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Abstract: In this paper, a new accelerated fixed point algorithm for solving a common fixed point of a
family of nonexpansive operators is introduced and studied, and then a weak convergence result and
the convergence behavior of the proposed method is proven and discussed. Using our main result,
we obtain a new accelerated image restoration algorithm, called the forward-backward modified
W-algorithm (FBMWA), for solving a minimization problem in the form of the sum of two proper
lower semi-continuous and convex functions. As applications, we apply the FBMWA algorithm to
solving image restoration problems. We analyze and compare convergence behavior of our method
with the others for deblurring the image. We found that our algorithm has a higher efficiency than
the others in the literature.

Keywords: Hilbert space; proximal methods; fixed point algorithm; forward-backward algorithm;
image restoration problem

1. Introduction

It is well-known that fixed point theory has relevant applications in many branches of
analysis [1–9] and it can be applied to solving many areas of science and applied science, engineering,
economics and medicine, such as image/signal processing [10–17] and modeling intensity modulated
radiation theory treatment planning [18–20]. Many real life problems can be equivalently formulated
as fixed point problems, meaning that one has to find a fixed point of some operators. One of most
popular fixed point algorithms is Picard iteration. Up to now, many fixed point algorithms have been
introduced and studied to solve various kinds of real world problems, such as Mann iteration [7],
Ishikawa iteration [4], SP-iteration [21] and W-iteration [22].

The image restoration problem is an important topic in image processing. This problem can be
transformed to an optimization problem using the least absolute shrinkage and selection operator
(LASSO) model. There are several optimization and fixed point methods for such problem; see [23–27]
for examples. One of the most popular methods for solving the image restoration problem is FISTA
(fast iterative shrinkage-thresholding algorithm). This method was shown by Beck and Teboulle in
[28] to have more efficiency than the previous methods in the literature.

In this paper, we focus our attention on a new accelerated algorithm that has been developed from
the view of fixed point. For instance, Wongyai and Suantai [22] proposed the W-algorithm for solving
a fixed point problem of a continuous function, and proved that the W-algorithm has a convergence
rate better than the others. Motivated by this idea, we propose a new algorithm by modification
of W-algorithm for solving a common fixed point problem of a countable family of nonexpansive
operators. We also prove the convergence of our algorithm under some conditions and apply it to
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solving the image restoration problem and compare its efficiency with other methods in term of PSNR
(peak signal-to-noise ratio).

The organization of this paper is as follows. In Section 2, we briefly describe background and
related algorithms in the literature. In Section 3, we describe some notation and useful lemmas for the
latter section. In Section 4, we introduce our proposed algorithm for the common fixed point problem,
giving the theoretical proofs of its convergence under particular conditions. In Section 5, we apply our
algorithm to solving the image restoration problem and compare its performance with other existing
methods. Finally, we conclude our work in Section 6.

2. Background and Related Algorithms

In this section, we recall the background of a mathematical model for the image restoration
problem and some related algorithms used to solving this problem. A simple model for image
restoration problem is formulated by the linear model:

Ay = a + v, (1)

where y ∈ Rn×1 is an original image, a ∈ Rm×1 is the observed image, v is additive noise and A ∈ Rm×n

is the blurring operation. In order to solve the problem (1), Tibshirani in [29], introduced the least
absolute shrinkage and selection operator (LASSO) for solving the following minimization problem:

min
y

{
‖Ay− a‖2

2 + λ‖y‖1

}
, (2)

where λ > 0 is a regularization parameter, ‖y‖1 = ∑n
i=1 |yi|, and ‖y‖2 =

√
∑n

i=1 |yi|2. The general
minimization problem which includes (2) as a special case is the following minimization problem:

min
y∈Rn
{F(y) := f (y) + h(y)}, (3)

where h : Rn → R∪ {+∞} is proper convex and lower semi-continuous, and f : Rn → R is a convex
and differentiable function such that ∇ f is a Lipschitz continuity with constant L > 0. The set of
minimizers of F is denoted by Argmin(F).

The classical forward-backward splitting (FBS) algorithm [30] for problem (3) is given by the
following iterative formula:

xn+1 = proxcnh︸ ︷︷ ︸
backward step

(I − cn∇ f )︸ ︷︷ ︸
forward step

(xn), cn ∈ (0, 2/L), n ∈ N, (4)

where x1 ∈ Rn, cn is the step-size, I is an identity operator and proxh is the proximity operator of h
defined by proxh(x) := argmin

y
{h(y) + 1

2‖x− y‖2
2}; see [31] for more details. In different literature,

FBS is also called the iterative denoising method [32], Landweber iteration [33] or the fixed point
continuation (FPC) algorithm [34]. In the last several years, some acceleration techniques have been
proposed in order to accelerate the convergence rate of the studied algorithms.

The inertial forward-backward splitting (IFBS) was proposed by Moudafi and Oliny in [35] as
follows:

yn = xn + θn(xn − xn−1),
xn+1 = proxcnh(yn − cn∇ f (xn)), cn ∈ (0, 2/L), n ∈ N,

(5)

where x0, x1 ∈ Rn, θn is the inertial parameter which controls the momentum xn − xn−1. The
convergence of IFBS can be guaranteed under proper choices of cn and θn.
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The fast iterative shrinkage-thresholding algorithm (FISTA) was proposed by Beck and Teboulle
in [28] as follows: 

yn = prox 1
L h(xn − 1

L∇ f (xn)),

tn+1 =
1+
√

1+4t2
n

2 , θn = tn−1
tn+1

,
xn+1 = yn + θn(yn − yn−1), n ∈ N,

(6)

where x1 = y0 ∈ Rn, t1 = 1. They proved the convergence rate of the FISTA and applied the FISTA
to image restoration problem. Very recently, Liang and Schonlieb [36] modified FISTA by replacing
tn+1 = (p +

√
q + rt2

n)/2 where p, q > 0 and 0 < r ≤ 4, and proved the weak convergence theorem
of FISTA.

The new accelerated proximal gradient algorithm (NAGA) was proposed by Verma and Shukla
in [37] as follows:

yn = xn + θn(xn − xn−1),
xn+1 = Tn[(1− αn)yn + αnTnyn], n ∈ N,

(7)

where x0, x1 ∈ Rn, Tn is the forward-backward operator of f and h with respect to cn ∈ (0, 2/L).
They proved the convergence and stability of the algorithm under a few specific conditions, and
applied the algorithm for solving the convex minimization problem with sparsity-inducing regularizes
for multitask learning framework.

3. Preliminaries

Let us review some important definitions and useful lemmas needed for the convergence theorem
presented in the next section.

Let H be a real Hilbert space with norm ‖ · ‖ and inner product 〈·, ·〉, and C be a nonempty closed
convex subset of H. A mapping T : C → C is said to be a L-Lipschitz operator if there exists L > 0
such that ‖Tx − Ty‖ ≤ L‖x − y‖ for all x, y ∈ C. An L-Lipschitz operator is called a nonexpansive
operator if L = 1. The set of all fixed points of T is denoted by Fix(T); i.e., Fix(T) := {x ∈ C : Tx = x}.
Let {Tn} and Ω be families of nonexpansive operators of C into itself such that ∅ 6= Fix(Ω) ⊂ Γ :=
∩∞

n=1Fix(Tn), where Fix(Ω) is the set of all common fixed points of Ω, and let ωw(xn) denote the set
of all weak-cluster points of a bounded sequence {xn} in C. A sequence {Tn} is said to satisfy the NST
(Nakajo, Shimoji and Takahashi1)-condition (I) with Ω [38], if for every bounded sequence {xn} in C,

lim
n→+∞

‖xn − Tnxn‖ = 0 =⇒ lim
n→+∞

‖xn − Txn‖ = 0 ∀ T ∈ Ω. (8)

If Ω is singleton, i.e., Ω = T, then {Tn} is said to satisfy the NST-condition (I) with T. After that,
Nakajo et al. [39] introduced the NST∗ condition which is more general than that of NST-condition.
A sequence {Tn} is said to satisfy the NST∗-condition if for every bounded sequence {xn} in C,

lim
n→+∞

‖xn − Tnxn‖ = lim
n→+∞

‖xn − xn+1‖ = 0 =⇒ ωw(xn) ⊂ Γ. (9)

It follows directly from above definition that if {Tn} satisfies the NST-condition (I), then {Tn}
satisfies the NST∗-condition. Observe that if h : H → R ∪ {+∞} is a proper, convex and lower
semicontinuous function, then for all x ∈ H the proxh(x) exists and is unique; cf. [40]. It is
well-known that

x∗ ∈ Argmin( f + h)⇐⇒ 0 ∈ ∂h(x∗) +∇ f (x∗),

where ∂h is the subdifferential of h defined by ∂h(x∗) := {u : h(x) ≥ 〈u, x− x∗〉+ h(x∗) ∀x} and ∇ f
is the gradient of f ; see [41] for more details.
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Note that the subdifferential operator ∂h is a maximal monotone (see [42] for more details) and
the solution of (3) is a fixed point of the following operator:

x∗ ∈ Argmin( f + h)⇐⇒ x∗ = Jc∂h(I − c∇ f )(x∗) = proxch(I − c∇ f )(x∗),

where c > 0 and J∂h is the resolvent of ∂h defined by J∂h = (I + ∂h)−1. If c ∈ (0, 2
L ), we know

that proxch(I − c∇ f ) is a nonexpansive mapping. The operator proxch(I − c∇ f ) is known as the
forward-backward operator of f and h with respect to c. We end this part with the following lemmas
which will be used to prove our main results.

Lemma 1 ([43]). For a real Hilbert space H, let h : H → R ∪ {+∞} be proper convex and lower
semi-continuous function, and f : H → R be convex differentiable with gradient ∇ f being L-Lipschitz
constant for some L > 0. If {Tn} is the forward-backward operator of f and h with respect to cn ∈ (0, 2/L)
such that cn converges to c, then {Tn} satisfies NST-condition (I) with T, where T is the forward-backward
operator of f and h with respect to c ∈ (0, 2/L).

Lemma 2 ([44]). Let H be a real Hilbert space. Then the following results hold:

(i) ‖tu + (1− t)v‖2 = t‖u‖2 + (1− t)‖v‖2 − t(1− t)‖u− v‖2 ∀t ∈ [0, 1], ∀u, v ∈ H;
(ii) ‖u± v‖2 = ‖u‖2 ± 2〈u, v〉+ ‖v‖2 ∀u, v ∈ H.

Lemma 3 ([45]). Let {an}, {bn} and {γn} be sequences of nonnegative real numbers such that an+1 ≤
(1 + γn)an + bn, n ∈ N. If ∑∞

n=1 γn < +∞ and ∑∞
n=1 bn < +∞, then limn→+∞ an exists.

Lemma 4 (Opial [46]). Let H be a Hilbert space and {xn} be a sequence in H such that there exists a nonempty
set Γ ⊂ H satisfying

(i) For every p ∈ Γ, limn→+∞ ‖xn − p‖ exists;
(ii) Each weak-cluster point of the sequence {xn} is in Γ.

Then there exists x∗ ∈ Γ such that {xn} weakly converges to x∗.

4. Main Results

In this section, we propose a modified W-algorithm which is called “MWA” for finding a common
fixed point of a countable family of nonexpansive operators in a real Hilbert space. We are now ready
to introduce the MWA algorithm by assuming the following:

• H is a real Hilbert space;
• {Tn : H → H} is a family of nonexpansive operators;
• {Tn} satisfies the NST∗-condition;
• Γ := ∩∞

n=1Fix(Tn) 6= ∅.

We aim to prove a weak convergence theorem of Algorithm 1 (MWA) to a common fixed point of
Tn. We start with the following supporting lemma.

Lemma 5. Let {an} and {θn} be sequences of nonnegative real numbers such that

an+1 ≤ (1 + θn)an + θnan−1, n ∈ N.

Then the following holds

an+1 ≤ K ·
n

∏
j=1

(1 + 2θj), where K = max{a1, a2}.

Moreover, if ∑∞
n=1 θn < +∞, then {an} is bounded.
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Proof. Given K = max{a1, a2}, we have

a3 ≤ (1 + 2θ2)K,

a4 ≤ (1 + θ3)a3 + θ3a2 ≤ (1 + θ3)(1 + 2θ2)K + θ3K

≤ (1 + θ3)(1 + 2θ2)K + θ3(1 + 2θ2)K = (1 + 2θ3)(1 + 2θ2)K.

By Mathematical induction, we obtain

an+1 ≤ K ·
n

∏
j=2

(1 + 2θj) ≤ K ·
n

∏
j=1

(1 + 2θj).

Note that the infinite product of the (1 + 2θj) converges if the infinite sum of the θj converges.
Indeed, {an} is bounded if ∑∞

n=1 θn < +∞.

Algorithm 1: (MWA): A modified W-algorithm
Initial. Take x0, x1 ∈ H arbitrarily and n = 1.
Step 1. Compute wn, zn, yn and xn+1 using

wn = xn + θn(xn − xn−1),
zn = (1− γn)wn + γnTnwn,
yn = (1− βn)Tnwn + βnTnzn,
xn+1 = (1− αn)Tnzn + αnTnyn,

Then update n := n + 1 and go to Step 1.

Now, we present the main convergence result of Algorithm 1 (MWA) under some suitable control
conditions.

Theorem 6. Let {xn} be a sequence generated by Algorithm 1 (MWA) where γn ∈ [a1, b1] ⊂ (0, 1), βn ∈
[0, 1], αn ∈ [0, b2] ⊂ [0, 1), θn ≥ 0 and ∑∞

n=1 θn < +∞. Then the following hold:

(i) ‖xn+1 − x∗‖ ≤ K ·∏n
j=1(1 + 2θj), where K = max{‖x1 − x∗‖, ‖x2 − x∗‖} and x∗ ∈ Γ.

(ii) {xn} converges weakly to a point in Γ.

Proof. (i) Let x∗ ∈ Γ. By Algorithm 1, we have

‖wn − x∗‖ ≤ ‖xn − x∗‖+ θn‖xn − xn−1‖, (10)

‖zn − x∗‖ ≤ (1− γn)‖wn − x∗‖+ γn‖Tnwn − x∗‖ ≤ ‖wn − x∗‖, (11)

‖yn − x∗‖ ≤ (1− βn)‖Tnwn − x∗‖+ βn‖Tnzn − x∗‖
≤ (1− βn)‖wn − x∗‖+ βn‖zn − x∗‖
≤ ‖wn − x∗‖, (12)

and

‖xn+1 − x∗‖ ≤ (1− αn)‖Tnzn − x∗‖+ αn‖Tnyn − x∗‖
≤ (1− αn)‖zn − x∗‖+ αn‖yn − x∗‖
≤ ‖wn − x∗‖. (13)
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From (10) and (13), we get

‖xn+1 − x∗‖ ≤ ‖xn − x∗‖+ θn‖xn − xn−1‖. (14)

This implies

‖xn+1 − x∗‖ ≤ (1 + θn)‖xn − x∗‖+ θn‖xn−1 − x∗‖. (15)

Apply Lemma 5, we get ‖xn+1− x∗‖ ≤ K ·∏n
j=1(1+ 2θj), where K = max{‖x1− x∗‖, ‖x2− x∗‖}.

Since ∑∞
n=1 θn < +∞, it follows that {xn} is bounded. This implies ∑∞

n=1 θn‖xn − xn−1‖ < +∞.
(ii) By (14) and Lemma 3, we obtain that limn→+∞ ‖xn − x∗‖ exists. By Lemma 2(ii), we obtain

‖wn − x∗‖2 ≤ ‖xn − x∗‖2 + θ2
n‖xn − xn−1‖2 + 2θn‖xn − x∗‖‖xn − xn−1‖. (16)

By Lemma 2(i), we obtain

‖zn − x∗‖2 = (1− γn)‖wn − x∗‖2 + γn‖Tnwn − x∗‖2 − γn(1− γn)‖wn − Tnwn‖2

≤ ‖wn − x∗‖2 − γn(1− γn)‖wn − Tnwn‖2. (17)

Using Lemma 2(i) agai,n together with (12) and (17), we get

‖xn+1 − x∗‖2 ≤ (1− αn)‖Tnzn − x∗‖2 + αn‖Tnyn − x∗‖2

≤ (1− αn)‖zn − x∗‖2 + αn‖yn − x∗‖2

≤ ‖wn − x∗‖2 − (1− αn)γn(1− γn)‖wn − Tnwn‖2 (18)

≤ ‖xn − x∗‖2 + θ2
n‖xn − xn−1‖2 + 2θn‖xn − x∗‖‖xn − xn−1‖

− (1− αn)γn(1− γn)‖wn − Tnwn‖2.

Since ∑∞
n=1 θn‖xn − xn−1‖ < +∞ and limn→+∞ ‖xn − x∗‖ exists, it follows that limn→+∞ ‖wn −

Tnwn‖ = 0. Note that

‖xn − Tnxn‖ ≤ ‖xn − wn‖+ ‖wn − Tnwn‖+ ‖Tnwn − Tnxn‖ ≤ 2‖xn − wn‖+ ‖wn − Tnwn‖,

and

‖yn − zn‖ ≤ ‖yn − wn‖+ ‖wn − zn‖
≤ ‖Tnwn − wn‖+ βn‖Tnzn − Tnwn‖+ ‖wn − zn‖
≤ ‖Tnwn − wn‖+ βn‖zn − wn‖+ ‖wn − zn‖
= (1 + (1 + βn)γn)‖Tnwn − wn‖.

These imply by Algorithm 1 that limn→+∞ ‖xn − Tnxn‖ = 0 and limn→+∞ ‖yn − zn‖ = 0. By
Algorithm 1 and nonexpansivity of Tn, we have

‖xn+1 − xn‖ ≤ ‖Tnzn − xn‖+ αn‖Tnyn − Tnzn‖
≤ ‖Tnzn − Tnxn‖+ ‖Tnxn − xn‖+ αn‖yn − zn‖
≤ ‖zn − xn‖+ ‖Tnxn − xn‖+ αn‖yn − zn‖
≤ ‖zn − wn‖+ ‖wn − xn‖+ ‖Tnxn − xn‖+ αn‖yn − zn‖,

‖wn − xn‖ = θn‖xn − xn−1‖ → 0, and ‖zn − wn‖ = γn‖Tnwn − wn‖ → 0.
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These imply limn→+∞ ‖xn− xn+1‖ = 0. Since {Tn} satisfies the NST∗-condition, we get ωw(xn) ⊂
Γ := ∩∞

n=1Fix(Tn). Therefore, by Opial’s lemma (Lemma 4), we conclude that {xn} converges weakly
to a point in Γ := ∩∞

n=1Fix(Tn). This completes the proof.

Finally, we apply our proposed algorithm, MWA, for solving the minimization problem (3) by
setting Tn = proxcnh(I − cn∇ f ), the forward-backward operator of f and h with respect to cn, where
h : Rn → R ∪ {+∞} is proper convex and lower semi-continuous, and f : Rn → R is a convex and
differentiable function such that ∇ f is a Lipschitz continuity with constant L > 0.

By using the convergence result of Algorithm 1 (MWA) in Theorem 6, we obtain the convergence
of Algorithm 2 (FBMWA) as in the following theorem.

Algorithm 2: (FBMWA): A forward-backward modified W-algorithm.
Initial. Take x0, x1 ∈ H are arbitrarily and n = 1.
Step 1. Compute wn, zn, yn and xn+1 using

wn = xn + θn(xn − xn−1),
zn = (1− γn)wn + γn proxcnh(I − cn∇ f )wn,
yn = (1− βn)proxcnh(I − cn∇ f )wn + βn proxcnh(I − cn∇ f )zn,
xn+1 = (1− αn)proxcnh(I − cn∇ f )zn + αn proxcnh(I − cn∇ f )yn,

Then update n := n + 1 and go to Step 1.

Theorem 7. Let {xn} be a sequence generated by Algorithm 2 (FBMWA) where γn, βn, αn θn are the same as
in Theorem 6, and cn ∈ (0, 2/L) such that {cn} converges to c. Then the following holds

(i) ‖xn+1 − x∗‖ ≤ K ·∏n
j=1(1 + 2θj), where K = max{‖x1 − x∗‖, ‖x2 − x∗‖} and x∗ ∈ Argmin( f +

h).

(ii) {xn} converges weakly to a point in Argmin( f + h).

Proof. Let T be the forward-backward operator of f and h with respect to c, and Tn be the
forward-backward operator of f and h with respect to cn, that is T := proxch(I − c∇ f ) and
Tn := proxcnh(I − cn∇ f ). Then T and {Tn} are nonexpansive operators for all n, and Fix(T) =

∩∞
n=1Fix(Tn) = Argmin( f + h); see Proposition 26.1 in [41]. By Lemma 1, we have that {Tn} satisfies

the NST∗-condition. Therefore, we obtain the required result directly by Theorem 6.

5. Simulated Results for the Image Restoration Problem

In this section, we apply Algorithm 2 (FBMWA) to solving the image restoration problem (2) and
compare the deblurring efficiency of the FBMWA algorithm with FBS [30], IFBS [35], FISTA [28] and
NAGA [37]. Our programs were written in Matlab and all algorithms ran on a laptop, Intel core i5, 4.00
GB RAM. All algorithms were applied to solving problem (2), where f (y) = ‖Ay− a‖2

2, h(y) = λ‖y‖1,
A is the blurring operator, a is the observed image and λ is the regularization parameter.

In this experiment, two gray-scale images, Lenna and Cameraman of size 2562 are considered the
original images. The images went through a Gaussian blur of size 92 and standard deviation σ = 4. We
use the peak signal-to-noise ratio (PSNR) [47] to measure the performance our the algorithms where
PSNR(xn) is defined by

PSNR(xn) = 10 log10

(
2552

MSE

)
, (19)
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where MSE = 1
M‖xn − x̄‖2

2, M is the number of image samples and x̄ is the original image. It is noted
that a higher value of PSNR of the same number of iteration shows a higher quality of deblurring
image. The relative error is defined by

‖xn − xn−1‖2

‖xn−1‖2
≤ tol, (20)

where tol denotes a prescribed tolerance value. For these experiments, the regularization parameter
was chosen to be λ = 5× 10−5, and the initial image was the blurred image. The Lipschitz constant L,
was computed by the maximum eigenvalues of the matrix AT A. We set parameters as follows:

αn = βn = γn = 0.5, cn =
n

L(n + 1)
, c =

1
L

, θn defined by (6) (for NAGA),

θn =

{
1

n2‖xn−xn−1‖2
2

if xn 6= xn−1,

0 otherwise,
(for IFBS),

and

θn =

{
tn−1
tn+1

if 1 ≤ n < N,
1

2n otherwise,
(for FBMWA),

where tn is a sequence defined by t1 = 1 and tn+1 =
1+
√

1+4t2
n

2 , and N is a number of iterations that
we want to stop. The results of deblurring image of Cameraman and Lenna with 1000th iteration of the
studied algorithms are shown in Table 1 and Figures 1 and 2.

Table 1. Comparison of image restorations of the studied methods.

Cameraman Lenna

Algorithms PSNR Tol. PSNR Tol.

FBS 27.1953 2.32 × 10−5 29.4907 1.73 × 10−5

IFBS 27.1953 2.32 × 10−5 29.4907 1.73 × 10−5

FISTA 34.6659 4.13 × 10−5 36.9324 3.34 × 10−5

NAGA 35.6670 4.15 × 10−5 37.8088 3.32 × 10−5

FBMWA 36.2783 4.21 × 10−5 38.2989 3.31 × 10−5
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Figure 1. The graphs of peak signal-to-noise ratio (PSNR) for Cameraman (left) and Lenna (right).



Mathematics 2020, 8, 378 9 of 13

From Table 1 and the graph of PSNR in Figure 1, we see that FBMWA gives a higher PSNR than
the other algorithms, so the performance of the image restoration of FBMWA is better than those of
FBS, IFBS, FISTA and NAGA. We also see that after 1000 iterations, FBMWA gives a better result of
deblurring for Cameraman and Lenna, as shown in Figure 2.

Figure 2. Results for deblurring of the Cameraman and Lenna.

The results of deblurring image of Cameraman and Lenna for the 1000th iteration of the FBMWA
under different parameters θn are shown in Table 2 and Figures 3 and 4, where θn is defined by

θn =

{
µn if 1 ≤ n < N,
1

2n otherwise,
(21)

where µn is a sequence of nonnegative real numbers and N is a number of iterations that we want to
stop. We observe that the inertial parameter θn using by FBMWA plays an important role in improving
quality of deblurring image. It is noted that if {θn} is nondecreasing and tends to 1, the values of PSNR
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increase, as shown in Table 2, Figure 3. However, we can see the result of the deblurring image of
FBMWA with different inertial parameters θn (seven cases), as shown in Figure 4. We also observe
from Table 2 that the parameter µn = n

n+1 gives a higher PSNR than the others.

Table 2. Effective parameters of our method for image restoration.

Cameraman Lenna

Case Parameters PSNR Tol. PSNR Tol.

1 µn = 1
2n 27.8911 2.13 × 10−5 30.1603 1.66 × 10−5

2 µn = 10
n2 27.9003 2.12 × 10−5 30.1693 1.65 × 10−5

3 µn = 0.5 28.7146 2.00 × 10−5 30.9771 1.60 × 10−5

4 µn = 0.9 30.9920 1.81 × 10−5 33.2838 1.47 × 10−5

5 µn = tn−1
tn+1

, t1 = 1, 36.2783 4.21 × 10−5 38.2989 3.31 × 10−5

tn+1 =
1+
√

1+4t2
n

2 ,

6 µn = n
n+1 37.0979 1.63 × 10−4 38.8562 1.30 × 10−4

7 µn = 1 30.6832 9.13 × 10−4 32.7996 7.07 × 10−4
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Figure 3. The graphs of PSNR of the FBMWA under different parameters θn for Cameraman (left) and
Lenna (right).

Open problem: It is noted that we can choose θn as in (21) for the Algorithm 2, and convergence
of Algorithm 2 can be guaranteed by Theorem 7. Can we use θn as defined by (6) for Algorithm 2?

6. Conclusions

In this work, we proposed a modified W-algorithm for solving a common fixed point problem of
a family of nonexpansive operators and proved the weak convergence result of the proposed method
under some control conditions. We applied our main result to solving a minimization problem in
the form of the sum of two proper lower semi-continuous and convex functions. As applications,
we applied our algorithm, FBMWA, to solving image restoration problems. Moreover, we did some
numerical experiments to illustrate the performance of the studied algorithms and show that PSNR of
FBMWA is better than those of the FBS [30], IFBS [35], FISTA [28] and NAGA [37].
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Figure 4. Results of FBMWA for deblurring of the Cameraman and Lenna.
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