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Abstract: The magnetohydrodynamic (MHD) stagnation point flow over a shrinking or stretching
flat sheet is investigated. The governing partial differential equations (PDEs) are reduced into a set of
ordinary differential equations (ODEs) by a similarity transformation and are solved numerically
with the help of MATLAB software. The numerical results obtained are for different values of the
magnetic parameter M, heat generation parameter Q, Prandtl number Pr and reciprocal of magnetic
Prandtl number ¢. The influences of these parameters on the flow and heat transfer characteristics
are investigated and shown in tables and graphs. Two solutions are found for a certain rate of the
shrinking strength. The stability of the solutions in the long run is determined, and shows that only
one of them is stable. It is found that the skin friction coefficient f” (0) and the local Nusselt number
—0’(0) decrease as the magnetic parameter M increases. Further, the local Nusselt number increases
as the heat generation increases.

Keywords: dual solutions; induced magnetic field; shrinking sheet; stability

1. Introduction

The study of heat and mass transfer in the magnetohydrodynamic (MHD) flow has been considered
by many researchers due to its applications in various areas. MHD flow plays important roles in the
field of medicine, for example in cancer tumor treatment causing hypothermia, reducing bleeding
in severe injuries and magnetic resonance imaging [1]. Famous applications of MHD flows include
cooling of nuclear reactors, combustion modelling, geophysics and plasma studies. These applications
are affected quantitatively by heat transfer enhancement [2]. The application of MHD flows induced by
a magnetic field is widely used in semiconductor industries [3]. An investigation on the MHD viscous
fluid flow passing through a moving surface was conducted by Fang et al. [4]. Countless studies have
been reported on MHD flows under enormous physical conditions. Such reports can be found in [5,6].

Although there are many studies on MHD flows toward a stretching sheet which can be found
in [7,8], there are only a few studies regarding such flows toward a shrinking sheet. For instance,
Fang et al. [9] studied the MHD viscous fluid flow over a stretching sheet and reported the exact
solution for this problem. They found that the fluid flow and shear stress are greatly affected by
partial slip, magnetic parameter and mass transfer. Then Fang and Zhang [10] extended this work
to a shrinking sheet and included the injection/suction effect at the boundary. They reported that
the velocity decreases as the injection effect is increased, but it increases as the suction strength is
increased. The unsteady MHD flow and heat transfer of a nanofluid induced by a shrinking sheet
in the presence of thermal radiation were considered by Nandy et al. [11]. They found that the skin
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friction coefficient and the Sherwood number increase for the first solution, but decrease for the second
solution, for increasing values of the magnetic parameter. Later on, many similar problems were
considered and discussed by other authors [12-19].

A stagnation point flow occurs when a flow impinges a solid object [12]. At this point, the velocity
of the fluid is zero and has high pressure on the surface of the solid object. The pioneer study of the
two-dimensional stagnation point flow was done by Hiemenz [20], who found that the governing
Navier-Stokes equations can be reduced to an ordinary differential equation (ODE) using a similarity
transformation. Mustafa et al. [21] considered the MHD flow of a ferrofluid towards a stagnation point
on a stretchable rotating disk. They solved the problem numerically using the Keller box method.
The MHD stagnation point flow of a Maxwell fluid with the effects of an induced magnetic field and
convective boundary condition were studied by Ibrahim [22]. The results showed that the skin friction
coefficient, the local Sherwood number and the local Nusselt number were inversely proportional to
the Maxwell and magnetic parameters. Many investigators have studied the stagnation point flow
under different physical situations [23-27].

All of the above-mentioned papers on the MHD flows paid less attention to the effect of the
induced magnetic field. Ali et al. [28] investigated the MHD flows with induced magnetic field over
a stretching sheet. They also investigated the MHD stagnation point flows with an induced magnetic
field over a stretching sheet [29]. The stretching surface is occurring when the velocity at the boundary
moves away from a fixed point. This phenomenon can be found in the manufacturing processes
such as paper production, plastic sheet extraction and even glass blowing. The stretching surface will
usually shrink back. The shrinking surface occurs when the velocity at the boundary moves toward
a fixed point. This phenomenon of the shrinking surface is very useful in agriculture. Examples of
applications are the study of capillary effects on very small pores, expansion behavior as well as
hydraulic properties of clay for agricultural purposes. Hence, different from [28] and [29], in the
present paper, we consider both the stretching and shrinking cases. The fluid flow induced by the
shrinking sheet is different from that of a stretching sheet. The flow over a shrinking sheet is a kind of
backward flow discussed by Goldstein [30].

2. Basic Equations

Consider a magnetohydrodynamic (MHD) flow of a viscous, incompressible and electrically
conducting fluid in the stagnation region on a stretching/shrinking surface as shown in Figure 1.
The induced magnetic field is taken into consideration in this problem. The stretching/shrinking
surface is assumed in the form Auy (x), where A is the stretching/shrinking parameter with A > 0
corresponding to a stretching surface, A < 0 corresponds to a shrinking surface and A = 0 corresponds
to a static surface. Moreover u, (x) = xa is the ambient velocity and H, (x) = xH is the ambient magnetic
field. Further, the constant temperature of the stretching/shrinking sheet is denoted by Ty, while the
ambient fluid temperature is denoted by T.
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Figure 1. Physical model and coordinate system for the shrinking sheet.
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The governing equations are [31]:
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The boundary conditions are:

0=0, u=Auy(x) = Aax, Zt =0, Hy =0, T = Tyaty =0,

6
u(x) > up(x) = ax, Hy(x) —>H0x T — T when y — oo. ©
The dimensionless variables are defined as follows:
u=axf'(n), v=—-+(av) f(n = Hoxg' (1), H2 = /% Hog(n), -
T-Teo

Q(U)er_—rmf’?:\/;y/

where primes denote differentials with respect to n. Equations (1) and (2) are identically satisfied.
Substituting (7) into Equations (3)—(6) reduces the equations to:

FrEf =41+ M(g =g ~1) = 0, ®
" +f8 -f g=0, ©)
0" +Pr(f6’ + Q) = 0. (10)

The boundary conditions become:

f(0) =0, f/(0) = A, g(0) =0, g"(0) = 0, 6(0) =1, at n = 0,

N 11
ffin)—=1,¢1m —1,0(n) —-0asn— o (11)

where Pr = v/ is the Prandtl number, M = (u./4mp) (Hy/n)? is the magnetic parameter, ¢ = ¢g/v is
the reciprocal of the magnetic Prandtl number and Q = Qo/(apcy) is the heat generation (Q > 0) or
absorption (Q < 0).
We note that when M = 0 (without the magnetic field), this problem reduces to that of Mahapatra
and Gupta [32]. In fact, when the magnetic field is absent, Equation (9) is no longer necessary [28].
The quantities of physical interest include the skin friction coefficient and the local Nusselt number,
which are given as [33]:
Tw
pue(x)’

where 7y, is the surface shear stress and g, is the surface heat flux which, respectively, are given by:

J oT
Tw = H(%) 7 Quw = _k(a_y) . (13)
y=0 y=0

Xqw

Nty = —10
T (T = Too)

Cr = (12)
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Using (7), (12) and (13), one gets:
Re,!/2Cs = f(0), Rey /*Nuyx = -0'(0), (14)
where Rey = xu,/v is the local Reynolds number.

3. Flow Stability

The temporal stability analysis is performed to determine the stability of the solutions in the
long run. To do this, we consider the unsteady case for the present problem. The unsteady form of
Equations (8)—(10) are given as:

du du du du,  pehe dH, %u /1 &Hl J0H,

T dy el T 4rp dx L 2 T3 Vox tH ay ) (15)
ou 8H1 &H1 du ou N 82H1
5 U5 to En —Hig- - 25y = <o E (16)

oT oT oT ?T Qo
— — —=a—+—(T-Tw). 17
e ey T T, T T 17)
Following the works of Weidman et al. [34], Rosca and Pop [35] and Waini et al. [36], the new
time-dependent variables are introduced as:

J 12
U=aX3h(n,7), V = =N (n1), 6(1,7) = 7=, Hy = HoX 3 (1,7),
- (18)
_\/EHOa_y no =ty
where T = at, so that Equations (15)—(17) for the unsteady case may be written as:
Pf L Pf (IfY g\ P Pf
m”m‘(w) +1+M(ay) i e =Y (19)
8 82g 82f g
9T _ —0, 20
¢ 5y Hf 5yi =8 oy e (20)
’h oh oh
sy )5 =0 <21>
subject to:
of _ _ _
f(0,7) =0, 53(0,7) = A, g(0,7) =0, ayz £(0,7) =0, h(0,7)=1atY =0, 22)

Lv,1) =1, Z(Y,1) 51, h(Y,7) > 0as Y — oo.

To test the stability of the solutions of the system of Equations (8)—-(10), the basic solutions
f = fo(n), § = go(n) and h = hy(n) with the disturbances perturbed as [34-37] are:

fn,7) = fo(n) +e7"F(n), §(n,7) = go(n) +e7°G(n), h(n,7) = ho(n) +e"H(n) (23)

where y is an unknown eigenvalue and F(), G(1) and H(7) are relatively small compared to fy(7),

go(n) and hg(n). Substituting (23) into Equations (19)—(22), and after linearization, the following system
is obtained:

F” + foF” + fo” F+M(2g0’ G’ —g0G” —g0” G) — (2fo’ —=y)F' =0, (24)

EG,// +fOG’/ +g0/’ P_fo// G _gOP// + ,)/G/ — 0’ (25)

H" +Pr(foH +hy' F) + (PrQ + y)H = 0, (26)
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F(0) =0, F'(0) =0, G(0) =0, G'(0) =0, H=0, at Y =0,

F'(Y)—>0,G(Y) >0, HY) > 0as Y — oo. @7

Without the loss of generality, the smallest eigenvalues y in Equations (24)—(27) are obtained by
setting F” (0) = 1. From Equation (23), if v is negative, then there is an initial growth of disturbances
and thus the flow is unstable, as T—c0. However, when v is positive, the disturbances vanish as T—oc0
and thus the flow is stable.

4. Result and Discussion

The system of Equations (8)—(10) was solved numerically using the boundary value problem
solver bvp4c built in MATLAB software (R2019b, The MathWorks, Inc., Natick, MA, USA) for different
values of M, &€ and Q while the Prandtl number, Pr, is fixed at 1.0 (such as ionized gases). This solver
used a third order Lobatto IIla formula with a collocation method for solving the boundary value
problem. The numerical results obtained are compared with those reported by Rosca et al. [38] and
Ishak et al. [39] when M = 0 for both stretching and shrinking cases. Table 1 shows the comparison
of f7(0) with those of Rosca et al. [38] and Ishak et al. [39]. From the table, it is seen that they are in
a good agreement, which gives confidence to the numerical results for other values of parameters.

Table 1. Comparison of f” (0) for M = 0 and A < 0 (shrinking sheet).

Present Study Ishak et al. [39] Rosca et al. [38]
A Upper Lower Upper Lower Upper Lower
Branch Branch Branch Branch Branch Branch

-0.5 1.495690 - 1.495670 - 1.495669 -
-0.75 1.489298 - 1.489298 - 1.489298 -

-1 1.328817 0.0 1.328817 0.0 1.328816 0.0
-1.15 1.082231 0.116702 1.082231 0.116702 1.082231 0.116702
-1.20 0.932473 0.233650 0.932474 0.233650 0.932473 0.233649

Table 2 shows that for fixed values of Pr, €, Q and A, the skin friction coefficient f (0) and the local
Nusselt number —6’(0) decrease as the magnetic parameter M increases for the upper branch solution.
However, for the lower branch solution, the skin friction coefficient and the local Nusselt number
increase as the magnetic parameter increases. As the value of M increases, the local Nusselt number
decreases for the lower branch solution only. Moreover, Table 3 shows the variation of the local Nusselt
number for various values of the heat generation Q. We note that Q > 0 is for the heat generation,
while Q < 0 is for the heat absorption. It is observed that increasing the heat generation will prompt the
local Nusselt number to increase for both upper and lower branch solutions. Based on Fourier’s law,
the negative temperature gradient across the surface will increase when the heat generation increases.

Table 2. Variation of Re(/?Cyand Re™V?, Nu, with Pr =1, ¢ = 1000, Q = 0.1 dan A= —1.2.

o Re2, ¢y Re(Y2, Nu,

Upper Branch Lower Branch Upper Branch Lower Branch
0.1 0.919288600 0.245461561 0.036388462 0.135535051
0.5 0.860316623 0.299225512 0.049914145 0.135168459
1.0 0.761569269 0.392040873 0.071787829 0.130550670

Table 3. Variation of ReC"¥2), Nuy, with Pr=1.0, M = 0.1, ¢ = 1000 and A = —-1.2.

Q 0 0.2 0.5
Upper branch solution —-0.093149185 0.194299118 1.160454023
Lower branch solution —0.002856956 0.304206653 1.362866119

Re(_m)xNux
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Figure 2 demonstrates the variation of the skin friction coefficient with A < 0 for the magnetic
parameter M =0, 0.5, 1.0 where ¢ = 1000, Q = 0.1 (heat generation) and Pr = 1.0 (such as ionized gases).
It is observed that increasing the magnetic parameter M will decrease the range of A for which the
solutions are in existence. There exist two solutions, upper and lower branch solutions, for A < 0
(shrinking case). The magnetic parameter gives influence to the skin friction coefficient, as can be seen
in Figure 2, the skin friction coefficient decreases when M increases, for all values of A presented in
this figure.

T T T T T T T T T T

16 T
A =-1.24658
14 ¢
12F
M=0.0,05, 1.0
Ir A, =-1229708 i}
So08t+ .
&
06 <« ) =-1212757 1
3T ©
041 Wy B
AR %)
AR ___ Upper Branch Solution
02+ MY 4
RREN
S -——- Lower Branch Solution
oF ~~“\\.- -
1 1 1 1 1 1 1 1 1 1
-1.2 -1.1 -1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3

A

Figure 2. Variation of the skin friction coefficient f” (0) with A for different values of M with ¢ = 1000,
Q=0.1and Pr=1.0.

The variation of the local Nusselt number —6’(0) with A < 0 for M = 0, 0.5, 1.0 with Pr = 1.0,
¢ = 1000 and Q = 0.1 (heat generation) is shown in Figure 3. It also discovers that the magnitude of the
critical value A slightly decreases as M increases. The magnetic parameter M also influences the local
Nusselt number to decrease as the values of M increases.

T T T T T T T
015 A, =-1.24658 .
0.1F .
A =-1.229708
¢ 2 M=00,05,10
0.05 4
g
§ of -
,\c =-1.212757
-0.05 - -
_ Upper Branch Solution
0.1 F —
v - Lower Branch Solution
05 F -
1 1 1 1 1 1 1 1
-1.25 -1.2 -L15 -1.1 -1.05 -1 -0.95 -0.9 -0.85

A
Figure 3. Variation of the Nusselt number —6’(0) with A for different values of M with ¢ = 1000, Q = 0.1
and Pr = 1.0.

The velocity and temperature profiles for several values of M, ¢ and Q are shown in Figures 4-8,
respectively. From Figure 4, the velocity decreases as M increases for the upper branch solution and on
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the contrary, the velocity increases for the lower branch solution. This is due to the increase in the
magnetic field that will cause a reduction in the velocity of the fluid as the magnetic field is inversely
proportional to the velocity of the fluid. It can be observed that the reciprocal of the magnetic Prandtl
number ¢ can influence the velocity of the fluid which is shown in Figure 5. The velocity f’(7) increases
as the value of ¢ increases for the upper branch solution, but for the lower branch solution, the velocity
decreases. These results occur because the electrical conductivity decreases as ¢ increases. Hence,
the velocity in the boundary layer will lose control of the magnetic lines of forces. This phenomenon
has been explained by Takhar et al. [40].

()

M=00,05,10

Upper Branch Solution -

-——- Lower Branch Solution

-

_1.5 1 1 1 1 1

5 6

=]
[
v
£

|
0S5k
or
g
&
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A . .
aF ,’4 Upper Branch Solution .
’ .
-—— Lower Branch Solution
-l i 1 1 1 1 il 1
0 | 2 3 4 5 6

n

Figure 5. Velocity profiles f’(n) for several values of ¢ when A = -1.2, M = 0.5, Q = 0.1 and Pr = 1.0.

It is worth observing the temperature of the fluid in the absence of M, and also when M is acting on
the surface which is presented in Figure 6. It can be observed that when M increases, the temperature
of the fluid increases for the upper branch solution but the temperature decreases for the lower branch
solution. This phenomenon happens as an increase in the magnetic field will enhance the generation
of heat. Hence, the temperature of the fluid will be forced to increase. This is in accordance with the
results published in the previous work [41].
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Figure 6. Temperature profiles 6(1) for several values of M when A = 1.2, ¢ = 1000, Q = 0.1 and

Pr=1.0.

Furthermore, Figure 7 shows the temperature profiles for several values of ¢ which indicates that

the temperature is decreasing by increasing the values of . However, it is only true for the upper
branch solution. As for the lower branch solution, the temperature increases as ¢ increases. Figure 8
presents the dimensionless temperature profiles with the influence of Q. It reveals that the parameter
Q increases the temperature of the fluid for both upper and lower branch solutions. This is explained
by Fourier’s law mentioned above.

T T T

Upper Branch Solution

-—- Lower Branch Solution

0.8 .
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0.6 1
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Figure 8. Temperature profiles 0(1) for several values of Q when A= —1.2, ¢ = 1000, M = 0.5 and Pr = 1.0.
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In this paper, dual solutions are obtained when A < 0 (shrinking case). The temporal stability is
analyzed to determine which solution is stable as time evolves, by finding the eigenvalues vy in the
system of Equations (24)-(27). Due to the relations in Equation (23), negative values of v produce
a disturbance as T — o0, and thus the flow becomes unstable. On the other hand, positive values of y
result in diminished disturbance, thus the flow is stable in the long run. Figure 9 shows the values of y
for selected values of A. It is noticeable from this figure that y is positive for the first solution (upper
branch), but negative for the second solution (lower branch). Thus, the first solution is stable, but the
second solution is unstable, see also [42].

1.5 T T T T

A =-1.22971

05 Upper Branch Solution 1

(e b

Lower Branch Solution

Figure 9. The smallest eigenvalues vy for selected values of A.
5. Conclusions

This study investigated the MHD flow induced by a shrinking/stretching sheet where the induced
magnetic field is taken into consideration. The numerical results obtained showed that both the skin
friction coefficient and the local Nusselt number decreased with increasing values of the magnetic
parameter M. The magnetic parameter M enhanced the temperature but reduced the velocity inside
the boundary layer. Moreover, increasing the reciprocal of the magnetic Prandtl number ¢ caused an
increase in the velocity but a decrease in the temperature inside the boundary layer. The presence
of the heat source Q > 0 greatly affected the temperature of the fluid. Two solutions were found for
a single value of the parameter. The first and the second solutions are separated at the eigenvalue
v = 0. The smallest value for which the solutions are in existence is A = —1.22971. The solution is not
possible for large and moderately shrinking strength. The temporal stability analysis revealed that the
first solution is stable in the long run while the second solution is unstable.
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Nomenclatures

Cr Skin friction coefficient

o Specific heat at constant pressure (JKg~! K1)

pCp Heat capacitance of the fluid JK~' m~2)

f() Dimensionless stream function

Hy Initial velocity magnetic field

Hq, Hy Velocity magnetic field component in x and y direction

H, Velocity magnetic field of the ambient fluid

Nuy Local Nusselt number

Pr Prandtl number

Qo Thermal conductivity

Rey Local Reynolds number

T Fluid temperature (K)

Ty Surface temperature (K)

Too Ambient temperature (K)

T Time (s)

uv Velocity component time dependent in the x and y directions (ms™!)

u,v Velocity components in the x and y directions (ms™!)

Uy Velocity of the surface (ms™1)

Ue Ambient velocity (ms™1)

Greek symbols

a Thermal diffusivity

Y Eigenvalue

Co Magnetic diffusivity

n Similarity variable

A Shrinking parameter

0 Dimensionless temperature

U Dynamic viscosity of the fluid (kgm_ls_l)

v Kinematic viscosity of the fluid (mZs71)

p Density of the fluid (kgm™3)

Tw Skin friction or wall shear stress (kgm‘ls‘z)

T Dimensionless time

Subscripts

f Fluid

Superscript

’ Differentiation with respect to 1
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