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Abstract: In this work, a kind of normal partner curves of a pseudo null curve on dual space forms
is defined and studied. The Frenet frames and curvatures of a pseudo null curve and its associate
normal curve on de-Sitter space, its associate normal curve on hyperbolic space, are related by some
particular function and the angles between their tangent vector fields, respectively. Meanwhile,
the relationships between the normal partner curves of a pseudo null curve are revealed. Last but not
least, some examples are given and their graphs are plotted by the aid of a software programme.
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1. Introduction

In differential geometry, the space associate curves for which there exist some relations between
their Frenet frames or curvatures compose a large class of fascinating subjects in the curve theory,
such as Bertrand curve, Mannheim curve, central trace of osculating sphere, involute-evolute
curves etc. [1–3]. Most of the researchers aimed to explore the relationships between the partner
curves. For example, in Euclidean 3-space, the classical Bertrand curves are characterized by constant
distance between the corresponding points of the partner curves and by constant angle between
tangent vector fields of the partner curves. Naturally, the idea of partner curves research can be moved
to other spaces, such as Lorentz-Minkowski space, Galilean space and so on.

The Lorentz-Minkowski metric divides the vectors into spacelike, timelike and lightlike (null)
vectors [4]. Due to the causal character of vectors, some simple problems become a little complicated
and strange, such as the arc-length of null curves can not be defined similar to the definition in
Euclidean space; the angles between different type of vectors need to be classified according to
different conditions [5,6]. In Minkowski space, the curves are divided into spacelike, timelike and
lightlike (null) curves according to the causal character of their tangent vectors. Some particular curves
such as the helix, the Bertrand curve, the Mannheim curve and the normal curve, the osculating curve
and the rectifying curve have been surveyed by some researchers [5,7–12].

Based on pseudo null curves in Minkowski 3-space, in this work, we define a kind of normal
partner curves of a pseudo null curve which lies on de-Sitter space and hyperbolic space, respectively.
In Section 2, some fundamental facts about the pseudo null curves, the space forms and the angles
between any two non-null vectors are recalled. In Section 3, the relationships between a pseudo null
curve and its normal partner curves on dual space forms are explicitly expressed by some particular
function and the angles between their tangent vector fields. Furthermore, the relationships between the
normal partner curves of a pseudo null curve are presented through the pseudo null curve. Last but
not least, some useful and interesting examples of pseudo null curves and their normal partner curves
are shown vividly.

The curves in this paper are regular and smooth unless otherwise stated.
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2. Preliminaries

The Minkowski 3-space E3
1 is provided with the standard indefinite flat metric given by

〈·, ·〉 = −dx2
1 + dx2

2 + dx2
3

in terms of the natural coordinate system (x1, x2, x3). Recall that a vector v is said to be spacelike,
timelike and lightlike (null), if 〈v, v〉 > 0 or v = 0, 〈v, v〉 < 0 and 〈v, v〉 = 0, (v 6= 0), respectively.
The norm (modulus) of v is defined by ‖v‖ =

√
|〈v, v〉|. For any two vectors x = (x1, x2, x3),

y = (y1, y2, y3) ∈ E3
1, the vector product is given by

x× y =

∣∣∣∣∣∣∣
e1 e2 e3

x1 x2 x3

y1 y2 y3

∣∣∣∣∣∣∣ =
(
−
∣∣∣∣∣x2 x3

y2 y3

∣∣∣∣∣ ,

∣∣∣∣∣x3 x1

y3 y1

∣∣∣∣∣ ,

∣∣∣∣∣x1 x2

y1 y2

∣∣∣∣∣
)

,

where {e1, e2, e3} is an orthogonal basis in E3
1.

An arbitrary curve r(t) : I → E3
1 can locally be spacelike, timelike or lightlike (null) if all of its

velocity vectors r′(t) are spacelike, timelike or lightlike, respectively. Furthermore, the spacelike curves
can be classified into three kinds according to their principal normal vectors are spacelike, timelike or
lightlike, which are called the first and the second kind of spacelike curve and the pseudo null curve,
respectively [13]. Among of them, the pseudo null curve is defined as the following.

Definition 1 ([6]). A spacelike curve r(t) framed by Frenet frame {T, N, B} in E3
1 is called a pseudo null curve,

if its principal normal vector N and binormal vector B are linearly independent lightlike (null) vectors.

Proposition 1 ([6]). Let r(s) : I→ E3
1 be a pseudo null curve parameterized by arc-length s, i.e., ‖r′(s)‖ = 1.

Then there exists a unique Frenet frame {r′(s) = T, N, B} such thatT′(s)
N′(s)
B′(s)

 =

 0 1 0
0 κ(s) 0
−1 0 −κ(s)


T(s)

N(s)
B(s)

 ,

where 〈T, T〉 = 〈N, B〉 = 1, 〈N, N〉 = 〈B, B〉 = 〈T, N〉 = 〈T, B〉 = 0 and T × N = N, N × B = T,
B× T = B. In sequence, T, N, B is called the tangent, principal normal and binormal vector fields of r(s),
respectively. The function κ(s) is called the pseudo null curvature of r(s).

Remark 1 ([8]). Every pseudo null curve r(s) in E3
1 is planar no matter the value of the pseudo null curvature.

The authors of [14] characterized pseudo null curves with the structure function as the following.

Proposition 2 ([14]). Let r(s) be a pseudo null curve in E3
1. Then r(s) and its pseudo null curvature κ(s) can

be written as
r(s) =

1
2

∫
(c(g− 1) +

1
c
(g + 1), 2g, c(g− 1)− 1

c
(g + 1))ds

and

κ(s) =
g′′(s)
g′(s)

, (1)

where 0 6= c ∈ R, g = g(s) is non-constant function which is called the structure function of r(s).

Definition 2 ([15]). Let p be a fixed point in E3
1 and r > 0 be a constant. Then the pseudo-Riemannian space

forms, i.e., the de-Sitter space S2
1(p, r), the hyperbolic space H2

0(p, r) and the lightlike cone Q2
1(p) are defined as
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M2(δ) = {x ∈ E3
1 : 〈x− p, x− p〉 = δr2} =


S2

1(p, r) | δ = 1;

H2
0(p, r) | δ = −1;

Q2
1(p) | δ = 0.

The point p is called the center of S2
1(p, r), H2

0(p, r) and Q2
1(p). When p is the origin and r = 1, we simply

denote them by S2
1, H2 and Q2

1.

For a pseudo null curve r(s) framed by {T, N, B} in E3
1, the planes spanned by {T, N}, {T, B}

and {N, B} are known as the osculating, the rectifying and the normal planes of r(s), respectively.
A curve b(s) is called an associate osculating, an associate rectifying, or an associate normal curve of
r(s) when the position vector b(s) always lies on the osculating, the rectifying, or the normal plane of
r(s), respectively. For an associate normal curve b(s) of a pseudo null curve r(s), we can write

b(s) = u(s)N(s) + v(s)B(s)

for some non-zero differentiable functions u(s) and v(s). In particular, if the associate normal curve
b(s) = u(s)N(s) + v(s)B(s) lies on S2

1 or H2, then u(s) and v(s) satisfy u(s)v(s) = 1
2 or u(s)v(s) = − 1

2 .
Without lose of generality, we have the following definition.

Definition 3. Let r(s) be a pseudo null curve framed by {T, N, B} in E3
1. Then b1(s) = 1√

2
(λN + 1

λ B),

b2(s) = 1√
2
(λN − 1

λ B) is called an associate normal curve of r(s) on de-Sitter space, an associate normal curve
of r(s) on hyperbolic space for some non-zero differentiable function λ = λ(s), respectively. In a word, b1(s) and
b2(s) are called normal partner curves of r(s) on dual space forms.

To serve the discussions, some fundamental facts of curves lying on space forms will be reviewed.

Proposition 3 ([15]). Let r = r(s) : I → S2
1 be a curve parameterized by arc-length s. Then there exists a

unique pseudo spherical Frenet frame {α, β, γ = r} such thatα′(s)
β′(s)
γ′(s)

 =

 0 κ(s) 0
κ(s) 0 −δ0

0 1 0


α(s)

β(s)
γ(s)

 , (2)

where 〈γ(s), γ(s)〉 = 1, 〈β(s), β(s)〉 = −〈α(s), α(s)〉 = δ0 = ±1. The function κ(s) is called the pseudo
spherical curvature of r(s).

Proposition 4 ([15]). Let r = r(s) : I → H2 be a curve parameterized by arc-length s. Then there exists a
unique hyperbolic Frenet frame {α, β, γ = r} such thatα′(s)

β′(s)
γ′(s)

 =

 0 κ(s) 0
−κ(s) 0 1

0 1 0


α(s)

β(s)
γ(s)

 , (3)

where 〈γ(s), γ(s)〉 = −1, 〈β(s), β(s)〉 = 〈α(s), α(s)〉 = 1. The function κ(s) is called the hyperbolic
curvature of r(s).

At last, let us recall the notion of angles between two arbitrary non-null vectors in E3
1.

Definition 4 ([16]). Let u and v be spacelike vectors in E3
1.

• If u and v span a timelike vector subspace. Then we have |〈u, v〉| > ‖u‖‖v‖ and hence, there is a unique
positive real number θ such that
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|〈u, v〉| = ‖u‖‖v‖ cosh θ. (4)

The real number θ is called the Lorentz timelike angle between u and v.

• If u and v span a spacelike vector subspace. Then we have |〈u, v〉| ≤ ‖u‖‖v‖ and hence, there is a unique
real number θ ∈ [0, π

2 ] such that
|〈u, v〉| = ‖u‖‖v‖ cos θ. (5)

The real number θ is called the Lorentz spacelike angle between u and v.

Definition 5 ([16]). Let u be a spacelike vector and v a future pointing timelike vector in E3
1. Then there is a

unique non-negative real number θ such that

|〈u, v〉| = ‖u‖‖v‖ sinh θ. (6)

The real number θ is called the Lorentz timelike angle between u and v.

Definition 6. [16] Let u and v be future pointing (past pointing) timelike vectors in E3
1. Then there is a unique

non-negative real number θ such that

|〈u, v〉| = ‖u‖‖v‖ cosh θ. (7)

The real number θ is called the Lorentz timelike angle between u and v.

Remark 2 ([6]). Physically, this designation of the future pointing and past pointing timelike vectors
corresponds to a choice of an arrow of time at the given point, therefore Equations (6) and (7) include all
definitions of angles between non-null vectors and timelike vectors.

Remark 3. The angles between a lightlike vector and an arbitrary spacelike vector, timelike vector or another
lightlike vector which is independent to it have been defined in [6]. We do not recall the details here, because they
are not involved in this paper.

3. Main Conclusions

In this section, the associate normal curves of a pseudo null curve on de-Sitter space and hyperbolic
space, respectively will be discussed. At the same time, the relationships between the normal partner
curves will be presented.

3.1. Associate Normal Curves of a Pseudo Null Curve on de-Sitter Space

Let r(s) be a pseudo null curve framed by {T, N, B}, b1(s) = 1√
2
(λN + 1

λ B) its associate normal
curve on de-Sitter space framed by {α1, β1, γ1 = b1}. From Proposition 3, we have

Case (1): δ0 = 1, i.e., β1 is spacelike. In order to distinguish different cases, we rewrite Equation (2)
as the following: α+

′
1 (s)

β+′
1 (s)

γ+′
1 (s)

 =

 0 κ+1 (s) 0
κ+1 (s) 0 −1

0 1 0


α+1 (s)

β+
1 (s)

γ+
1 (s)

 ,

where s is the arc-length of b1(s), and 〈γ+
1 (s), γ+

1 (s)〉 = 1, 〈β+
1 (s), β+

1 (s)〉 = −〈α
+
1 (s), α+1 (s)〉 = 1.

Taking derivative on both sides of γ+
1 (s) = b1(s) with respect to the arc-length s of r(s), we get

β+
1

ds
ds

= − 1√
2λ

T +
f

2λ
(λN − 1

λ
B), (8)



Mathematics 2020, 8, 919 5 of 17

where f = f (s) =
√

2(λ′ + λκ). Making inner product on both sides of Equation (8) with itself, we get
( ds

ds )
2 = 1

2λ2 (1− f 2), ( f 2 < 1). Then, we have

ε0
ds
ds

=
1√
2λ

√
1− f 2, (ε0 = ±1), (9)

substituting it into Equation (8), we get

ε0β+
1 = − 1√

1− f 2
T +

f√
2(1− f 2)

(λN − 1
λ

B). (10)

Due to T, β+
1 are spacelike vectors and T× β+

1 = ε0 f√
2(1− f 2)

(λN + 1
λ B) is spacelike, then T and β+

1

span a timelike subspace. According to Equation (4), we have

|〈T, β+
1 〉| = ‖T‖‖β

+
1 ‖ cosh θ+1 ,

where θ+1 is the Lorentz timelike angle between T and β+
1 . Together with 〈T, β+

1 〉 = −
ε0√
1− f 2

, we get

cosh θ+1 = 1√
1− f 2

, thus sinh θ+1 = ε f√
1− f 2

, (ε = ±1, f 6= 0). Explicitly, when 0 < f < 1, ε = 1;

when −1 < f < 0, ε = −1. Then, Equation (10) can be rewritten as

ε0β+
1 = − cosh θ+1 T +

ε√
2

sinh θ+1 (λN − 1
λ

B). (11)

Differentiating Equation (11) with respect to s and by Equation (9), we have

κ+1 α+1 − γ+
1 =−

(
√

2λθ+
′

1 − ε) sinh θ+1√
1− f 2

T +
λ(ε f sinh θ+1 + ε

√
2λθ+

′
1 cosh θ+1 − 2 cosh θ+1 )√

2(1− f 2)
N+

ε( f sinh θ+1 −
√

2λθ+
′

1 cosh θ+1 )

λ
√

2(1− f 2)
B.

(12)

Taking inner product on both sides of Equation (12) with itself, we get

1− κ+
2

1 =
−2λθ+

′
1 (λθ+

′
1 −

√
2ε) + (1 + f 2) sinh2 θ+1 − ε f sinh 2θ+1

1− f 2 , (13)

considering cosh θ+1 = 1√
1− f 2

and sinh θ+1 = ε f√
1− f 2

, by Equation (13) we have

ε+1 κ+1 = ε
f 2 +

√
2λ f ′ − 1

(1− f 2)
3
2

= (
√

2λθ+
′

1 − ε) cosh θ+1 , (ε+1 = ±1). (14)

Then, by substituting Equation (14) and γ+
1 = 1√

2
(λN + 1

λ B) into Equation (12), we can obtain

ε+1 α+1 = − ε f√
1− f 2

T +
ε√

2(1− f 2)
(λN − 1

λ
B) = − sinh θ+1 T +

ε√
2

cosh θ+1 (λN − 1
λ

B).

Case (2): δ0 = −1, i.e., β1 is timelike. Similar to the process of Case 1, we can rewrite Equation (2)
as the following: α−

′
1 (s)

β−
′

1 (s)
γ−

′
1 (s)

 =

 0 κ−1 (s) 0
κ−1 (s) 0 1

0 1 0


α−1 (s)

β−1 (s)
γ−1 (s)

 ,
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where s is the arc-length of b1(s), and 〈γ−1 (s), γ−1 (s)〉 = 1, 〈β−1 (s), β−1 (s)〉 = −〈α
−
1 (s), α−1 (s)〉 = −1.

Taking derivative on both sides of γ−1 (s) = b1(s) with respect to the arc-length s of r(s), we get

β−1
ds
ds

= − 1√
2λ

T +
f

2λ
(λN − 1

λ
B), (15)

where f = f (s) =
√

2(λ′ + λκ). Making inner product on both sides of Equation (15) with itself,
we get ( ds

ds )
2 = 1

2λ2 ( f 2 − 1), ( f 2 > 1). Then, we have

ε0
ds
ds

=
1√
2λ

√
f 2 − 1, (ε0 = ±1), (16)

substituting it into Equation (15), we get

ε0β−1 = − 1√
f 2 − 1

T +
f√

2( f 2 − 1)
(λN − 1

λ
B). (17)

Due to T is spacelike, β−1 is timelike, according to Equation (6), we have

|〈T, β−1 〉| = ‖T‖‖β
−
1 ‖ sinh θ−1 ,

where θ−1 is the Lorentz timelike angle between T and β−1 . Together with 〈T, β−1 〉 = −
ε0√
f 2−1

, we get

sinh θ−1 = 1√
f 2−1

, thus cosh θ−1 = ε f√
f 2−1

, (ε = ±1). Explicitly, when f > 1, ε = 1; when f < −1,

ε = −1. Then, Equation (17) can be rewritten as

ε0β−1 = − sinh θ−1 T +
ε√
2

cosh θ−1 (λN − 1
λ

B). (18)

Differentiating Equation (18) with respect to s and by Equation (16), we have

κ−1 α−1 + γ−1 =−
(
√

2λθ−
′

1 − ε) cosh θ−1√
f 2 − 1

T +
λ(ε f cosh θ−1 + ε

√
2λθ−

′
1 sinh θ−1 − 2 sinh θ−1 )√

2( f 2 − 1)
N+

ε( f cosh θ−1 −
√

2λθ−
′

1 sinh θ−1 )

λ
√

2( f 2 − 1)
B.

(19)

Taking inner product on both sides of Equation (19) with itself, we get

1 + κ−
2

1 =
2λθ−

′
1 (λθ−

′
1 −

√
2ε) + (1 + f 2) cosh2 θ−1 − ε f sinh 2θ−1

f 2 − 1
, (20)

considering sinh θ−1 = 1√
f 2−1

and cosh θ−1 = ε f√
f 2−1

, by Equation (20) we have

ε−1 κ−1 = ε
f 2 +

√
2λ f ′ − 1

( f 2 − 1)
3
2

= (
√

2λθ−
′

1 − ε) sinh θ−1 , (ε−1 = ±1). (21)

Then, by substituting Equation (21) and γ−1 = 1√
2
(λN + 1

λ B) into Equation (19), we can obtain

ε−1 α−1 = − ε f√
f 2 − 1

T +
ε√

2( f 2 − 1)
(λN − 1

λ
B) = − cosh θ−1 T +

ε√
2

sinh θ−1 (λN − 1
λ

B).

Based on above discussions, we can get the following conclusions.
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Theorem 1. Let r(s) be a pseudo null curve framed by {T, N, B}, b1(s) = 1√
2
(λN + 1

λ B) its associate normal
curve on de-Sitter space framed by {α1, β1, γ1 = b1}.

1. If β1 = β+
1 is spacelike, then the Frenet frame of r(s) and the pseudo spherical Frenet frame of b1(s) can

be related by f =
√

2(λ′ + λκ) as

εε+1 α+1 = − f√
1− f 2

T +
1√

2(1− f 2)
(λN − 1

λ
B),

ε0β+
1 = − 1√

1− f 2
T +

f√
2(1− f 2)

(λN − 1
λ

B),

γ+
1 =

1√
2
(λN +

1
λ

B)

or the Lorentz timelike angle θ+1 between T and β+
1 as

εε+1 α+1 = −ε sinh θ+1 T +
1√
2

cosh θ+1 (λN − 1
λ

B),

εε0β+
1 = −ε cosh θ+1 T +

1√
2

sinh θ+1 (λN − 1
λ

B),

γ+
1 =

1√
2
(λN +

1
λ

B),

where ε0 = ±1, ε+1 = ±1, f = ε tanh θ+1 and when 0 < f < 1, ε = 1; when −1 < f < 0, ε = −1.

2. If β1 = β−1 is timelike, then the Frenet frame of r(s) and the pseudo spherical Frenet frame of b1(s) can be
related by f =

√
2(λ′ + λκ) as

εε−1 α−1 = − f√
f 2 − 1

T +
1√

2( f 2 − 1)
(λN − 1

λ
B),

ε0β−1 = − 1√
f 2 − 1

T +
f√

2( f 2 − 1)
(λN − 1

λ
B),

γ−1 =
1√
2
(λN +

1
λ

B)

or the Lorentz timelike angle θ−1 between T and β−1 as

εε−1 α−1 = −ε cosh θ−1 T +
1√
2

sinh θ−1 (λN − 1
λ

B),

εε0β−1 = −ε sinh θ−1 T +
1√
2

cosh θ−1 (λN − 1
λ

B),

γ−1 =
1√
2
(λN +

1
λ

B),

where ε0 = ±1, ε−1 = ±1, f = ε coth θ−1 and when f > 1, ε = 1; when f < −1, ε = −1.

Theorem 2. Let r(s) be a pseudo null curve framed by {T, N, B}, b1(s) = 1√
2
(λN + 1

λ B) its associate normal
curve on de-Sitter space framed by {α1, β1, γ1 = b1}.

1. If β1 = β+
1 is spacelike, the pseudo spherical curvature κ+1 of b1(s) can be expressed by

ε+1 κ+1 = ε
f 2 +

√
2λ f ′ − 1

(1− f 2)
3
2

= (
√

2λθ+
′

1 − ε) cosh θ+1 .
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2. If β1 = β−1 is timelike, the pseudo spherical curvature κ−1 of b1(s) can be expressed by

ε−1 κ−1 = ε
f 2 +

√
2λ f ′ − 1

( f 2 − 1)
3
2

= (
√

2λθ−
′

1 − ε) sinh θ−1 ,

where ε, ε+1 , θ+1 , ε−1 , θ−1 and f as stated in Theorem 1.

It is obvious that the case f = 0 is excluded in the first case of Theorems 1 and 2. In fact,
when f = 0, i.e., λ′ + λκ = 0, by solving the differential equation, we get

λ(s) = ce−
∫

κ(s)ds, (0 6= c ∈ R).

Furthermore, from Equation (1), by substituting κ(s) = g′′(s)
g′(s) into above equation, we have

λ(s) =
c

g′(s)
, (0 6= c ∈ R).

Corollary 1. Let r(s) be a pseudo null curve framed by {T, N, B} with pseudo null curvature κ(s) and
structure function g(s), b1(s) = 1√

2
(λN + 1

λ B) its associate normal curve on de-Sitter space framed by

{α+1 , β+
1 , γ+

1 = b1}. If λ(s) = ce−
∫

κ(s)ds = c
g′(s) , (0 6= c ∈ R), then we have

• the arc-length s̄ of b1(s) can be expressed by s̄ = c0g(s), (0 6= c0 ∈ R);
• the pseudo spherical curvature of b1(s) is κ+1 = ±1;
• the Frenet frame of r(s) and the pseudo spherical Frenet frame of b1(s) can be related byε+1 α+1

ε0β+
1

γ+
1

 =

 0 − λ√
2

1√
2λ

−1 0 0
0 λ√

2
1√
2λ


T

N
B

 , (ε0 = ±1, ε+1 = ±1).

Proof of Corollary 1. When λ(s) = ce−
∫

κ(s)ds = c
g′(s) , (0 6= c ∈ R), by taking derivative on both

sides of γ+
1 (s) = b1(s) with respect to the arc-length s of r(s), we get

β+
1

ds
ds

= − 1√
2λ

T. (22)

Making inner product on both sides of Equation (22) with itself, we get ( ds
ds )

2 = 1
2λ2 . Then, we get

ε0
ds
ds

=
1√
2λ

=
cg′(s)√

2
, (ε0 = ±1, 0 6= c ∈ R). (23)

Obviously, the arc-length s̄ = c0g(s), (0 6= c0 ∈ R) from Equation (23). Substituting Equation (23)
into Equation (22), we get

ε0β+
1 = −T. (24)

Taking derivative on both sides of Equation (24) with respect to s and by Equation (23), we have

κ+1 α+1 − γ+
1 = −

√
2λN. (25)
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Making inner product on both sides of Equation (25) with itself, we have κ+1 = ±1. Then from
γ+

1 = 1√
2
(λN + 1

λ B) and Equation (25), we can obtain

ε+1 α+1 = − 1√
2
(λN − 1

λ
B), (ε+1 = ±1).

The proof is completed.

Remark 4. Obviously, the corresponding results in Theorems 1 and 2 still hold for f = 0, i.e., λ(s) =

ce−
∫

κ(s)ds = c
g′(s) , (0 6= c ∈ R).

3.2. Associate Normal Curves of a Pseudo Null Curve on Hyperbolic Space

Let r(s) be a pseudo null curve framed by {T, N, B}, b2(s) = 1√
2
(λN − 1

λ B) its associate normal
curve on hyperbolic space framed by {α2, β2, γ2 = b2}. From Proposition 4, we can rewrite Equation (3)
as the following: α′2(s)

β′2(s)
γ′2(s)

 =

 0 κ2(s) 0
−κ2(s) 0 1

0 1 0


α2(s)

β2(s)
γ2(s)

 ,

where s is the arc-length of b2(s), and 〈γ2(s), γ2(s)〉 = −1, 〈β2(s), β2(s)〉 = 〈α2(s), α2(s)〉 = 1.
Taking derivative on both sides of γ2(s) = b2(s) with respect to the arc-length s of r(s), we get

β2
ds
ds

=
1√
2λ

T +
f

2λ
(λN +

1
λ

B), (26)

where f = f (s) =
√

2(λ′ + λκ). Making inner product on both sides of Equation (26) with itself,
we get ( ds

ds )
2 = 1

2λ2 (1 + f 2). Then, we have

ε0
ds
ds

=
1√
2λ

√
1 + f 2, (ε0 = ±1), (27)

substituting it into Equation (26), we get

ε0β2 =
1√

1 + f 2
T +

f√
2(1 + f 2)

(λN +
1
λ

B). (28)

Due to T, β2 are spacelike vectors and T × β2 = ε0 f√
2(1+ f 2)

(λN − 1
λ B), ( f 6= 0) is timelike, then T

and β2 span a spacelike subspace. According to Equation (5), we have

|〈T, β2〉| = ‖T‖‖β2‖ cos θ2,

where θ2 is the Lorentz spacelike angle between T and β2. Together with 〈T, β2〉 = ε0√
1+ f 2

, we can get

cos θ2 = 1√
1+ f 2

, thus sin θ2 = ε f√
1+ f 2

, (ε = ±1). Explicitly, when f > 0, ε = 1; when f < 0, ε = −1.

Then, Equation (28) can be rewritten as

ε0β2 = cos θ2T +
ε√
2

sin θ2(λN +
1
λ

B). (29)

Differentiating Equation (29) with respect to s and by Equation (27), we have
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−κ2α2 + γ2 =− (
√

2λθ′2 + ε) sin θ2√
f 2 + 1

T +
λ(ε f sin θ2 + ε

√
2λθ′2 cos θ2 + 2 cos θ2)√

2( f 2 + 1)
N−

ε( f sin θ2 −
√

2λθ′2 cos θ2)

λ
√

2( f 2 + 1)
B.

(30)

Taking inner product on both sides of Equation (30) with itself, we get

κ2
2 − 1 =

2λθ′2(λθ′2 +
√

2ε) + (1− f 2) sin2 θ2 − ε f sin 2θ2

f 2 + 1
, (31)

considering cos θ2 = 1√
f 2+1

and sin θ2 = ε f√
f 2+1

, by Equation (31) we have

ε2κ2 = ε
f 2 +

√
2λ f ′ + 1

(1 + f 2)
3
2

= (
√

2λθ′2 + ε) cos θ2, (ε2 = ±1). (32)

Then, by substituting Equation (32) and γ2 = 1√
2
(λN − 1

λ B) into Equation (30), we can obtain

ε2α2 =
ε f√
f 2 + 1

T − ε√
2( f 2 + 1)

(λN +
1
λ

B) = sin θ2T − ε√
2

cos θ2(λN +
1
λ

B).

Summarize above discussions, we have the following conclusions.

Theorem 3. Let r(s) be a pseudo null curve framed by {T, N, B}, b2(s) = 1√
2
(λN− 1

λ B) its associate normal
curve on hyperbolic space framed by {α2, β2, γ2 = b2}. Then the Frenet frame of r(s) and the hyperbolic Frenet
frame of b2(s) can be related by f =

√
2(λ′ + λκ) as

εε2α2 =
f√

1 + f 2
T − 1√

2(1 + f 2)
(λN +

1
λ

B),

ε0β2 =
1√

1 + f 2
T +

f√
2(1 + f 2)

(λN +
1
λ

B),

γ2 =
1√
2
(λN − 1

λ
B)

or the Lorentz spacelike angle θ2 between T and β2 as

εε2α2 = ε sin θ2T − 1√
2

cos θ2(λN +
1
λ

B),

εε0β2 = ε cos θ2T +
1√
2

sin θ2(λN +
1
λ

B),

γ2 =
1√
2
(λN − 1

λ
B),

where ε0 = ±1, ε2 = ±1, f = ε tan θ2 and when f > 0, ε = 1; when f < 0, ε = −1.

Theorem 4. Let r(s) be a pseudo null curve framed by {T, N, B}, b2(s) = 1√
2
(λN− 1

λ B) its associate normal
curve on hyperbolic space framed by {α2, β2, γ2 = b2}. Then the hyperbolic curvature κ2 of b2(s) can be
expressed by

ε2κ2 = ε
f 2 +

√
2λ f ′ + 1

(1 + f 2)
3
2

= (
√

2λθ′2 + ε) cos θ2,

where ε, ε2, θ2 and f as stated in Theorem 3.
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Similar to the procedure of the associate normal curve of a pseudo null curve on de-Sitter space
b1(s), for the associate normal curve of a pseudo null curve on hyperbolic space b2(s), when f = 0, i.e.,
λ(s) = ce−

∫
κ(s)ds = c

g′(s) , (0 6= c ∈ R), we have the following conclusions.

Corollary 2. Let r(s) be a pseudo null curve framed by {T, N, B} with pseudo null curvature κ(s) and
structure function g(s), b2(s) = 1√

2
(λN − 1

λ B) its associate normal curve on hyperbolic space framed by

{α2, β2, γ2 = b2}. If λ(s) = ce−
∫

κ(s)ds = c
g′(s) , (0 6= c ∈ R), then we have

• the arc-length s̄ of b2(s) can be expressed by s̄ = c0g(s), (0 6= c0 ∈ R);
• the hyperbolic curvature of b2(s) is κ2 = ±1;
• the Frenet frame of r(s) and the hyperbolic Frenet frame of b2(s) can be related byε2α2

ε0β2

γ2

 =

0 − λ√
2
− 1√

2λ

1 0 0
0 λ√

2
− 1√

2λ


T

N
B

 , (ε0 = ±1, ε2 = ±1).

Remark 5. The proof of Corollary 2 is omitted here since it is very similar to Corollary 1. Obviously, the results
in Theorems 3 and 4 still hold for f = 0, i.e., λ(s) = ce−

∫
κ(s)ds = c

g′(s) , (0 6= c ∈ R).

3.3. The Relationships of the Normal Partner Curves

In this section, we state the relations of the normal partner curves on dual space forms using the
knowledge of linear algebra and the results obtained in Sections 3.1 and 3.2.

Theorem 5. Let r(s) be a pseudo null curve framed by {T, N, B}, b1(s) = 1√
2
(λN + 1

λ B) framed by

{α1, β1, γ1 = b1} and b2(s) = 1√
2
(λN − 1

λ B) framed by {α2, β2, γ2 = b2} be normal partner curves of
r(s) on dual space forms.

1. If β1 = β+
1 is spacelike, then the pseudo spherical Frenet frame of b1(s) and the hyperbolic Frenet frame of

b2(s) can be related by f =
√

2(λ′ + λκ) as

εε+1 α+1
ε0β+

1
γ+

1

 = −


f 2√
1− f 4

f√
1− f 4

− 1√
1− f 2

f√
1− f 4

1√
1− f 4

− f√
1− f 2

1√
1+ f 2

− f√
1+ f 2

0


εε2α2

ε0β2

γ2



or the Lorentz timelike angle θ+1 between T and β+
1 , the Lorentz spacelike angle θ2 between T and β2 asεε+1 α+1

εε0β+
1

γ+
1

 = −

sinh θ+1 sin θ2 sinh θ+1 cos θ2 − cosh θ+1
cosh θ+1 sin θ2 cosh θ+1 cos θ2 − sinh θ+1

cos θ2 − sin θ2 0


εε2α2

εε0β2

γ2

 ,

where ε0, ε+1 , θ+1 and ε2, θ2 as stated in Theorems 1 and 3, respectively. f = ε tanh θ+1 = ε tan θ2 and
when 0 < f < 1, ε = 1; when −1 < f < 0, ε = −1.

2. If β1 = β−1 is timelike, then the pseudo spherical Frenet frame of b1(s) and the hyperbolic Frenet frame of
b2(s) can be related by f =

√
2(λ′ + λκ) as
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εε−1 α−1
ε0β−1
γ−1

 = −


f 2√
f 4−1

f√
f 4−1

− 1√
f 2−1

f√
f 4−1

1√
f 4−1

− f√
f 2−1

1√
1+ f 2

− f√
1+ f 2

0


εε2α2

ε0β2

γ2



or the Lorentz timelike angle θ−1 between T and β−1 , the Lorentz spacelike angle θ2 between T and β2 asεε−1 α−1
εε0β−1

γ−1

 = −

cosh θ−1 sin θ2 cosh θ−1 cos θ2 − sinh θ−1
sinh θ−1 sin θ2 sinh θ−1 cos θ2 − cosh θ−1

cos θ2 − sin θ2 0


εε2α2

εε0β2

γ2

 ,

where ε0, ε−1 , θ−1 and ε2, θ2 as stated in Theorems 1 and 3, respectively. f = ε coth θ−1 = ε tan θ2, and when
f > 1, ε = 1; when f < −1, ε = −1.

Proof of Theorem 5. From Theorems 1 and 3, by some matrix calculations, it is easy to get the
conclusions.

At the same time, from Theorems 2 and 4, the following conclusions are straightforward.

Theorem 6. Let r(s) be a pseudo null curve framed by {T, N, B}, b1(s) = 1√
2
(λN + 1

λ B) framed by

{α1, β1, γ1 = b1} and b2(s) = 1√
2
(λN − 1

λ B) framed by {α2, β2, γ2 = b2} be normal partner curves of
r(s) on dual space forms. Then the pseudo spherical curvature κ1 of b1(s) and the hyperbolic curvature κ2 of
b2(s) satisfy

1. if β1 = β+
1 is spacelike, κ1 = κ+1 , then we have

κ+
2

1 =
( f 2 +

√
2λ f ′ − 1)2

(1− f 2)3 = (
√

2λθ+
′

1 − ε)2 cosh2 θ+1 ,

κ2
2 =

( f 2 +
√

2λ f ′ + 1)2

(1 + f 2)3 = (
√

2λθ′2 + ε)2 cos2 θ2

and they are related by f = ε tanh θ+1 = ε tan θ2, when 0 < f < 1, ε = 1; when −1 < f < 0, ε = −1.
θ+1 and θ2 as stated in Theorems 1 and 3, respectively;

2. if β1 = β−1 is timelike, κ1 = κ−1 , then we have

κ−
2

1 =
( f 2 +

√
2λ f ′ − 1)2

( f 2 − 1)3 = (
√

2λθ−
′

1 − ε)2 sinh2 θ−1 ,

κ2
2 =

( f 2 +
√

2λ f ′ + 1)2

( f 2 + 1)3 = (
√

2λθ′2 + ε)2 cos2 θ2

and they are related by f = ε coth θ−1 = ε tan θ2, when f > 1, ε = 1; when f < −1, ε = −1. θ−1 and
θ2 as stated in Theorems 1 and 3, respectively.

Considering Corollaries 1 and 2, when f = 0, i.e., λ(s) = ce−
∫

κ(s)ds = c
g′(s) , (0 6= c ∈ R), we have

the following conclusions.

Corollary 3. Let r(s) be a pseudo null curve framed by {T, N, B} with pseudo null curvature κ(s) and
structure function g(s), b1(s) = 1√

2
(λN + 1

λ B) framed by {α1, β1, γ1 = b1} and b2(s) = 1√
2
(λN − 1

λ B)

framed by {α2, β2, γ2 = b2} be normal partner curves of r(s) on dual space forms. If λ(s) = ce−
∫

κ(s)ds =
c

g′(s) , (0 6= c ∈ R), then we have
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• the arc-length of b1(s) and b2(s) all can be expressed by s̄ = c0g(s), (0 6= c0 ∈ R);
• the pseudo spherical curvature κ+1 of b1(s) and the hyperbolic curvature κ2 of b2(s) satisfy

κ+
2

1 = κ2
2 = 1;

• the pseudo spherical Frenet frame of b1(s) and the hyperbolic Frenet frame of b2(s) can be related byε2α2

β2

γ2

 = −

0 0 1
0 1 0
1 0 0


ε+1 α+1

β+
1

γ+
1

 , (ε+1 = ±1, ε2 = ±1).

Remark 6. In Corollaries 1–3, for a given pseudo null curve r(s), when the smooth function λ(s) =

ce−
∫

κ(s)ds = c
g′(s) , (0 6= c ∈ R), the pseudo spherical curvature κ+1 = ±1 of b1(s) and the hyperbolic

curvature κ2 = ±1 of b2(s). How about the converse statement? i.e., when a pseudo spherical curve with
spacelike normal vector field b1(s) has pseudo spherical curvature κ+1 = ±1 or a hyperbolic curve b2(s) has
hyperbolic curvature κ2 = ±1, how to find out the corresponding pseudo null curve r(s) and what is the
relationship between the smooth function λ(s) and the null curvature function κ(s) or the structure function
g(s) of r(s) ? These problems are still in the air and can be considered in the future.

4. Examples

Example 1. Consider a pseudo null curve r(s) = (ln s,− ln s, s) framed by {T, N, B} whose curvature is
κ(s) = − 2

s . From the Frenet formula of r(s), then we know

N =

(
− 1

s2 ,
1
s2 , 0

)
, B =

(
s2 + 1

2
,

s2 − 1
2

, s
)

.

Assuming λ(s) = cosh s
3 , then the normal partner curves of r(s) on dual space forms are written as (see

Figures 1–3)

b1(s) =
1√
2
(− 1

s2 cosh
s
3
+

s2 + 1
2

sech
s
3

,
1
s2 cosh

s
3
+

s2 − 1
2

sech
s
3

,
1

s−1 sech
s
3
),

b2(s) =
1√
2
(− 1

s2 cosh
s
3
− s2 + 1

2
sech

s
3

,
1
s2 cosh

s
3
− s2 − 1

2
sech

s
3

,− 1
s−1 sech

s
3
).

Figure 1. r(s) (black) and b1(s) (green) in Example 1.
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Figure 2. r(s) (black) and b2(s) (red) in Example 1.

Figure 3. b1(s) (green) and b2(s) (red) in Example 1.

Example 2. Consider a pseudo null curve r(s) = −
(

2 cos s√
2
, 2 cos s√

2
, s
)

framed by {T, N, B} whose

curvature is κ(s) = − 1√
2

tan s√
2

. From the Frenet formula of r(s), then we know

N =

(
cos

s√
2

, cos
s√
2

, 0
)

, B =

(
cos

s√
2
− 3

2
sec

s√
2

, cos
s√
2
− 1

2
sec

s√
2

,
√

2 tan
s√
2

)
.

Assuming λ(s) = es, then the normal partner curves of r(s) on dual space forms can be written as (see
Figures 4–6)

b1(s) =
1√
2
((es + e−s) cos

s√
2
− 3

2
e−s sec

s√
2

, (es + e−s) cos
s√
2
− 1

2
e−s sec

s√
2

,
√

2e−s tan
s√
2
),

b2(s) =
1√
2
((es − e−s) cos

s√
2
+

3
2

e−s sec
s√
2

, (es − e−s) cos
s√
2
+

1
2

e−s sec
s√
2

,−
√

2e−s tan
s√
2
).

Figure 4. r(s) (black) and b1(s) (green) in Example 2.
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Figure 5. r(s) (black) and b2(s) (red) in Example 2.

Figure 6. b1(s) (green) and b2(s) (red) in Example 2.

Example 3. Consider a pseudo null curve r(s) = (ln(1− e−s),− ln(1− e−s), s) framed by {T, N, B} whose
curvature is κ(s) = 1+es

1−es . From the Frenet formula of r(s), then we know

N =

(
− es

(1− es)2 ,
es

(1− es)2 , 0
)

, B =

(
(1− es)2 + 1

2es ,
(1− es)2 − 1

2es ,
es − 1

es

)
.

When λ(s) = e−
∫

κ(s)ds = e−s

(1−es)2 , then the normal partner curves of r(s) on dual space forms can be
written as (see Figures 7–9)

b1(s) =
1√
2
(− 1

(1− es)4 +
(1− es)4 + (1− es)2

2
,

1
(1− es)4 +

(1− es)4 − (1− es)2

2
,−(1− es)3),

b2(s) =
1√
2
(− 1

(1− es)4 −
(1− es)4 + (1− es)2

2
,

1
(1− es)4 −

(1− es)4 − (1− es)2

2
, (1− es)3).

Figure 7. r(s) (black) and b1(s) (green) in Example 3.
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Figure 8. r(s) (black) and b2(s) (red) in Example 3.

Figure 9. b1(s) (green) and b2(s) (red) in Example 3.
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