 62 17 14 2.6 93 22 26 1.1 124 32 31 3.5
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Table 2. OD pairs and their demands.

k O D qij k O D qij k O D qij

1 1 15 36 14 22 4 48 27 31 2 28
2 1 22 28 15 22 30 53 28 31 1 36
3 2 17 45 16 33 2 32 29 30 15 34
4 2 33 43 17 33 20 26 30 30 3 28
5 2 31 39 18 33 10 28 31 30 33 36
6 3 30 54 19 27 9 34 32 20 22 34
7 3 33 49 20 27 11 29 33 20 10 41
8 3 19 26 21 27 3 23 34 19 27 30
9 9 32 35 22 32 9 34 35 19 15 28

10 15 31 37 23 32 1 36 36 11 16 20
11 15 1 42 24 32 20 42 37 11 32 27
12 16 3 43 25 31 9 48 38 6 33 26
13 16 11 35 26 31 16 40 39 6 16 24
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Table 3. Restoration duration and cost of each disrupted road segment (RS).

RS caij daij RS caij daij RS caij daij RS caij daij

A 210 9 G 140 8 M 170 7 S 190 8
B 110 7 H 110 4 N 120 3 T 90 3
C 150 6 I 120 9 O 180 6 U 130 5
D 220 12 J 150 6 P 160 5 V 230 11
E 200 8 K 160 9 Q 180 6
F 150 7 L 220 8 R 180 4

4.2. Results

4.2.1. Pre-Disruption Path

The pre-disruption fastest path between each OD pair generated by the Dijkstra method shown in
Equations (3) and (4) is illustrated in Table 4.
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Table 4. Pre-disruption fastest path (FP) between each OD pair.

k FP z0
ij k FP z0

ij k FP z0
ij

1 1-5-4-8-14-15 3.78 14 22-17-14-8-4 2.71 27 31-30-23-13-8-4-2 5.33
2 1-5-4-8-14-17-22 4.14 15 22-25-23-30 2.43 28 31-30-23-13-7-5-1 5.73
3 2-4-8-14-17 3.05 16 33-26-22-17-14-8-4-2 4.74 29 30-23-21-17-16-15 4.64
4 2-4-8-14-17-22-26-33 4.74 17 33-27-25-23-24-20 4.78 30 30-23-13-8-3 3.08
5 2-4-7-12-18-24-30-31 6.18 18 33-26-22-16-15-10 3.59 31 30-31-32-27-33 4.46
6 3-8-13-23-30 3.08 19 27-26-22-16-15-10-9 4.06 32 20-24-23-25-22 2.78
7 3-8-14-17-22-26-33 3.64 20 27-25-21-13-7-11 4.61 33 20-18-13-8-10 3.92
8 3-8-13-18-19 3.17 21 27-26-22-21-14-8-3 4.13 34 19-18-23-25-27 3.83
9 9-8-13-23-30-31-32 5.7 22 32-27-26-22-17-14-8-3 4.61 35 19-18-13-14-15 3.79

10 15-16-22-25-29-31 3.22 23 32-31-30-23-13-7-5-1 6.82 36 11-7-13-14-17-16 4.18
11 15-10-8-4-5-1 4.02 24 32-31-30-24-20 3.65 37 11-7-13-21-25-27-32 5.64
12 16-15-10-9-3 2.66 25 31-29-25-21-14-8-9 4.42 38 6-11-7-13-21-22-26-33 4.94
13 16-15-14-13-7-11 4.2 26 31-29-25-22-16 2.47 39 6-5-7-13-14-17-16 6.05

4.2.2. Optimal Restoration Schedule

Figure 3 represents the result of the optimal restoration schedule generated by the proposed
model. The budget of 2000 fund-units can cover 12 road segments to be restored, which exhausts 1880
fund-units. The time sequence of all restoration activities is shown in Figure 3a, where the number on
each bar means the duration of each restoration activity. Figure 3b indicates the assignment of road
segments to three work crews, where the letter and number on each bar are the road segment ID and the
duration of its restoration activity, respectively. Specifically, work crew 1 will work on the restoration of
road segments H, L, G, and E, work crew 2 will undertake the restoration of road segments N, B, T, K,
and J, and road segments V, D, and U are recovered by work crew 3. Additionally, the makespan of the
optimal restoration strategy is 28 days.
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Figure 4 presents the performance recovery trajectory of the supply chain network. The network
performance ϕ(t) drops to 0.463 from its original value with the occurrence of a disaster at time t = 1.
Apparently, ϕ(t) does not rise immediately after the restoration activities start but begins to rise at time
t = 10 when the restorations of road segments H, N, and B are finished, which reveals that only when all
road segments or links on a path have been recovered, can the network performance be improved. ϕ(t)
has a significant increase, i.e., from 0.481 to 0.589 at time t = 11 when road segment V is operational.
After all the 12 road segments are recovered, the network performance can ultimately reach 0.724.
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In the previous studies, a restoration strategy based on the cost-effective approach was applied,
which aims to cover as many facilities to be maintained in the network as possible until the funds
are exhausted [19]. We compare the resilience-based strategy (RBS) generated by our model and the
cost-effective strategy (CES) in this subsection. Table 5 indicates that the critical road segments to
be maintained of the two strategies are quite different. Compared with the RBS, CES is involved
with more road segments to be maintained having a longer makespan and exhausting more funds.
However, the CES has a lower Ru, i.e., more cumulative loss of network performance, which reveals
the CES cannot satisfy the OD demand well during the restoration process.

Table 5. Restoration results (RR) of the RBS and CES.

Restoratioin Results RBS CES

Ru 0.724 0.687
Rm 0.860 0.855
C 1880 1940
M 28 29
N 12 14

RR
WC1: V, D, U
WC2: N, B, T, K, J
WC3: H, L, G, E

WC1: H, T, M, U, K
WC2: N, B, F, J, O
WC3: I, G, C, P

4.3. Sensitivity Analysis

In this subsection, we discuss the effects of four parameters, i.e., decision-maker’s preference,
tolerance factor of delivery time, number of work crews, and availability of budget on the results of the
optimal restoration schedule by sensitivity analysis. The sensitivity analysis is conducted by assuming
all the other parameters are fixed.

4.3.1. Decision-Maker’s Preference

Table 6 lists three restoration schedules for different ξ. Apparently, ξ has a significant effect on the
restoration scheduling scheme for the disrupted supply chain network. The three restoration schedules
are different from each other both in the restoration time sequence and job sequence. The higher ξ
is, the higher Ru and the lower Rm the restoration schedule derives, which means less cumulative
performance loss during the makespan but slower restoration rapidity of the supply chain performance.
Additionally, the higher ξ generates a restoration result with more road segments to be repaired and
more budget exhaustion. Hence, decision-makers have to determine an appropriate tradeoff between
the two objectives.
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Table 6. Restoration results for different ξ.

ξ. 0.3 0.5 0.7

Ru 0.705 0.724 0.748
Rm 0.865 0.860 0.850
C 1870 1880 1990
M 27 28 30
N 11 12 12

RR
WC1: M, N, O, P, J
WC2: L, I, A
WC3: V, C, K

WC1: V, D, U
WC2: N, B, T, K, J
WC3: H, L, G, E

WC1: D, S, K
WC2: N, Q, B, F, J
WC3: H, M, V, E

4.3.2. Tolerance Factor of Delivery Time

Tolerance factor of delivery time is the threshold for OD demand satisfaction, which affects the
evaluation of supply chain network performance. From the restoration results for different θ presented
in Table 7, the variation of θ makes the restoration schedule changes greatly. With an increase of θ, Ru

and Rm increase with different rates but C, M, and N all decrease. As such, if the availability of the
budget is insufficient to recover the network performance as much as possible, decision-makers should
adjust θ to make a balance between the monetary resource and the OD demands.

Table 7. Restoration results for different θ.

θ. 1.5 2.0 2.5

Ru 0.724 0.857 0.954
Rm 0.860 0.885 0.915
C 1880 1570 1270
M 28 23 17
N 12 10 8

RR
WC1: V, D, U

WC2: N, B, T, K, J
WC3: H, L, G, E

WC1: V, A, T
WC2: N, D, G

WC3: H, P, U, K

WC1: Q, V
WC2: M, N, B
WC3: H, L, U

4.3.3. Number of Work Crews

Table 8 shows the different restoration schedules when |R| varies from 3 to 7 with an interval of 2.
|R| has no impact on the road segments to be restored but affects the time sequence of each restoration
activity. Obviously, more work crews can shorten the makespan and increase Ru and Rm. However,
the increase of |R| reduces the growth rate of Ru and Rm, which reveals that the marginal benefit of
manpower resources decreases. Thus, decision-makers should carefully determine an appropriate |R|
to avoid wasting manpower resources. Additional experiments indicate that |R| = 5 can generate an
optimal restoration schedule in this case study, which can make the best use of the manpower resources.

Table 8. Restoration results for different |R|.

|R|. 3 5 7

Ru 0.724 0.856 0.881
Rm 0.860 0.915 0.935
C 1880 1880 1880
M 28 17 13
N 12 12 12

RR
WC1: V, D, U

WC2: N, B, T, K, J
WC3: H, L, G, E

WC1: H, N, B, T
WC2: D, U
WC3: G, E
WC4: V, J
WC5: L, K

WC1: B, J
WC2: D

WC3: H, E
WC4: G, U
WC5: N. K
WC6: L, T
WC7: V
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4.3.4. Availability of Budget

Table 9 presents different restoration results under three scenarios of budget limit. The restoration
schedules of B = 2000 and B = 2500 are quite different both in the road segments to be restored and time
sequence of restoration activities. Compared with B = 2000, the restoration schedule with B = 2500 is
involved with three more road segments, which extends the makespan by eight days. As such, with an
increase of monetary resources, Ru increases rapidly while Rm decreases. The restoration schedules
of B = 2500 and B = 3000 are the same. Additional experiments show that the restoration schedule
does not change when B exceeds 2500 in this case study, which reveals that increasing the budget
alone and keeping the number of work crews constant cannot improve the restoration schedule. As a
result, decision-makers should guarantee that the monetary resources and the manpower resources
are matched.

Table 9. Restoration results for different B.

B 2000 2500 3000

Ru 0.724 0.867 0.867
Rm 0.860 0.820 0.820
C 1880 2410 2410
M 28 36 36
N 12 15 15

RR
WC1: V, D, U
WC2: N, B, T, K, J
WC3: H, L, G, E

WC1: M, D, G, A
WC2: N, B, V, F, E
WC3: H, L, U, T, K, J

WC1: M, D, G, A
WC2: N, B, V, F, E
WC3: H, L, U, T, K, J

5. Conclusions

Supply chain networks play a significant role in commodity circulation, promoting economic
prosperity and social development. Due to frequent natural disasters and manmade hazards, supply
chain networks are more inclined to suffer from unexpected interruptions. As such, decision-makers
have to deal with the post-disruption restoration for supply chain networks to satisfy the transportation
demands of various goods. In this situation, an efficient restoration strategy is highly desired. Most
of the existing literature defines this problem from the perspective of cost-effectiveness instead of a
resilient manner.

This paper focuses on optimizing the post-disruption supply chain network restoration strategy
from a perspective of resilience. We employ two resilience metrics to measure the effectiveness of the
restoration process, i.e., cumulative performance loss and restoration rapidity. Then, we formulate the
optimization problem as a bi-objective nonlinear programming model aiming to maximize the network
resilience under the budget and manpower constraints. Then, a modified SA algorithm is utilized to
solve the model. Finally, the proposed method is demonstrated using a testing supply chain network
to generate the optimal post-disaster restoration strategy. The main results are summarized as follows:

(1) The proposed method framework can generate an efficient restoration strategy from a perspective
of resilience considering the tradeoff between the cumulative performance loss and the restoration
rapidity, which can provide an effective reference for decision-makers to schedule the restoration
activities for a disrupted supply chain network.

(2) Decision-maker’s preference has a great impact on the road segments to be repaired and the time
sequence of restoration activities. With an increase of the tolerance factor of delivery time, the
resilience of the supply chain network increase with different rates but the total restoration costs,
makespan, and the number of road segments to be restored all decrease.

(3) More work crews can shorten the makespan and increase the resilience but may decrease the
marginal benefit of manpower resources when the number of work crews exceeds a certain level.
Likewise, more availability of budget can improve the supply chain network performance but
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increasing budget alone and keeping the number of work crews constant cannot improve the
restoration schedule when the monetary resources exceed a certain level.

Compared with the work in [19,42,43], the proposed method framework is developed in a resilient
manner, which highlights the ability for the supply chain networks to resist the disruptive events
within a reasonable timeframe [44]. As demonstrated in the case study, the optimal restoration strategy
generated by the proposed method framework can provide a reference to schedule the restoration
activities efficiently when supply chain networks are disrupted by disasters. Specifically, decision
makers should (i) carefully make a reasonable tradeoff between the recovery speed and network
performance loss, (ii) determine a feasible tolerance factor of delivery time to obtain a balance between
the budget and the OD demands, (iii) match the manpower resource and monetary resource well
avoiding unilateral increase of either of the two resources, which is in line with the previous study
in [12].

However, several limitations still exist in our work, and future work will focus on two aspects: (1)
Consider the case in which the demands vary during the recovery process and the duration of each
restoration activity is uncertain, and (2) consider more disruption scenarios in which disasters incur
different types of damages to the road segments.
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